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Thermalization in strong interactions Helmut Satz

1. Introduction

Quantum chromodynamics, through colour confinement, restricts quarks and gluons to move
in a limited region of space. In a black hole, matter and light are confined by gravitation to remain
within a restricted region of space. This similarity was noted quite soon after the advent of QCD,
and it was suggested that hadrons were the analogue of black holes in strong interaction physics
[1, 2, 3]. In the case of gravitational black holes, the isolation of the system is not quite absolute: in
the strong field at the outer edge, quantum excitation can lead to the emission of Hawking radiation
into the physical vacuum [4]. Since no information transfer between the inside and the outside of
the black hole is allowed, this radiation must give equal a priori weights to all possible states on the
outside, and hence it is thermal at the point of formation. In this report, based on the work of ref.
[5], we want to show that high energy collisions in strong interaction physics produce a self-similar
cascade of “white holes” (colourless from the outside, but coloured inside), and that the Hawking
radiation arising at the confinement horizon of these provides the thermal behaviour observed quite
universally in all soft hadron production [6, 7].

We begin by recalling briefly the relevant basic aspects of black hole physics and indicate some
first relations to strong interactions. We then turn to high energy e+e− annihilation as the sim-
plest hadron production process and study the effect of quark-antiquark pair excitation and string
breaking. Next we review some features of charged and of rotating black holes; these allow us to
generalize our scenario is to hadronic collisions at finite baryon density as well as to non-central
interactions. and nuclear collisions. Finally, we comment on stochastic vs. kinetic thermalization.

2. Black Holes and Hawking Radiation

A black hole is the final stage of a neutron star after gravitational collapse [8]. It has a mass
M concentrated in such a small volume that the resulting gravitational field confines all matter
and even photons to remain inside the event horizon R of the system: no causal connection with
the outside is possible. As a consequence, black holes have three (and only three) observable
properties: mass M, charge Q and angular momentum J. This section will address mainly black
holes with Q = J = 0; we shall come back to the more general properties in section 4.

Classically, a black hole would persist forever and remain forever invisible. On a quantum
level, however, its constituents (photons, leptons and hadrons) have a non-vanishing chance to
escape by tunnelling through the barrier presented by the event horizon. The resulting Hawking
radiation [4] cannot convey any information about the internal state of the black hole; it must
be therefore be thermal, and it was shown that for a non-rotating black hole of vanishing charge
(denoted as Schwarzschild black hole), the corresponding radiation temperature is

TBH =
1

8π G M
(2.1)

where G ' 6.7×10−39 GeV−2 is the gravitational constant, in units with h̄ = c = 1. This temper-
ature is inversely proportional to the mass of the black hole, and since the radiation reduces the
mass, the radiation temperature will change with time. For black holes of stellar size, however,
for M ≥ 2−3 M�, where M� denotes the solar mass, one finds TBH <∼ 2×10−8 ◦K. This is many
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orders of magnitude below the 2.7 ◦K cosmic microwave background, and hence not detectable; in
fact, such black holes absorb more than they radiate and thus grow rather than decrease in mass.
The search for cosmic Hawking radiation therefore considers the possible existence of primordial
black holes of very much sub-stellar mass and size, formed very shortly after the big bang.

In general relativity, the event horizon arises as consequence of the Schwarzschild metric and
its generalizations to Q 6= 0,J 6= 0. The occurrence and role of the event horizon for thermal
radiation was subsequently generalized by Unruh [9]. A system undergoing uniform acceleration
a relative to a stationary observer eventually reaches a classical turning point and thus encounters
an event horizon. Let us recall the resulting hyperbolic motion [10]. A point mass m subject to a
constant force F satisfies the equation of motion

d
dt

mv√
1− v2

= F, (2.2)

where v(t) = dx/dt is the velocity, normalized to the speed of light c = 1. This equation is solved
by the parametric form

x =
1
a

coshaτ t =
1
a

sinhaτ, (2.3)

where a = F/m denotes the acceleration in the instantaneous rest frame of m, and τ the proper
time, with dτ =

