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1. Introduction

According to Hagedorn, the hadronic mass spectrum (level density) has the asymptotic (m→
∞) form

ρH (m) ≈ exp(m/TH ) , (1.1)

wherem is the mass of the hadron in question andTH is the parameter (temperature) controlling
the exponential rise of the mass spectrum [1, 2]. The question of the mass range over which (1.1)
is valid is still under discussion [3].

The M.I.T. bag model [4] of partonic matter leads to the same spectrum via a constant pressure
B of the containing “bag” [5, 6]. In the absence of conserved charges the bag pressureB forces a
constant temperatureTB and energy densityε from which it follows that the bag entropy is

S= εV/TB = m/TB (1.2)

whereV andm are the volume and mass of the bag respectively. Thus the bag mass spectrum
exp(S) is identical to Eq. (1.1) [5, 6]. This property implies the lack of any surface energy associ-
ated with the bag.

A variety of experiments with high energy (
√

s≥ 30−50 GeV) elementary particle collisions
on very different systems indicate a constant temperature characterizing both chemical and physi-
cal equilibrium at vanishing baryonic densities [7, 8, 9]. It is interesting to explore the connection
of these empirical temperatures with the Hagedorn temperatureTH on one hand and the bag tem-
peratureTB on the other [10].

We will show that the temperature of any suchH system is not affected by the extrinsic
injection of energy into the system but it is encoded and strictly enforced by the fixed temperature
of the mass spectrum.

The insertion of an exponential spectrum such as Eq. (1.1) inthe partition function

Z (T) =

∞
∫

Emin

ρH (E)e−
E
T dE (1.3)

led to the incorrect conclusion that the entire range of temperatures 0≤ T < TH is accessible and
thatTH is the limiting temperature of the system.

In order to see the origin of this erroneous conclusion, let us consider the following illumi-
nating exercise. Consider a systemA composed of ice and water at standard pressure (see Fig. 1).
For such a system the temperature (kelvin) isTA = 273 K. Because of coexistence, we can feed or
extract heat to/from the system without changingTA. This is a strict thermodynamic requirement:
we say that the systemA is a thermostat.

If a quantityQ of heat is added to the sytem, the change in entropy is

∆S= Q/TA. (1.4)

The level density ofA is then

ρ(Q) = S0eQ/TA ≈ KeE/TA. (1.5)
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Figure 1: Example of ice and water at coexistence and the resulting (erroneous) partition function.

The level density, or spectrum, is exponential inE and depends only on the intrinsic “parameter"
TA. Let us calculate the partition function ofA:

Z(T) =
∫

eE/TAe−E/TdE =
∫

e
−

(

1
T − 1

TA

)

E
dE =

TAT
TA−T

(1.6)

This seems to indicate thatA can assumeany temperature 0≤ T < TA. This violates thermody-
namics, which requires that the only temperature possible for A is TA. What is the trouble?

Let us consider two systemsA,B with level densitiesρA andρB. Let the systems be thermally
coupled to each other with total energyE. We now calculate the distribution in energies between
the two systems,

ρT(x) = ρA(E−x)ρB(x) (1.7)

Let A be a “thermostat", i.e.ρA = eε/TA. Then

ρT(x) = exp

(

E−x
TA

)

ρB(x) = eE/TAe−x/TAρB(x). (1.8)
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Let us integrate overx

∫

ρT(x)dx= eE/TA

∫

e−x/TAρB(x)dx= eE/TAZB(TA). (1.9)

This is the thermodynamic justification of the partition function ZB(TA) and the meaning of “im-
plicit" thermostat. By changing “thermostat" we can changeTA and the temperature ofB.

Thus, every time we construct a partition function, we implythe gedanken experiment of
connecting the system to a thermostat, and that this experiment is actually possible for the system
we are studying. Does this always work?

To see this, let us look for the most probable value of the distribution ρT(x), which defines the
equilibrium partition, by taking the log and differentiating:

lnρT(x) = lnρA(E−x)+ lnρB(x) (1.10)

∂ lnρT(x)/∂x = − ∂ lnρA/∂x|+ ∂ lnρB/∂x| = 0 ⇔ 1/TA = 1/TB . (1.11)

For this to be possible, it is necessary thatρA andρB admit thesamelogarithmic derivative some-
where in the allowed range of energyx (see Fig. 2).

Usually, and always for concave functions,S(x) = lnρ(x) andT = (∂S/∂x)−1 is such that
0 ≤ T ≤ ∞. Thus, for such systems it is possible to match derivatives for whatever value ofE.
Thermal equilibrium is achievable over a broad range of temperatures.

