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1. Introduction

Single-particlept spectra from p-p collisions and two-particle correlationsfrom Au-Au col-
lisions at RHIC measured with novel techniques have revealed minijet (low-Q2 parton fragment)
structure [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Minijets are observed in nuclear collisions with
no jet hypothesis (no high-pt trigger-particle condition), providing access to minimum-bias parton
scattering (no analysis constraint on parton momentum). Minijet correlations have been observed
in p-p collisions for hadronpt down to 0.35 GeV/c [12, 1]. Similar measurements in heavy ion
collisions have revealed complex correlation structures related to parton dissipation in the QCD
medium [2, 3] and medium response to parton stopping [6] which call into question the extent of
equilibration.

Minijet correlations measured in p-p and heavy ion collisions at RHIC represent QCD in a
non-perturbative regime: parton scattering and fragmentation at lowQ2. We want to connect those
measurements in nuclear collisions to perturbative QCD (pQCD) via fragmentation measurements
at largerQ2. The context for fragmentation in nuclear collisions may beestablished by studying
single-particlefragmentation functions (FFs) frome+-e− collisions, which provide precise access
to the fragmentation process down to small parton and hadronmomenta. Modification of parton
scattering and fragmentation in heavy ion collisions compared to elementary collisions may then
reveal the formation mechanism and properties of the QCD medium.

To establish the connection between the pQCD systematics ofe+-e− FFs and minijets in nu-
clear collisions we must extend the FF phenomenology to lowQ2. In this paper we present a
basis for extrapolating measurede+-e− FFs to small energy scale as preparation for extrapolation
in nuclear collisions. We describe a new phenomenological analysis of FF data [13] which fa-
cilitates extrapolation to small parton energies where pQCD assumptions such as collinearity and
factorization are not valid.

2. Analysis Method

The fragmentation functionD(xp,Q2) is a single-particle density 2dn/dxp of hadron fragments
on momentum fractionxp = phadron/pparton produced by apair of partons (dijet) with total energy
Q (Q2 = −q2 is the negative invariant mass squared). At largexp the distribution reflects energy
conservation during parton splitting [14, 15]. At smallxp the shape is determined by quantum
coherence of gluon emission [16, 17]. The FF data in this study are hadron distributions reported
on momentum fractionxp or logarithmic variableξp ≡ ln(1/xp). Distributions onxp emphasize
pQCD aspects of parton fragmentation at largep (e.g., scaling violations). For non-pQCD effects
ξp provides better access to the small-xp (large-ξp) region.

This study focuses on low-Q2 parton fragmentation dominated by fragments with small mo-
menta. We therefore introduce rapidityy (well-behaved asp → 0) as an alternative logarithmic
momentum variable. In a frame wherep is the only non-zero momentum componenty(p;m0) =

ln[(E + p)/m0], with y → ln(2p/m0) for p ≫ m0 and→ p/m0 for p ≪ m0. m0 may be a quark or
hadron mass or energy scaleΛ. For unidentified fragments we assign the pion massm0 → mπ to
all hadrons. Given the limiting cases fory we note that ln(

√
s/m0) ∼ y(

√
s/2;m0) ≡ ymax, the par-

ton rapidity (defined as the kinematic limit for fragment rapidities). Similarly,Y (Q) = ln(Q/Λ) ∼
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y(Q/2;Λ) is a rapidity measure of the energy scale relative to a reference scale. We observe for FF
data a lower limitymin which may depend on fragment species and collision system (e.g., e+-e− vs
p- p̄).

From published data distributions onxp or ξp for parton energy scaleQ or CM energy
√

s we
extract fragment momentap and calculate equivalent rapiditiesy (fragments) andymax (partons).
Data distributions onxp or ξp are thereby transformed to distributions ony using appropriate Ja-
cobians. Moste+-e− FFs plotted on normalized rapidityu ≡ (y−ymin)/(ymax −ymin) ≈ 1−ξp/Y

have a particularly simple form described by thebeta distribution [13]. The unit-normal beta dis-
tribution defined onu ∈ [0,1] is β(u; p,q)= up−1(1−u)q−1/B(p,q), with parametersp, q ≥ 0 and
beta functionB(p,q) =

Γ(p)Γ(q)
Γ(p+q) .