√
1− v2dt.

t

x

observer 1/a

mass m

Figure 1: Hyperbolic motion

The resulting world line is shown in Fig. 1. It corresponds to the mass m coming from x = ∞
at t = −∞ at with a velocity arbitrarily close to that of light, decelerating uniformly until it comes
to rest at the classsical turning point xH = −(1/a). It then accelerates again and returns to x = ∞
at t = ∞, approaching the speed of light. For given a, xH is thus the event horizon beyond which m
classically cannot pass. The only possible signal beyond this point is thermal quantum radiation of
temperature [4, 9, 11, 12]

TU =
a

2π
. (2.4)

In the case of gravity, we have the force

F = m a = G
m M
R2 , (2.5)

on a probe of mass m. From the dependence of the gravitational metric on black hole mass and
radius, we obtain

Rg = 2 G M (2.6)
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for the Schwarzschild radius of the black hole, leading to a = 1/(4 G M) for the acceleration at the
event horizon and thus back to eq. (2.1). We also see why the temperature of Hawking radiation
decreases with increasing black hole mass: since Rg grows linearly with M, increasing the black
hole mass decreases its energy density and hence the Hawking temperature TBH .

It is instructive to consider the Schwarzschild radius of a typical hadron, assuming a mass
m ∼ 1 GeV:

Rhad
g ' 1.3×10−38 GeV−1 ' 2.7×10−39 fm. (2.7)

To become a gravitational black hole, the mass of the hadron would thus have to be compressed
into a volume more than 10100 times smaller than its actual volume, with a radius of about 1 fm. On
the other hand, if instead we increase the interaction strength from gravitation to strong interaction
[1], we gain in the resulting “strong” Schwarzschild radius Rhad

s a factor

αs

Gm2 , (2.8)

where αs is the dimensionless strong coupling and Gm2 the corresponding dimensionless gravita-
tional coupling for the case in question. This leads to

Rhad
s ' 2αs

m
(2.9)

which for αs ' 2.5 gives Rhad
s = 1 fm. In other words, the confinement radius of a hadron is about

the size of its “strong” Schwarzschild radius, so that we could consider quark confinement as the
strong interaction version of the gravitational confinement in black holes [1, 2].

3. Pair Production and String Breaking

In the previous section, we had considered constituents of a black hole undergoing accelerated
motion in classical space-time. In this section, we shall first address the modifications which arise
if the underlying space-time manifold is specified by quantum field theory, so that in the presence
of a strong field the vacuum becomes unstable under pair production. Next we turn to the specific
additional features which come in when the basic constituents are subject to colour confinement
and can only exist in colour neutral bound states.

As basic starting point, we consider two-jet e+e− annihilation at cms energy
√

s,

e+e− → γ → q q̄ → hadrons. (3.1)

The initially produced q q̄ pair flies apart, subject to the constant confining force given by the string
tension σ ; this results in hyperbolic motion [13, 14, 15] of the type discussed in the previous
section. At t = 0, the q and q̄ separate with an initial velocity v0 = p/

√

p2 +m2, where p '√
s/2

is the momentum of the primary constituents in the overall cms and m the effective quark mass.
We now have to solve Eq. (2.2) with this situation as boundary condition; the force

F = σ , (3.2)

is given by the string tension σ binding the q q̄ system. The solution is

x̃ = [1−
√

1− v0t̃ + t̃2] (3.3)
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with x̃ = x/x0 and t̃ = t/x0; here the scale factor

x0 =
m
σ

1
√

1− v2
0

=
1
a

γ (3.4)

is the inverse of the acceleration a measured in the overall cms. The velocity becomes

v(t) =
dx
dt

=
(v0/2)− t̃

√

1− v0t̃ + t̃2
; (3.5)

it vanishes for
t̃∗ =

v0

2
⇒ t∗ =

v0

2
m
σ

γ, (3.6)

thus defining

x(t∗) =
m
σ

γ
(

1−
√

1− (v2
0/4)

)