However, ifSA(E) = lnρA(E) is linear inE, thenTA = (∂S/∂E)−1 is a constant, independent
of E. In this case, it is up toB to look for the value ofx at which its logarithmic derivative matches
1/TA. The systemA is a “thermostat" atT = TA andB can only try to assume the valueT = TB = TA,
if it can do so.

Now suppose that alsoSB(E) = lnρB(E) is linear inE with an inverse slopeTB. This means
that only if TA = TB is equilibrium possible, and the partition function ofB, ZB is meaningfully
defined only forT = TB and not for 0≤ T ≤ TB. We cannot force a temperatureT 6= TB on a
thermostat. It can only have its own intrinsic temperatureTB. These arguments are summarized
graphically in Fig. 2.

Placing systemsA andB into contact will lead to a continuous heat flow from one system to
the other. Thermal equilibrium is not achievable.

Summarizing: it is permissible to calculate a system’s partition function only if itsS(E) admits
as inverse derivatives values such as we want to impose through our Laplace transform. Failing that,
the resulting partition function does not satisfy any thermodynamic criterion.

Carlitz noticed [11] that Eq. (1.1) leads to a nonequivalence between the (grand)canonical and
microcanonical descriptions. However, the striking consequences of this fact were not appreciated.

We show here that the exponential form of the mass spectrum inEq. (1.1) forces the unique
temperatureTH on both the chemical and physical equilibria associated with it. Below we explore
the consequences of this hitherto unappreciated fact.

To begin, we show that a systemH possessing a Hagedorn-like spectrum, characterized by
an entropy of the form (1.2), not only has a unique microcanonical temperatureTH

TH = (dS/dE)−1 = TB, (1.12)
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Figure 2: Consequences of placing systems A and B in thermal contact when neither (top), one (middle), or
both (bottom) are thermostats.

but also imparts this same temperature to any other system towhichH is coupled. In the language
of thermodynamics:H is a perfect thermostat with the constant temperatureTH .

Incidentally, it is worth noting that a perfect thermostat is indifferent to the transfer of any
portion of its energy to any parcel within itself, no matter how small. In other words, it is at the
limit of phase stability and the internal fluctuations of itsenergy density are maximal. Therefore it
does not matter whether this thermostat is one large bag or itis fragmented in an arbitrary number
of smaller bags or, equivalently, it is a system of hadrons with a spectrum given by Eq. (1.1). This
has consequences on the properties ofH as we shall see below.

2. Harmonic Oscillator Coupled to H

In order to demonstrate the thermostatic behavior of a Hagedorn system, let us begin by cou-
pling H to a one dimensional harmonic oscillator and use a microcanonical treatment. The un-
normalized probabilityP(ε) for finding an excitation energyε in the harmonic oscillator out of the

5
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system’s total energyE is

P(ε)∼ ρH (E− ε)ρosc(ε) = exp

(

E− ε
TH

)

= ρH (E)exp

(

− ε
TH

)

. (2.1)

Recall that for a one dimensional harmonic oscillatorρosc is a constant. As the above equation
shows, the energy spectrum of the oscillator is canonical (Boltzmann factor!) up to the upper limit
εmax = E with an inverse slope (temperature) ofTH independent ofE. The mean value of the
energy of the oscillator is

ε = TH

[

1− E/TH

exp(E/TH )−1

]

. (2.2)

Thus in the limit thatE → ∞: ε → TH , no temperature other thanTH is admitted. This example
shows that a one dimensional harmonic oscillator can be usedas an ideal thermometer.

3. An ideal vapor coupled to H

For a physically more relevant example, let us consider a vapor of N ≫ 1 non-interacting
particles of massm coupled toH . The microcanonical level density of the vapor with kinetic
energyε is

ρvapor(ε) =
VN

N!
(

3
2N

)

!

(mε
2π

)
3
2N

, (3.1)

whereV is the volume. The microcanonical partition of the total system is

ρtotal(E,ε) = ρH (E− ε)ρvapor(ε) =
VN

N!
(

3
2N

)

!

(mε
2π

)
3
2N

e
E−mN−ε

TH . (3.2)

Again, the distribution of the vapor is exactly canonical upto εmax = E, if the particles are in-
dependently present, orεmax = E−mN, if the particles are generated byH . In either case, the
temperature of the vapor is alwaysTH .

At fixed N the maximum ofρtotal(E,ε) with respect toε gives the most probable kinetic energy
per particle as

∂ lnρtotal(E,ε)

∂ε
=

3N
2ε

− 1
TH

= 0⇒ ε
N

=
3
2

TH , (3.3)

provided thatE ≥ mN+ 3
2NTH . FormN< E < mN+ 3

2NTH , the most probable kinetic energy per
particle value isε

N = E
N −m< 3

2TH ; for E ≤mN, ε
N = 0. TH is the sole temperature characterizing

the distribution up to the microcanonical cut off, which maybe above or below the maximum of
the distribution, since the form ofρtotal(E,ε) is E-independent.