3. Fragment distributions on momentum

The fragmentation functions in Figs. 1 and 2 were obtained from e+-e− collisions at three en-
ergy scales (CM energy

√
s = Q = 14, 44 and 91.2 GeV) measured at PETRA [18] and LEP [16] for

unidentified hadrons from unidentified partons. Those FFs are fiducial because of the exceptional
data quality and fragment momentum coverage. In Fig. 1 (firstpanel) we plot FFs on momen-
tum fractionxp. Distributions onxp emphasize the large-xp (small-ξp) region where pQCD best
describes the data, where the naïve parton model predicts ‘scaling’ or invariance of the parton dis-
tribution on energy scaleQ. Distributiondetails in the small-xp region (e.g., belowxp = 0.1), where
non-pQCD dominates and fragments aremost abundant, are minimized in this format. The dashed
line illustrates the exponential model sometimes used to characterize FFs onxp.
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Figure 1: First panel:e+-e− fragmentation functions on fractional momentumxp = pfragment/pparton for
three CM energies. The dashed line is an exponential reference. Second panel: The same fragmentation
functions on logarithmic variableξp = ln(1/xp). The vertical dotted lines mark equivalent points on the two
variables. The solid curves are determined by the parameterization from this analysis. Third panel: Distri-
bution on ln(phadron) from [16]. Fourth panel: Self-similar variation with energy of fragment distributions
on y.

The vertical dotted line in the first panel corresponds toξp = 1.5 in the second panel: only
a small fraction of fragments (< 10%) fall above that point onxp. FFs onξp areapproximately
gaussian, with modeξ ∗

p and width predicted by pQCD. The fall-off at largeξp and maximum at
ξ ∗

p result from gluon coherence [16, 17]. FFs exhibit systematic scaling violations (Q dependence)
described by the DGLAP evolution equations (cf. Sec. 6) [14, 15]. To study scaling violations FFs
on xp are parameterized by a model function such asD(x,Q2) = N xα (1− x)β (1+ γ/x), where
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the four parameters depend on parton type, hadron type and energy scale [19, 20]. The solid
curves in the first two panels are beta distributionsβ(u; p,q) determined by the systematic trends
of parameters(p,q) plotted in Fig. 4 (third panel) and transformed from normalized rapidityu to
xp, ξp or y with appropriate Jacobians.

The third panel shows FFs plotted on ln(p) [16]. The solid curves are MLLA pQCD pre-
dictions [22]. The general shape and evolution of FFs withpparton on (y,ymax) is sketched in the
fourth panel. The trend corresponds to the DLA [21] with angular ordering and gluon coherence
(modified leading log approximation or MLLA [22])

4. Precision model function

Fragmentation functions plotted onξp coincide at the kinematic limitξp = 0 corresponding to
the parton momentum. An approximation to ‘scaling’ or energy-scale independence is expected at
smallξp (largexp). Another form of scaling, at largeξp, can be explored by plotting distributions
on rapidityy. In Fig. 2 (first panel) we observe that the FFs for three energies plotted ony have
a common low-momentum limitymin ∼ 0.35 (vertical line). That alignment is possible becausey
has the well-defined limiting value 0 as momentump → 0. Each data FF is terminated at the upper
end by its kinematic limitymax = y(

√
s/2;m0) (vertical lines) corresponding toξp = 0 in Fig. 1.

The distribution maxima increase monotonically with collision (parton) energy. The FFs in the
first panel illustrate the self-similarity sketched in Fig.1 (fourth panel) and confirm an expectation
for DLA scaling: fragmentation at smally should be nearly independent of the leading-parton
momentum.
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Figure 2: Fragmentation functions on rapidityy for e+-e− collisions (left panel). Fragmentation functions
plotted on normalized rapidityu in linear (left panel) and semi-log (right panel) formats. The data distri-
butions have been normalized by the corresponding di-jet multiplicity at each energy (lower solid curves in
determined by parameters(p,q). The data for three energies are plotted, but the curves for only 14 and 91
GeV are plotted to provide visible separation.