'
√

s
2σ

(3.7)

as classical turning point and hence as the classical event horizon measured in the overall cms (see
Fig. 2).

t

xx(t  )*xQ

Figure 2: Classical and quantum horizons in qq̄ separation

Eq. (3.7) allows the q and the q̄ to separate arbitrarily far, provided the pair has enough initial
energy; this clearly violates colour confinement. Our mistake was to consider the q q̄ system in a
classical vacuum; in quantum field theory, the vacuum itself contains virtual q q̄ pairs, and hence
it is not possible to increase the potential energy of a given q q̄ state beyond the threshold value
necessary to bring such a q q̄ pair on-shell. In QED, the corresponding phenomenon was addressed
by Schwinger [16], who showed that in the presence of a constant electric field of strength E the
probability of producing an electron-positron pair is given by

P(M,E ) ∼ exp{−πm2
e/eE }, (3.8)

with me denoting the electron mass and e denoting the electric charge. In QCD, we expect a similar
effect when the string tension exceeds the pair production limit, i.e., when

σ x > 2 m (3.9)

where m specifies the effective quark mass. Beyond this point, any further stretching of the string
is expected to produce a q q̄ pair with the probability

P(M,σ) ∼ exp{−πm2/σ}, (3.10)
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with the string tension σ replacing the electric field strength eE . This string breaking acts like
a quantum event horizon xq = 2 m/σ , which becomes operative long before the classical turning
point is ever reached (see Fig. 2). Moreover, the resulting allowed separation distance for our q q̄
pair, the colour confinement radius xQ, does not depend on the initial energy of the primary quarks.

There are some important differences between QCD and QED. In case of the latter, the initial
electric charges which lead to the field E can exist independently in the physical vacuum, and the
produced pair can be simply ionized into an e+ and an e−. In contrast, neither the primary quark
nor the constituents of the q q̄ pair have an independent existence, so that in string breaking colour
neutrality must be preserved. As a result, the Hawking radiation in QCD must consist of q q̄ pairs,
and these can be produced in an infinite number of different excitation states of increasing mass
and degeneracy. Moreover, the q q̄ pair spectrum is itself determined by the strength σ of the field,
in contrast to the exponent m2

e/E in eq. (3.8), where the value of E has no relation to the electron
mass me.

Hadron production in e+e− annihilation is believed to proceed in the form of a self-similar
cascade [17, 18]. Initially, we have the separating primary q q̄ pair,

γ → [q q̄] (3.11)

where the square brackets indicate colour neutrality. When the energy of the resulting color flux
tube becomes large enough, a further pair q1 q̄1 is excited from the vacuum,

γ → [q[ q̄1q1] q̄]. (3.12)

Although the new pair is at rest in the overall cms, each of its constituents has a transverse mo-
mentum kT determined, through the uncertainty relation, by the transverse dimension rT of the flux
tube. The slow q̄1 now screens the fast primary q from its original partner q̄, with an analoguous
effect for the q1 and the primary antiquark. To estimate the q q̄ separation distance at the point of
pair production, we recall that the basic thickness of the flux tube connecting the q q̄ pair is in string
theory given by [19]

rT =

√

2
πσ

; (3.13)

higher excitations lead to a greater thickness and eventually to a divergence (the “roughening”
transition). From the uncertainty relation we then have

kT '
√

πσ
2

. (3.14)

With this transverse energy is included in eq. (3.9), we obtain for the pair production separation xQ

σxq = 2
√

m2 + k2
T ⇒ xq '

2
σ

√

m2 +(πσ/2) '
√

2π
σ

' 1.1 fm, (3.15)

with σ = 0.2 GeV2 and m2 � σ .
Once the new pair is present, we have a colour-neutral system q q̄1q1 q̄; but since there is a

sequence of connecting string potentials q q̄1, q̄1q1 and q1 q̄, the primary string is not yet broken. To
achieve that, the binding of the new pair has to be overcome, i.e., the q1 has to tunnel through the
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barrier of the confining potential provided by q̄1, and vice versa. Now the q excerts a longitudinal
force on the q̄1, the q̄ on the q1, resulting in a longitudinal acceleration and ordering of q1 and q̄1.
When (see Fig. 3)