The maximum ofρtotal(E,ε) with respect toN at fixedV is given by

∂ lnρtotal(E,ε)

∂N
= − m

TH

+ ln

[

V
N

(

mTH
2π

)
3
2

]

= 0, (3.4)

where Eq. (3.3) was used forε . Thus the most probable particle density of the vapor isindependent
of V:

N
V

=

(

mTH
2π

)
3
2

e−
m

TH ≡ nH . (3.5)
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This most important result shows that not only isH a perfect thermostat, but also a perfect particle
reservoir. Different particles of different massmwill be automatically in chemical equilibrium with
each other. At equilibrium, particles emitted fromH form a saturated vapor at coexistence withH

at temperatureTH . This describes a first order phase transition (hadronic to partonic). Coexistence
occurs at a single temperature fixed by the bag pressure. Different arguments lead to a similar
conclusion concerning the existence of a phase transition [11].

These key results may explain the common value of: the hadronization temperatures obtained
within the statistical hadronization model at vanishing baryonic densities [9]; the inverse slopes
of the transverse mass spectra of hadrons observed in high energy elementary particle collisions
with the transverse momentapT ≤ 1 GeV [7, 8]; and the transition temperature from lattice QCD
calculations for low baryonic density [12]. For further discussion see [13].

Let us consider the case in which the vapor particle massm is part of a distribution of masses.
We want to determine the most probable mass respresented in the vapor. The system’s level density
ρtotal(E,ε) is still given by Eq. (3.2). Using Eqs. (3.3) and (3.5), one finds the most probable
value of the system’s level density asρ∗

total(E,ε)≈ exp[S∗], where the entropy isS∗ = E/TH +N.
Differentiatingρ∗

total(E,ε) with respect tomand applying Eq. (3.5) gives

∂ lnρ∗
total(E,ε)

∂m
= N

[

3
2m

− 1
TH

]

= 0⇒ m=
3
2

TH , (3.6)

i.e. the last equality provides the maximum of level densityfor N 6= 0.
Substituting the most probable value ofε andm into the most probable value ofN gives the

vapor concentration

N
V

=

(

3
4πe

)
3
2

T3
H . (3.7)

If the mass given by Eq. (3.6) does not exist among the available masses, then the level den-
sity’s most probable valueρ∗

total(E,ε) corresponds to the massm∗ nearest to3
2TH andN(m∗) given

by Eq. (3.5). The value ofm∗ that maximizes the level densityρ∗
total(E,ε) is the pion mass.

4. Hagedorn Thermostat Model

Let us consider the microcanonical ensemble ofNB Boltzmann point-like particles of mass
mB and degeneracygB, andNH hadronic point-like resonances of massmH with a mass spectrum
gH(mH) = exp[mH/TH ](mo/mH)a for mH ≥mo which obeys the inequalitiesmo ≫TH andmo > mB.
A recent analysis [14] suggests that the Hagedorn mass spectrum can be established formo < 2
GeV.

In the SBM [15] and the MIT bag model [5] it was found that formH → ∞ the parametera≤ 3.
For finite resonance masses the value ofa is unknown, so it will be considered as a fixed parameter.

The microcanonical partition of the system, with volumeV, total energyU and zero total
momentum, can be written as follows

Ω =
VNH

NH !

[

NH

∏
k=1

gH(mH)
∫

d3Qk

(2π)3

]

VNB

NB!

[

NB

∏
l=1

gB

∫

d3pl

(2π)3

]

7
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δ
(

U −
NH

∑
i=1

εH
i −

NB

∑
j=1

εB
j

)

, (4.1)

where the quantityεH
i = ε(mH ,Qi)

(

εB
j = ε(mB, p j) and ε(M,P)≡

√
M2+P2

)

denotes the

energy of the Hagedorn (Boltzmann) particle with the 3-momentum~Qi (~p j ). In order to simplify the
presentation of our idea, Eq. (4.1) accounts for energy conservation only and neglects momentum
conservation.