In Fig. 2 (right panels) we plot the three fiducial FFs transformed to 1/n(ymax)dn/du ≡
g(u,ymax). Expectations of approximate energy scaling at largexp and a different form of scaling
(gluon coherence) at smallxp seem to require conflicting plotting strategies onξp andy. However,
both forms can be accommodated by introducing normalized rapidity u≡ (y−ymin)/(ymax−ymin)∈
[0,1]. FFs frome+-e− collisions can be factored asD(u,ymax) = 2n(ymax)g(u,ymax), with dijet mul-
tiplicity 2n(ymax) (cf. Fig. 4) and unit-normal form factorg(u,ymax). Multiplicity 2n(ymax) can be
obtained by integrating data FFs, but also from theshape of g(u,ymax) (cf. Sec. 6.1). We observe
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that theg(u,ymax) are nearly invariant over a large energy scale interval, andthe beta distribution
provides an excellent description over all fragment momenta.

5. Identified fragments and partons

In Fig. 3 we show datag(u,ymax) and best-fit modelβ(u; p,q) for identified charged pions
π± (first panel) and kaons K± (second panel) at 10 GeV [23] and 91 GeV [24]. Parton rapidity
ymax is calculated with the identified hadron fragment mass. The pion FFs have widths similar to
unidentified hadrons, but the peak modes are significantly lower (0.38vs 0.41 at 91 GeV). The
kaon peak modes are comparable to unidentified hadrons but the peak width at higher energy is
significantly larger. The kaon FF shape seems to converge on the pion distribution at lower energy.
The apparent merging of quark flavors at 10 GeV is consistent with convergence of the gluon and
quark FFs at lower energy, indicated by the multiplicity and(p,q) trends in Fig. 4.
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Figure 3: Fragmentation functions for two CM energies and for pion (left panel) and kaon (right panel)
fragments plotted on normalized rapidityu. Distributions onu for several quark/meson flavor combinations,
showing evolution of theg(u,ymax) shape with quark/meson mass. The c→ D data are from [26], and the b
→ B data are from [25]. The energies are dijet energies.

In Fig. 3 (third panel) we summarize FF data and models for several fragment and parton types.
The pion, kaon and proton FFs are beta distribution fits to 91 GeV identified-fragment data (as in
the first two panels). The gluon FF is the beta distribution defined at 80 GeV by(p,q) systematics
in Fig. 4 (third panel, consistent with fits to gluon data FFs). The solid dots are b→ B data [25]
compared to a best-fit beta distribution (dash-dot curve) and theory (solid curve). Low-statistics
c → D data [26] are summarized by a best-fit beta distribution (dash-dot curve) and theory (solid
curve).

The two solid curves on the right are from a theoretical treatment of heavy-quark fragmenta-
tion [27]. The agreement ofDB

b (u) (right-most solid curve) with b-quark data (solid points) [25]
is good. The dash-dot curve is the best-fit beta distributionwith (p,q) = (23,3) which does not
describe theb → B data well. The solid curve forc → D is DD

c (u) from the heavy-quark theory
treatment, withεQ = 0.57/m2

c = 0.29 andmc ∼ 1.4 GeV/c2. The associated dash-dot curve, a beta
distribution with(p,q) = (7.0,2.8), best describes the data from [26]. Both curves are consistent
with the data, but errors are large below the FF peak mode.

To summarize the flavor dependence: the beta distribution describes the FF data for identified
light quarks and gluons fragmenting to light mesons or baryons very well. The FF modes for a
given parton energy increase monotonically with increasing meson and parton mass. However, the
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proton FF mode for udsc (light quark) jets is lower than the inclusive hadron mode for gluon jets,
and the FF is significantly broader. The hadron mass alone is not a determining factor. The kaon
FF shows the effect of the heavier s-quark mass, consistent with the trend for charm and bottom
quarks.

6. Energy systematics of fragmentation functions

We have combined fiducial FF data and dijet multiplicity datato determine the energy de-
pendence ofβ parameters(p,q) for quark and gluon jets. Fits to datag(u,ymax) with model
β(u; p,q) determine(p,q) over a limited energy range which constrains the parameterized curves
(p(ymax),q(ymax)). Fits to 2n(ymax) data over a broader energy rangevia the 〈xE〉 integral (sum
rule) of β(u; p,q) also constrain the parameterizations, especially important at low energy where
there are no FF data. The resulting(p,q) energy trends efficiently represent alle+-e− light-quark
and gluon FFs and provide a basis for extrapolating FFs to lowQ2.