σx(q1 q̄1) = 2
√

m2 + k2
T , (3.16)

the q̄1 reaches its q1 q̄1 horizon; on the other hand, when

σx(q q̄1) = 2
√

m2 + k2
T , (3.17)

the new flux tube q q̄1 reaches the energy needed to produce a further pair q2 q̄2. The q̄2 screens the
primary q from the q1 and forms a new flux tube q q̄2. At this point, the original string is broken, and
the remaining pair q̄1q2 form a colour neutral bound state which is emitted as Hawking radiation in
the form of hadrons, with the relative weights of the different states governed by the corresponding
Unruh temperature. The resulting pattern is schematically illustrated in Fig. 3.

q

q q

q q

q

q
1 1

2

2
3

γ

Figure 3: String breaking through qq̄ pair production

To determine the temperature of the hadronic Hawking radiation, we return to the original
pair excitation process. To produce a quark of momentum kT , we have to bring it on-shell and
change its velocity from zero to v = kT /(m2 +k2

T )1/2 ' 1. This has to be achieved in the time of the
fluctuation determined by the virtuality of the pair, ∆τ = 1/∆E ' 1/2kT . The resulting acceleration
thus becomes

a =
∆v
∆τ

' 2 kT '
√

2πσ ' 1.1 GeV, (3.18)

which leads to

Tq =
a

2π
'

√

σ
2π

' 180 MeV (3.19)

for the hadronic Unruh temperature. It governs the momentum distribution and the relative species
abundances of the emitted hadrons.

A given step in the evolution of the hadronization cascade of a primary quark or antiquark
produced in e+e− annihilation thus involves several distinct phenomena. The color field created
by the separating q and q̄ produces a further pair q1 q̄1 and then provides an acceleration of the
q1, increasing its longitudinal momentum. When it reaches the q1 q̄1 confinement horizon, still
another pair q2 q̄2 is excited; the state q̄1q2 is emitted as a hadron, the q̄2 forms together with the
primary q a new flux tube. This pattern thus step by step increases the longitudinal momentum
of the “accompanying” q̄i as well as of the emitted hadron. This, together with the energy of the
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produced pairs, causes a corresponding deceleration of the primary quarks q and q̄, in order to
maintain overall energy conservation. In Fig. 4, we show the world lines given by the acceleration
q̄i → q̄i+1 (qi → qi+1) and that of formation threshold of the hadrons q̄iqi+1 and the corresponding

antiparticles.

x

t
hadron radiation

quark acceleration

Figure 4: Quark acceleration and hadronization world lines

The energy loss and deceleration of the primary quark q in this self-similar cascade, together
with the acceleration of the accompanying partner q̄i from the successive pairs brings q and q̄i
closer and closer to each other in momentum, from an initial separation q q̄1 of

√
s/2, until they

finally are combined into a hadron and the cascade is ended. The resulting pattern is shown in Fig.
5.

γ

hadrons

Figure 5: Hadronization in e+e− annihilation

The number of emitted hadrons, the multiplicity ν(s), follows quite naturally from the picture
presented here. The classical string length, in the absence of quantum pair formation, is given
by the classical turning point determined in eq. (3.7). The thickness of a flux tube of such an
“overstretched” string is known [19]; instead of eq. (3.13) we have

R2
T =

2
πσ

K

∑
k=0

1
2k +1

' 2
πσ

ln2K, (3.20)

where K is the string length in units of an intrinsic string vibration measure. From eq. (3.7) we thus
get

R2
T =' 2

πσ
ln
√

s (3.21)

for the flux tube thickness in the case of the classical string length. Because of pair production, this
string breaks whenever it is stretched to the length xq given in eq. (3.15); its thickness rT at this
point is given by eq. (3.13). The multiplicity can thus be estimated by the ratio of the corresponding
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classical to quantum transverse flux tube areas,

ν(s) ∼ R2
T

r2
T

' ln
√

s, (3.22)

and is found to grow logarithmically with the e+e− annihilation energy, as is in fact observed
experimentally.