The microcanonical partition (4.1) can be evaluated by the Laplace transform in total energy
U [16]. Then the momentum integrals in (4.1) are factorized and can be performed analytically.
The inverse Laplace transform in the conjugate variableλ can be done analytically for the non-
relativistic and ultrarelativistic approximations of theone-particle momentum distribution function
(K2(z) is the modified Bessel function)

∞
∫

0

d3p e−λε(M,p)

(2π)3 =
M2

2π2 λ
K2(M λ )

≈
{

MRe(λ ) ≫ 1 ,
2

λ3 I2 e−Mλ , MRe(λ ) ≪ 1 ,
(4.2)

where the auxiliary integral can be expressed in terms of thegamma function as follows

Ib ≡
∞

∫

0

dξ
(2π)2 ξ b e−ξ =

Γ(b+1)

(2π)2 . (4.3)

The actual Hagedorn spectrum conatins a pre-exponential factor and becomes established
above a lower thresholdm0. We are considering here the implications of these two factsin a
more formal way.

Since the formal steps of further evaluation are similar forboth cases, we discuss in detail
the nonrelativistic limit only, and later present the results for the other case. The nonrelativistic
approximation (MRe(λ ) ≫ 1) for Eq. (4.1) is as follows

Ωnr =

[

VgH(mH) [2mH ]
3
2 I 1

2

]

NH !

NH

[

VgB [2mB]
3
2 I 1

2

]

NB!

NB

E
3
2(NH+NB)−1
kin

(

3
2(NH +NB)−1

)

!
, (4.4)

whereEkin = U −mHNH −mBNB is the kinetic energy of the system.
As shown below, the most realistic case corresponds to the nonrelativistic treatment of the

Hagedorn resonances because the resulting temperature is much smaller than their masses. There-
fore, it is sufficient to consider the ultrarelativistic limit for the Boltzmann particles only. In this
case (MRe(λ ) ≪ 1) the equation (4.1) can be approximated as

Ωur =

[

VgH(mH) [2mH ]
3
2 I 1

2

]

NH !

NH

[VgB 2 I2]
NB!

NB E
3
2(NH+2NB)−1
kin

(

3
2(NH +2NB)−1

)

!
, (4.5)

8
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where the kinetic energy does not include the rest energy of the Boltzmann particles, i.e.Ekin =

U −mHNH .
Within our assumptions the above results are general and canbe used for any number of

particles, providedNH + NB ≥ 2. It is instructive to consider first the simplest caseNH = 1. This
oversimplified model, in which a Hagedorn thermostat is always present, allows us to study the
problem rigorously. ForNH = 1 andNB ≫ 1 we treat the mass of Hagedorn thermostatmH as a
free parameter and determine the value which maximizes the entropy of the system. The solution
m∗

H > 0 of

δ lnΩnr(NH = 1)

δ mH
=

1
TH

+
(

3
2 − a

)

1
m∗

H
− 3(NB+1)

2 Ekin
= 0 (4.6)

provides the maximum of the system’s entropy, if formH = m∗
H the second derivative is negative

δ 2 lnΩnr(NH = 1)

δ m2
H

=

−
(

3
2 − a

)

1
m∗2

H
− 3(NB+1)

2 E2
kin

< 0. (4.7)

If the inequality (4.7) is satisfied, then the extremum condition (4.6) defines the temperature of the
system of(NB +1) nonrelativistic particles

T∗(m∗
H) ≡ 2 Ekin

3(NB +1)
=

TH

1 +
(3

2 − a
) TH

m∗
H

. (4.8)

Thus, asm∗
H → ∞ it follows thatT∗(m∗

H) → TH , while for finite m∗
H ≫ TH anda > 3

2 (a < 3
2) the

temperature of the system is slightly larger (smaller) thanthe Hagedorn temperature, i.e.T∗ > TH

(T∗ < TH). Formally, the temperature of the system in equation (4.8)may differ essentially fromTH

for a light thermostat, i.e. form∗
H ≤ TH . However, it is assumed that the Hagedorn mass spectrum

exists above the cut-off massmo ≫ TH , thusm∗ ≫ TH .

5. The Role of the Mass Cut-off

Now we study the effect of the mass cut-off of the Hagedorn spectrum on the inequality (4.7)
in more detail. Fora≤ 3

2 the condition (4.7) is satisfied. Fora> 3
2 the inequality (4.7) is equivalent

to
m∗2

H
(

a− 3
2

)

T∗(m∗
H)

>
3
2

(NB +1) T∗(m∗
H) , (5.1)

which means that a Hagedorn thermostat should be massive compared to the kinetic energy of the
system.