6.1 Dijet multiplicities from β(u; p,q) shapes

Dijet multiplicity 2n can be obtained directly by integrating published FF data. However, there
is a correspondence between 2n(ymax) and theshape of data FFg(u;ymax) or fitted model function
β(u; p,q) determined by parameters[p(ymax),q(ymax)]. For inclusivecharged fragments we obtain
the relation 2n(ymax) = 1.18/

∫ 1
0 duxE(u,ymax)β(u; p,q) (based on the energy sum rule [28]) which

we use to relate energy trends of FF shape parameters(p,q) to fragment multiplicities. Measured
multiplicities (vs parton energy) thus provide constraints on the energy dependence of FF parame-
ters(p,q), even in energy intervals where there are no FF data.

Fig. 4 (left panels) shows dijet multiplicities 2n for g-g and q- q̄ parton pairs. Data for gluon
jets were obtained from CDF (closed triangles) [29], CLEO (open triangles) [30], OPAL ‘jet-boost’
algorithm (open circles) [31] and OPAL inclusive (star) [32]. Data for quark jets were obtained
from a compilation (Table 6 in [33]). The large points labeled π and K are multiplicities from fits
to identified fragment data [23, 24, 34] plotted with the indicated multipliers. The hatched regions
represent the domain of low-Q2 partons which motivated this study.

The solid curves in Fig. 4 (left panels) are multiplicity trends derived from the(p,q) parame-
ters in the third panel using the energy sum rule. The(p,q) energy parameterizations are adjusted
to fit the multiplicity data but are constrained by(p,q) values derived from fits to the fiducial FFs.
The resulting(p,q) energy dependence is described in the next subsection.

6.2 Energy dependence ofβ(u; p,q) parameters

Fig. 4 (third panel) shows the(p,q) energy dependence which produced the quark and gluon
jet multiplicities (solid curves) in Fig. 4 (left panels) and the solid curves compared to fiducial FFs
in Figs. 1 and 2. The(p.q) curves precisely summarize the energy dependence of light-quark and
gluon fragmentation to unidentified hadrons ine+-e− collisions. The vertical dotted lines mark the
limits of multiplicity measurements, and the vertical dash-dot lines mark the limits of measured
FFs used in this analysis. The ten solid points represent thefiducial FFs (dominated by quark jets).
The open squares represent a fit to a single gluon FF which constrains(pg,qg).
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Figure 4: Left panels: Dijet charged-particle multiplicityvs energy scaleQ (dijet energy) plotted in a
conventional format (first panel) andvs parton rapidity assuming the pion mass (second panel). The solid
curves are quark and gluon dijet multiplicities 2nq and 2ng obtained from the(p,q) parameterizations in
third panel. The dash-dot curve in the first panel is from a 3NLO pQCD expression. The udsc quark-jet
multiplicities for unidentified hadrons (solid dots) are taken from a survey in [33]. Third panel: Beta-
distribution parameters(pq,qq) and(qg, pg) respectively for light-quark (solid) and gluon (dashed) jets and
corresponding gluon-to-quark-jet multiplicity ratior vs parton rapidityymax. Fourth panel: Joint fragment
distributionD(y,ymax) on fragment and parton rapidities for inclusive partons (∼ udsc quarks) and inclusive
hadrons. Fragmentation functions are vertical slices (conditional distributions) from the joint distribution.

Aboveymax = 4.5 (left dash-dot line) the(p,q) vary slowly and linearly with increasing energy
scale. That energy dependence implies a slight reduction ofFF modes with increasing energy,
consistent with the fiducial FFs in this study (e.g., Fig. 2, right panels). Belowymax = 4.5 (Q ∼ 10
GeV) the(p,q) change rapidly. The multiplicity data, especially the CLEOdata, require a sharp
drop in q in that energy interval for both quarks and gluons. The convergence of the quark and
gluon (p,q) at the energy scale defined by the left dotted line (5 GeV) is again required by the
CLEO data.