Up to now, we have considered hadron production in e+e− annihilation, in which the virtual
photon produces a confined coloured q q̄ pair as a “white hole”. Turning now to hadron-hadron
collisions, we note that here two incident white holes combine to form a new system of the same
kind, as schematically illustrated in Fig. 6. Again the resulting string or strong colour field produces
a sequence of q q̄ pairs of increasing cms momentum, leading to the well-known multiperipheral
hadroproduction cascade shown in Fig. 7. For the further extension to nuclear collisions in the
regime of parton saturation, see [20, 21, 22].

γ h h

(a) (b)

Figure 6: “White hole” structure in e+e− annihilation (a) and hadronic collisions (b)

h h

hadrons

Figure 7: Hadronization in hadron-hadron collisions

In the case of hadronic, and even more so for heavy ion interactions, two new elements enter.
The resulting system can now have an overall baryon number, from B=2 in pp to B = 400 or more
in heavy ion collisions. To take that into account, we need to consider the counterpart of charged
black holes. Furthermore, in heavy ion collisions the resulting hadron production can be studied

9
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as function of centrality, and peripheral collisions will lead to an interaction region with an overall
angular momentum. Hence we also need to consider rotating black holes. In the next section, we
therefore summarize the relevant feature of black holes with Q 6= 0, J 6= 0.

4. Charged and Rotating Black Holes

As mentioned, an outside observer the only characteristics of a black hole are its mass M, its
electric charge Q, and its spin or angular momentum J. Hence any further observables, such as the
event horizon or the Hawking temperature, must be expressable in terms of these three quantities.

The event horizon of a black hole is created by the strong gravitational attraction, which leads
to a diverging Schwarzschild metric at a certain value of the spatial extension R. Specifically, the
invariant space-time length element ds2 is at the equator given by

ds2 = (1−2GM/R)dt2 − 1
1−2GM/R

dr2, (4.1)

with r and t for flat space and time coordinates; it is seen to diverge at the Schwarzschild radius
RS = 2GM. If the black hole has a net electric charge Q, the resulting Coulomb repulsion will
oppose and hence weaken the gravitational attraction. As a result, the corresponding form (denoted
as Reissner-Nordström metric) becomes

ds2 = (1−2GM/R+GQ/R2)dt2 − 1
1−2GM/R+GQ/R2 dr2. (4.2)

For this, the divergence leads to the smaller Reissner-Nordström radius

RRN = GM (1+
√

1−Q2/GM2), (4.3)

which reduces to the Schwarzschild radius RS for Q = 0. The temperature of the Hawking radiation
now becomes [8, 23]

TBH(M,Q) = TBH(M,0)

{

2
√

1−Q2/GM2

(1+
√

1−Q2/GM2 ) 2

}

; (4.4)

its functional form is illustrated in Fig. 8. We note that with increasing charge, the Coulomb repul-
sion weakens the gravitational field at the event horizon and hence decreases the temperature of the
corresponding quantum excitations. As Q2 → GM2, the gravitational force is fully compensated
and the black hole is gone.

In a similar way, the effect of the angular momentum of a rotating black hole can be incor-
porated. It is now the centripetal force which counteracts the gravitational attraction and hence
reduces its strength. The resulting Kerr metric must take into account that in this case the rotational
symmetry is reduced to an axial symmetry, and with θ denoting the angle relative to the polar axis
θ = 0, it is (at fixed longitude) given by

ds2 =

(

1− 2GMR
R2 +a2 cos2 θ

)

dt2 − R2 +a2 cos2 θ
R2 −2GMR+a2 dr2 − (R2 +a2 cos2 θ)dθ 2. (4.5)

10
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BH

2 2

1.0

0.5

0.5 1.0

T   (M,Q) / T   (M,0)BH

Q / GM

Figure 8: Radiation temperature for a charged black hole

The angular momentum of the black hole is here specified by the parameter a = J/M; for a = 0,
we again recover the Schwarzschild case. The general situation is now somewhat more complex,
since eq. (4.5) leads to two different divergence points. The solution