A more careful analysis shows that for a negative value of thedeterminantDnr (Ñ ≡ NB− 2
3a)

Dnr ≡
(

U −mBNB− 3
2 TH Ñ

)2−
4
(

a− 3
2

)

TH (U −mBNB) < 0, (5.2)

9
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equation (4.6) has two complex solutions, while forDnr = 0 there exists a single real solution of
(4.6). Solving (5.2) for(U −mBNB), shows that for̃N > 2

3a−1, i.e. forNB > 4
3,a−1 the inequality

(5.2) does not hold andDnr > 0. Therefore, in what follows we will assume thatNB > 4
3a−1 and

only analyze the caseDnr > 0. For this case equation (4.6) has two real solutions

m±
H = 1

2

[

U −mBNB− 3
2 TH Ñ ±

√
Dnr

]

. (5.3)

For a ≤ 3
2 only m+

H solution is positive and corresponds to a maximum of the microcanonical
partitionΩnr.

For a > 3
2 both solutions of (4.6) are positive, but onlym+

H is a maximum. From the two
limiting cases:

δ lnΩnr(NH = 1)

δ mH
≈

(

3
2 −a

)

1
mH

for mH ≈ 0, (5.4)

δ lnΩnr(NH = 1)

δ mH
≈ 3(NB+1)

2 Ekin
for Ekin ≈ 0, (5.5)

and the fact thatm±
H obey the inequalities

0 < m−
H ≤ m+

H < U −mBNB , (5.6)

it is clear thatm∗
H = m−

H is a local minimum of the microcanonical partitionΩnr, while m∗
H = m+

H

is a local maximum of the partitionΩnr.

Using Eq. (5.3) form+
H , it is clear that for any value ofa the constraintm+

H ≥ mo is equivalent
to the inequality

NB ≤ Nkin
B ≡

U − [mo
TH

− a] T∗(mo)

mB + 3
2 T∗(mo)

. (5.7)

Thus, at fixed energyU for all NB ≤ Nkin
B at m∗

H = m+
H there is a local maximum of the micro-

canonical partitionΩnr with the temperatureT = T∗(m+
H). For NB > Nkin

B the maximum of the
partition Ωnr cannot be reached due to the cut-off constraint and, consequently, the most probable
state corresponds tomH = mo with T ≤ T∗(mo) from Eq. (4.8). In other words, forNB > Nkin

B

the amount of energyU is insufficient for the mass of the Hagedorn thermostat to be above the
cut-off mo and simultaneously maintain the temperature of the Boltzmann particles according to
Eq. (4.8). By assumption there is a single Hagedorn thermostat in the system, therefore, asNB

grows the temperature of the system decreases fromT∗(mo) value. Thus, the equality (5.7) defines
the kinematical limit for reaching the maximum of the microcanonical partition.

To prove that the maximum of the microcanonical partition atmH = m+
H is global it is sufficient

to show that the constraintm+
H ≥ mo is not consistent with the conditionm−

H > mo. For a ≤ 3
2

the maximum is global because for 0< mH < m+
H (mH > m+

H ) the partitionΩnr(NH = 1,mH)

monotonically increases (decreases) withmH . Fora > 3
2 it is clear that the maximum atmH = m+

H

is local, if the state with massmH = mo is more probable, i.e.Ωnr(NH = 1,mo) > Ωnr(NH = 1,m+
H).

Due to (5.6) this can occur, ifm−
H > mo. Substituting Eq. (5.3) into the last inequality, shows that

this inequality reduces to the conditionNB > Nkin
B . This contradicts the constraintm+

H ≥ mo in the
form of Eq. (5.7). Thus, the maximum of the microcanonical partition is global.

10
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Figure 3: A typical behavior of the system’s temperature as a functionof the number of Boltzmann particles
NB for a = 3 anda = 0 for the same value of the total energyU = 30mB. Due to the thermostatic properties
of a Hagedorn resonance, the system’s temperature is nearlyconstant up to the kinematically allowed value
Nkin

B given by Eq. (5.7).

To complete our consideration of the nonrelativistic case let us express the partition (4.4) in
terms of the temperature (4.8). Applying the Stirling approximation to the factorial(3

2(NB+1)−1)!
for Nkin

B > NB ≫ 1 and reversing the integral representations (4.2) and (4.3) for λ = 1/T∗(m+
H), one

finds

Ωnr(NH = 1) =
V gH(m+

H)

T∗(m+
H)

∫

d3Q
(2π)3 e

−
√

m+2
H +Q2

T∗(m+
H )

e
U

T∗(m+
H )

NB!



V gB

∫

d3p
(2π)3 e

−
√

m2
B+p2

T∗(m+
H )





NB

. (5.8)

This is just the grand canonical partition of(NB+1) Boltzmann particles with temperatureT∗(m+
H).

If NB > Nkin
B ≫ 1, thenT∗(m+

H) in (5.8) should be replaced by

To(NB) ≡ 2(U −mBNB−mo)

3(NB +1)
. (5.9)

11
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Fig. 3 shows that fora > 3
2 the system’s temperatureT = T∗(m+

H) as a function ofNB remains
almost constant forNB < Nkin

B , reaches a maximum atNkin
B and rapidly decreases likeT = To(NB)

for NB > Nkin
B . For a < 3

2 the temperature has a plateauT = T∗(m+
H) for NB < Nkin

B , and rapidly
decreases forNB > Nkin

B according toTo(NB).

The same results are valid for the ultrarelativistic treatment of Boltzmann particles. Comparing
the nonrelativistic and ultrarelativistics expressions for the microcanonical partition, i.e. equations
(4.4) and (4.5), respectively, one finds that the derivationof the ultrarelativistic limit requires only
the substitutionNB → 2NB andmB/TH → 0 in equations (4.6 – 5.8). Note that this substitution does
not alter the expression for the temperature of the system, i.e. the right hand side of (4.8).

Finally, we show that for a heavy Hagedorn thermostat (m+
H ≫ mo) these results remain valid

for a single Hagedorn thermostat split intoNH pieces of the same mass. SubstitutingmH → mHNH

in the nonrelativistic expressions (4.4) and minimizing itwith respect tomH , the temperature of the
system in the form of equation (4.8) isT∗(m∗

HNH), where the mass ofNH Hagedorn thermostatsm∗
H

is related to the solutionm+
H of equation (5.3) asm∗

H = m+
H/NH . Since the original single thermostat

of massm+
H was assumed to be heavy, it followsT∗(m∗

HNH) = T∗(m+
H)→ TH . A more careful study

using an exact expression for the microcanonical partitionof NH Hagedorn thermostats of the same
massmH gives the same result, ifmH ≫ mo. A generalization of these statements to the case of
NH heavy Hagedorn thermostats of different masses also leads to the same result. Thus, splitting a
single heavy Hagedorn thermostat into an arbitrary number of heavy resonances (heavier thanmo)
does not change the temperature of the system.

6. H as a radiant bag

Do the emitted particles need to remain in the proximity ofH to insure equilibrium? Let
us assume thatH is a bag thick enough to absorb any given particle of the vaporstriking it.
Then, detailed balance requires that on averageH radiates back the same particle. Under these
conditions particles can be considered to be effectively emitted from the surface ofH . Thus the
relevant fluxes do not depend in any way upon the inner structure ofH , nor on the presence of the
outer vapor.

The results in equations (3.3) and (3.5) show that the saturated vapor concentration depends
only onmandTH as long asH is present. A decrease inV does not increase the vapor concentra-
tion, but induces a condensation of the corresponding amount of energy out of the vapor and into
H . An increase inV keeps the vapor concentration constant via evaporation of the corresponding
amount of energy out ofH and into the vapor. This is reminiscent of liquid-vapor equilibrium at
fixed temperature, except that here coexistence occurs at a single temperatureTH , rather than over
a range of temperatures as in ordinary fluids.

The bag wall is Janus faced: one side faces the partonic world, and, aside from conserved
charges, radiates a partonic black body radiation responsible for balancing the bag pressure; the
other side faces the hadronic world and radiates a hadronic black body radiation, mostly pions.
Both sides of the bag wall are at temperatureTH . It is tempting to attribute most, if not all,
of the hadronic and partonic properties to the wall itself, possibly even the capability to enforce
conservation laws globally (quantum number conductivity). Despite the fact that this wall is an
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insurmountable horizon, hadronic measurements such as bagsize and total radiance can yield some
properties of the partonic world, e.g. the number of degreesof freedom [7].

We can estimate an upper limit for the emission time using theoutward energy flux of particles
radiated from the bag. At equilibrium the in-going and out-going fluxes must be the same. The
outward flux of particlesnH together with the energy fluxϕEH

and momentum fluxprad can be
found using the techniques of [17, 18] and in the nonrelativistic approximation using Eq. (3.5) can
be cast as

ϕnH
≃ nH

4

(

m
m+2TH

)

√

8
TH

πm
, ϕEH

≃ (m+2TH )ϕnH
, prad = nH TH /2. (6.1)

The pressureprad exerted on the bag by its radiation can be compared to the intrinsic bag
pressureB: for pionsprad∼ 0.02B. The timeτ for the bag to dissolve into its radiation is

τ ≃
3π exp

(

m
TH

)

E0

gmR2
0m2T2

H

, (6.2)

gm is the particle degeneracy andR0 andE0 are the radius and total energy of the initial bag.
The fluxes written in Eqs. (6.1) (particle or energy per unit surface area) are integrated over

an assumed spherical bag to give the result in Eq. (6.2). However, because of the lack of surface
tension, the bag’s maximum entropy corresponds to either anelongated (cylinder) or a flattened
shape (disc). Thus, Eq. (6.2) should be interpreted as an upper limit.