RK = GM (1+
√

1−a2/(GM)2 ) (4.6)

defines the actual event horizon, corresponding to absolute confinement. But the resulting black
hole is now embedded in a larger ellipsoid

RE = GM (1+
√

1− [a2/(GM)2]cos2 θ), (4.7)

as illustrated in Fig. 9. The two surfaces touch at the poles, and the region between them is denoted
as the ergosphere. Unlike the black hole proper, communication between the ergosphere and the
outside world is possible. Any object in the ergosphere will, however, suffer from the rotational
drag of the rotating black hole and thereby gain momentum. We shall return to this shortly; first,
however, we note that the temperature of the Hawking radiation from a rotating black hole becomes

TBH(M,J) = TBH(M,0)

{

2
√

1−a2/(GM)2

(1+
√

1−a2/(GM)2

}

. (4.8)

For a non-rotating black hole, with a = 0, this also reduces to the Hawking temperature for the
Schwarzschild case.

To illustrate the effect of the ergosphere, imagine radiation from a Schwarzschild black hole
emitted radially outward from the event horizon. In the case of a Kerr black hole, such an emission
is possible only along the polar axis; for all other values of θ , the momentum of the emitted radia-
tion (even light) will increase due to the rotational drag in the ergosphere. This effect ceases only
once the radiation leaves the ergosphere. Since the amount of drag depends on θ , the momentum
of the radiation emitted from a rotating black hole, as measured at large distances, will depend on
the latitude at which it is emitted and increase from pole to equator.

Finally, for completeness, we note that for black holes with both spin and charge (denoted as
Kerr-Newman), the event horizon is given by

RKN = GM (1+
√

1− [Q2/GM2]− [a2/(GM)2]), (4.9)
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θ
R

RΚ
Ε

ergosphere

black hole

Figure 9: Geometry of a rotating black hole

and the radiation temperature becomes [8, 23]

TBH(M,Q,J) = TBH(M,0,0)

{

4
√

1− (GQ2 +a2)/(GM)2

(1+
√

1− (GQ2 +a2)/(GM)2 ) 2 +a2/(GM)2

}

. (4.10)

The decrease of TBH for Q 6= 0,J 6= 0 expresses the fact that both the Coulomb repulsion and the
rotational force counteract the gravitational attraction, and if they win, the black hole is dissolved.

5. Vacuum Pressure and Baryon Density

We now want to consider the extension of charged black hole physics to colour confinement
in the case of systems with a net baryon number. In eq. (4.4) we had seen that the reduction
of the gravitational attraction by Coulomb repulsion in a charged black hole in turn reduces the
temperature of Hawking radiation. The crucial quantity here is the ratio Q2/GM2 of the overall
Coulomb energy, Q2/R, to the overall gravitational energy, GM2/R. Equivalently, Q2/GM2 =

PQ/PG measures the ratio of inward gravitational pressure PG at the event horizon to the repulsive
outward Coulomb pressure PQ.

In QCD, we have a “white” hole containing coloured quarks, confined by chromodynamic
forces or, equivalently, by the pressure B of the physical vacuum. If the system has a non-vanishing
overall baryon number, there will be a Fermi repulsion between the corresponding quarks, and this
repulsion will provide a pressure P(µ) acting against B, with µ denoting the corresponding quark
baryochemical potential. We thus expect a similar reduction of the hadronization temperature as
function of µ . To quantify this, we have to obtain the reduction of the chromodynamic force field,
such as the string tension σ , due to baryonic repulsion. As a first estimate, we start from the
simplest picture of colour confinement and consider is an ideal gas of massless quarks and gluons,
held together by the vacuum pressure B. At fixed temperature T and quark baryochemical potential
µ , the overall pressure of such a system is given by

P =

(

π2

90

[

db +
7
4

d f

])

T 4 +

(

d f

12

)

µ2T 2 +

(

d f

24π2

)

µ4 −B (5.1)

where db and d f denote the degrees of freedom of gluons and quarks, respectively; for colour SU(3)

and two quark flavours, db = 16 and d f = 12. When the inward vacuum pressure just balances the
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combined outward kinetic motion of quarks and gluons and the fermi repulsion of the quarks, we
have P = 0. For µ = 0, this gives

T0 =

(

90
37π2

)1/4

B1/4 ' 0.70 B1/4. (5.2)

On the other hand, for T = 0, when the Fermi repulsion of the quarks alone balances the vacuum
pressure, µ becomes

µ0 = (2π2B)1/4 = π
(

37
45

)1/4

T0 ' 3 T0. (5.3)

With a hadronization temperature T0 ' 0.175 GeV, this leads to a baryochemical potential µb =

3µ ' 1.6 GeV. In the intermediate region, where both T and µ are finite, we want to compare the
effect of the Fermi repulsion to the vacuum pressure through the Hawking-Unruh form, i.e., we
replace Q2/M2 in eq. (4.4) by µ/µ0, giving

T (µ)/T0 =

√

1− (µ/µ0)4

(1+
√

1− (µ/µ0)4)2
. (5.4)

The resulting behaviour of T (µ) is shown in Fig. 10.

1.0

0.5

1.00.5

T(  )/T(0)µ

µ/µ0

Figure 10: Hadronization temperature as function of the baryochemical potential

Instead of using the hadronization temperature as scale, the vacuum pressure can be deter-
mined in terms of the gluon condensate 〈G2

µν〉 [24, 25],

B =
33−2N f

384π2 〈G2
µν〉. (5.5)

Numerical studies [24] lead for two flavours to B1/4 ' 0.21− 0.25 GeV; from this we get both
T0 ' 0.150−0.175 GeV and µ0 ' 1.3−1.6 GeV.

Clearly this approach is overly simplistic, since it reduces the effect of the additional quarks to
only their Fermi repulsion. A more general way of addressing the problem would be to introduce
an effective µ-dependence of the string tension. The presence of further quarks will lead to a
screening-like reduction of the force between a given QQ̄ pair, and hence a screened string tension,
with a µ-dependent screening mass as obtained in finite density lattice studies, might provide a
more realistic approach to the µ dependence of the Hawking-Unruh hadronization temperature.
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6. Angular Momentum and Non-Central Collisions

The dependence of Hawking radiation on the angular momentum of the emitting system intro-
duces a particularly interesting aspect for the “white hole evaporation” we have been considering.
Consider a nucleus-nucleus collision at non-zero impact parameter b. If the interaction is of col-
lective nature, the resulting system will have some angular momentum orthogonal to the reaction
plane (see Fig. 11). For central collisions, this will not be the case, nor for extremely peripheral
ones, where one expects essentially just individual nucleon-nucleon collisions without collective
effects.

b

A

A
J

Figure 11: Rotating interaction region in non-central AA collision

If it possible to consider a kinematic region in which the interacting system does have an
overall spin, then the resulting Hawking radiation temperature should be correspondingly reduced,
as seen in eq. (4.8). The effect is not so easily quantified, but simply a reduction of the hadronization
temperature for non-central collisions would quite indicative. Such a reduction could appear only in
the temperature determined by the relative abundances, since, as we shall see shortly, the transverse
momentum spectra should show modifications due to the role of the ergosphere. The hadronization
temperature determined from a resonance gas study is thus expected to start for central collisions
with the value (3.19) or, at finite µ with the corresponding TH(µ), then decrease with the onset
of white hole rotation for non-central collisions, and finally increase again as collective nuclear
effects go away and we recover elementary nucleon-nucleon collisions. The effect is schematically
illustrated in Fig. 12

T  (J=0)

T  (J    )