The decoupling between the vapor concentration andm andTH occurs whenH has com-
pletely evaporated (i.e.E −Nm− 3

2NTH = 0) at a volume ofVd ≃ 1/nH E/(m+ 3
2TH ). The

disappearance ofH allows the vapor concentration to decrease asN/V = nH Vd/V.
For V > Vd due to energy and particle number conservation the temperature is fixed atTH .

This assumes the Hagedorn spectrum extends tom = 0. However, there may be a lower cut off
at m0 which modifies the results as follows. For energiesE −mN− ε ≫ m0 andV < Vd the
above results hold. ForV ≫ Vd, the situation is different:H evaporates until its mass ism0. If
the entire mass ofH is transformed into vapor particles as the volume increasesfurther, then the
excess particles increases the concentration and decreases the temperature. As the volume increases
further, the concentration varies asN/V = (nH Vd + m0

m )/V while the temperature remains constant
at T = nH Vd/(nH Vd + m0

m )TH .
The thresholdm0 is absolute regardless of bag multiplicity. Many bags in equilibrium have a

global Hagedorn thresholdm0 so particle-particle collisions are identical to heavy ionreactions.

7. Fragmentation of H

One last, but not least problem is the stability ofH against fragmentation into lighterH
particles (shown schematically in Fig. 4). In other words, given the total mass of the initialH
particle, we want to calculate the equilibrium mass distribution and concentrations of the system as
function of volume.

At the risk of stating the obvious, if we neglect the translational phase space, theH particle,
deprived as it is of surface terms, turns out to be totally indifferent to fragmentation.
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Figure 4: Schematic representation of the fragmentation oH .

On the other hand, the translational degrees of freedom can be properly accounted for by
introducing the Hagedorn weight exp

(

m
TH

)

in Eq. (3.2). Following exactly the same procedure we
arrive at the equivalent of Eq. (3.5) for each value ofH massm:

N(m)

V
=

(

mTH
2π

)
3
2

. (7.1)

This gives the equilibrium value of particle density forH of massm. Energy/mass conservation

E =

mmax
∫

mmin

d m
M

N(m)

(

m +
3
2

TH

)

= V

mmax
∫

mmin

d m
M

(

mTH
2π

)
3
2
(

m +
3
2

TH

)

, (7.2)

determines an upper cut offmmax for the Hagedorn mass spectrum (M is a normalization constant).

GivenE, the total mass/energy of the initialH particle, Eq. (7.2) is an implicit equation for
mass vs.E. The physical implication of these results is interesting:

1) Since the Hagedorn is assumed to split only into other Hagedorns at infinitum, a gas of Hage-
dorns must be at saturation with itself, i.e. the concentrations of the various masses belowmmax

cannot change with volume, and, of course, the temperature remains fixed atTH ;

2) However, as the volume increases/decreases, the upper cut-off mmaxdecreases/increases accord-
ing to the conservation law expressed by (7.2).

In any case, the distribution is dominated by the largest Hagedorn massmmax. We can also,
trivially, define the Hagedorn gas equation of state, which for mmin = 0 acquires a simple form

Ntot =

mmax
∫

0

d m
M

N(m) =
2mmax

5M
V

(

mmaxTH

2π

)
3
2

, P =
Ntot TH

V
,

E
V

=
3
2

P + γP
7
5 . (7.3)

An example of the pressure is given in Fig. 5.

14



P
o
S
(
C
P
O
D
2
0
0
6
)
0
3
7

The Hagedorn thermostat L. G. Moretto

Figure 5: An example of the pressure as a function of energy density is given for the Hagedorn equation of
state. See Eq. (7.3)

Here the constantγ is defined as

γ =
5

7T2
H

[

50π3M2]1/5
. (7.4)

From the equation of state (7.3) one can determine the speed of soundcs (see Fig. 6) as

c2
s = V

dP
dE

= 1/

[

3
2

+ γ P2/5
]

. (7.5)

The latter vanishes in the high pressure limit or at small volumesV → 0 and fixedE.

8. The Bag Surface

The bag expressions reported above contain only volume terms. Given the finite size of the
bags that are interpreted as resonances, it may be of interest to consider finite size effects and their
role in the description of the bags properties. The simplestgeneralization, assuming that the bags
are leptodermous (which is supported by the short range of hadron-hadron interaction) is that of
introducing a surface energy.

Thus, the pressure of a spherical bag can be written as

p =
σ
3

T4−B−as(T)V− 1
3 =

σ
3

T4−B− as(T)

α R
, (8.1)

whereas(T) is the temperature dependent surface energy coefficient,R is the bag radius andα ≡
[

4π
3

]
1
3 . Using the thermodynamic identities for the free energyF and entropyS

p = −
(

∂F
∂V

)

T
, and S= −

(

∂F
∂T

)

V
, (8.2)
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Figure 6: The square of the speed of sound as a function of energy density.

one can find all thermodynamic functions as follows

F = −
[σ

3
T4−B

]

V +
3
2

as(T) V
2
3 , (8.3)

S =
4σ
3

T3V − 3
2

das(T)

d T
V

2
3 , (8.4)

εV =
[

σT4 +B
]

V +
3
2

[

as(T)− das(T)

d T

]

V
2
3 . (8.5)

In evaluating the expression (8.3) we fixed the integration constant (an arbitrary function ofT) to
zero because for the bag of zero volume the free energy shouldvanish.

While theoretical input on the magnitude ofas(T) > 0 is needed the consequences associated
with the possible existence of this surface term are surprising. In Eq. (8.1) the surface term appears
as an additionalpressure to the bag pressure. Therefore, setting the total pressure to zerop= 0, we
obtain for the bag temperature

T = T(R) =

[

3
σ

(

B+
as(T)

α R

)]
1
4

. (8.6)

When R is large we recover the previous bag temperature and the associated physics. WhenR
becomes small, however, the bag temperature increases! Theimplications of his dependence are
strange indeed. The first is the peculiar behavior of the bag’s heat capacity. The second is the
stability of the gas of bags (or lack thereof). The third is the signature of a bag’s decay.

9. Heat Capacity

In the standard bag model the heat capacity is infinite: no matter how much energy is fed to
the bag, its temperature remains constant [10, 13]. The onlyeffect is to make the bag larger. This is
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completely consistent with what we observe in isobaric phase transitions in ordinary matter. Here
the isobaric condition is produced by the bag constant, and the phase transition is from hadronic to
partonic phase.

Surface effects, however, lead to an apparently non-thermodynamic behavior: the more we
feed the energy to the bag, the lower its temperature becomes. This can be stated by saying that the
bag’s heat capacity is negative.

10. Stability of a Gas of Bags

We have shown above that an ordinary bag (no surface energy) is nearly indifferent to frag-
mentation into smaller bags. In fact, under rather general conditions it appears that there is a mild
tendency for a gas of bags to collapse into a single one. We show now that the introduction of the
surface energy leads to an even stronger tendency for a gas ofbags toward collapse.

Let us assume an arbitrary mass distribution in a gas of bags,and for simplicity, let us assume
that the gas is confined in a fixed volume along with its decay products (say pions). The gas cannot
be isothermal since the smaller bags have larger temperatures than the big ones. Thus the smaller
bags evaporate first and their evaporation products are absorbed by the larger bags until only one
remains. It may be argued that isothermicity can be achievedby having all the bags to be of the
same size. But this situation is clearly unstable. Any smallperturbation in size will lead to a
catastrophic collapse of all bags into a single one.

11. Decay of a Bag

A bag, unless constrained by conserved quantities, must decay. As it decays, the instantaneous
spectrum of the decay products will indicated the bag’s instantaneous temperature. Without surface
effects the bag temperature is constant and the overall spectrum and the instantaneous spectrum will
be the same.

With the surface effects, as the bag decays and becomes smaller, its temperature increases.
Therefore the overall spectrum integrated over the overalldecay must differ from the instantaneous
spectrum associated with each temperature. The shape deviation of the overall spectrum from that
of an instantaneous spectrum at fixed temperature may be an interesting observable to characterize
both the effect and the magnitude of the surface energy coefficient. It is amusing to notice the
similarities with the decay of a black hole through Hawking radiation.

12. Conclusions

An H system is a perfect thermostat at fixed temperatureTH and a perfect particle reser-
voir. Particles in equilibrium with or emitted byH are in physical and chemical equilibrium with
themselves and withH . They constitute a saturated vapor. This defines a first orderphase tran-
sition and a phase coexistence completely controlled by thebag pressure. The hadronic side of
H radiates particles in preexisting physical and chemical equilibrium just as a black body radiates
photons in physical and “chemical” equilibrium. AnH system is nearly indifferent to fragmen-
tation into smallerH systems. This near indifference to fragmentation makes this work relevant
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to elementary particle and heavy ion collisions. The equation of state for a gas of Hagedorns has
been derived. A lower cut off in the mass spectrum does not alter our results. The introduction of
surface energy makes the smaller bags hotter than the largerones. This completely destabilizes a
gas of bags, which would collapse into a single bag.
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