H

H max

T

b

H

0 bmaximpact parameter

Figure 12: Schematic view of temperature variation with centrality

We next turn to the momentum spectrum of the Hawking radiation emitted from a rotating
white hole. As discussed in section 4, such radiation will exhibit an azimuthal asymmetry due
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to the presence of the ergosphere, which by its rotation will affect the momentum spectrum of
any passing object. At the event horizon, the momentum of all radiation is determined by the
corresponding Hawking temperature (4.8); but the passage of the ergosphere adds rotational motion
to the emerging radiation and hence increases its momentum. As a result, only radiation emitted
directly along the polar axis will have momenta as specified by the Hawking temperature; with
increasing latitude θ (see Fig. 13)a, the rotation will increase the radiation momentum up to a
maximum value in the equatorial plane.

b

J

h

θ

spectators spectators

(a)

J

h

(b)

ergosphere

Figure 13: Transverse plane view of a non-central AA collision

Hawking radiation from a rotating source thus leads for nuclear collisions quite naturally to
what in hydrodynamic studies is denoted as elliptic flow. It is interesting to note that both scenarios
involve collective effects: while in hydrodynamics, it is assumed that non-central collisions lead to
an azimuthally anisotropic pressure gradient, we have here assumed that such collisions lead to an
overall angular momentum of the emitting system.

7. Stochastic vs. Kinetic Thermalization

In statistical mechanics, a basic topic is the evolution of a system of many degrees of freedom
from non-equilibrium to equilibrium. Starting from a non-equilibrium initial state of low entropy,
the system is assumed to evolve as a function of time through collisions to a time-independent
equlibrium state of maximum entropy. In other words, the system loses the information about its
initial state through a sequence of collisions and thus becomes thermalized. In this sense, thermal-
ization in heavy ion collisions was studied as the transition from an initial state of two colliding
beams of “parallel” partons to a final state in which these partons have locally isostropic distribu-
tions. This “kinetic” thermalization requires a sufficient density of constituents, sufficiently large
interaction cross sections, and a certain amount of time.

>From such a point of view, the observation of thermal hadron production in high energy
collisions in general, in e+e− and pp interactions as well as in heavy ion collisions, is a puzzle:
how could these systems ever “have reached” thermalization? Already Hagedorn had therefore
concluded that the emitted hadrons were “born in equilibrium” [26].

Hawking radiation provides a stochastic rather than kinetic approach to equilibrium. The bar-
rier to information transfer provided by the event horizon requires that the resulting radiation states
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excited from the vacuum are distributed according to maximum entropy, with a temperature deter-
mined by the strength of the “confining” field. The ensemble of all produced hadrons, averaged
over all events, then leads to the same equilibrium distribution as obtained in hadronic matter by
kinetic equilibration. In the case of a very high energy collision with a high average multiplicity
already one event can provide such equilibrium; because of the interruption of information transfer
at each of the successive quantum colour horizons, there is no phase relation between two succes-
sive production steps in a given event. The destruction of memory, which in kinetic equilibration
is achieved through sufficiently many successive collisions, is here automatically provided by the
tunnelling process.

So the thermal hadronic final state in high energy collisions is not reached through a kinetic
process; it is rather provided by successively throwing dice.

8. Conclusions

We have shown that quantum tunnelling through the colour confinement horizon leads to ther-
mal hadron production in the form of Hawking radiation. In particular, this implies:

• The radiation temperature Tq is determined by the transverse extension of the colour flux
tube, giving

Tq =

√

σ
2π

, (8.1)

in terms of the string tension σ .

• The multiplicity ν(s) of the produced hadrons is determined by the increase of the flux tube
thickness with string length, leading to

ν(s) ' ln
√

s, (8.2)

where
√

s denotes the collision energy.

• The temperature of Hawking radiation can in general depend on the charge and the angu-
lar momentum of the emitting system. The former here leads to the dependence of the
hadronization temperature on baryon density. The latter results in elliptic flow and in a pre-
diction of TH on the centrality of AA collisions.

• In statistical QCD, thermal equilibrium is reached kinetically from an initial non-equilibrium
state, with memory destruction through successive interactions of the constituents. In high
energy collisions, tunnelling prohibits information transfer and hence leads to stochastic pro-
duction, so that we have a thermal distribution from the outset.
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