6.3 Fragmentation functions on(y,ymax)

We use the parameterized beta distribution to construct a 2Dfragment distribution on(y,ymax)

as follows.β(u; p,q) describes the shapes of FFs over a broadQ2 interval. The beta distribution
in turn determines multiplicityn(ymax) via the energy sum rule over the same range. We combine
the two factors to formD(y,ymax) = 2n(ymax)β [u(y,ymin,ymax); p(ymax),q(ymax)]. In Fig. 4 (fourth
panel) we plotD(y,ymax). The vertical dotted and dash-dot lines mark the same energylimits, as
in the third panel. The dashed curve is a ‘locus of modes’ (positions of maxima) of conditional
distributions ony for givenymax. The horizontal dotted line denotesymin, andymax = 8 corresponds
to
√

s∼ 400 GeV. That 2D fragment density provides the basis for extrapolating FFs down toQ ∼ 1
GeV (ymax ∼ 2).

7. Comparisons with pQCD

The energy dependence of FF statistics predicted by pQCD [28, 35, 36, 37] can be compared
to peak statistics inferred from our(p,q) parameterization ofβ(u; p,q). In Fig. 5 (first panel) we
compare beta distributions and data for two energies on normalized rapidityu using the parameters
described above with corresponding MLLA gaussians (normalized to unit integral). The gaussian
tails do not describe the data. Our parameterized model is consistent with pQCD predictions at
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largerQ2, and the beta distributions (solid curves) demonstrate good sensitivity to small but mean-
ingful systematic variations with energy of the FF data.
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Figure 5: First panel: Comparison of fragmentation-function modesvs parton rapidity from quark and
gluon data (points) with ‘locus of modes’ trends (solid and dashed curves) derived from(p,q) energy sys-
tematics in (left panel) and from the MLLA (dash-dot and dotted curves). Second panel: Comparison at two
energies of FF data, beta distributions on u and MLLA gaussians suitably transformed tou. Third panel:
Beta distribution (solid) and KKP FF (dashed) curves compared to OPAL 91 GeV data points (open cir-
cles) on linear momentum variablexp. Fourth panel: The same curves and data transformed to normalized
rapidityu. The vertical dotted lines both correspond toxp = 0.1.

In Fig. 5 (second panel) we show measured modesξ ∗
p in the formymax − ξ ∗

p ∼ y∗ vs ymax for
eight quark-jet and fourteen gluon-jet energies [16, 18, 37]. The solid curvey∗(ymax) for quark jets
from our(p,q) parameterization is the same as the dashed curve in Fig. 4 (fourth panel). The five
stars are obtained from our fits to the fiducial FFs (compare topeak modes in Fig. 2 first panel). The
MLLA prediction for inclusive jets is plotted as the dash-dot curve in the second panel. The MLLA
curve diverges from the(pq,qq) parameterization (solid curve) in the region of interest for study of
low-Q2 partons (hatched area). We can also obtain a mode predictionfor gluon jets [36, 37]. The
corresponding dotted curve in the second panel agrees fairly well aboveymax = 4.5 (Q ∼ 12 GeV)
with the gluony∗ trend (dashed curve) obtained from parameters(pg,qg) in Fig. 4 (third panel).
Data from [37] for FF modes from gluon jets plotted as solid triangles are well described by the
dashed curve obtained from our(p,q) energy systematics and by the MLLA prediction.

In Fig. 5 (right panels) we compare fiducial FF data to the beta-distribution description from
our analysis and a pQCD model FF (KKP) obtained from a conventional scaling-violations analysis
using the DGLAP equations [20] (defined by 14 parameters for each parton-hadron combination).
Fig. 5 (third panel) shows the OPAL 91 GeV FF data from Fig. 2 with the KKP FF (dashed curve)
and the FF from this analysis (solid curve). With the exception of a small deviation at largexp

the agreement onxp appears to be good. Fig. 5 (fourth panel) shows the same distributions on
normalized rapidityu. The KKP FF deviates strongly from data belowu = 0.7 and accurately
represents less than 10% of the fragments at 91 GeV. The vertical dotted line in each panel shows
the intended region of validity (xp > 0.1) of the KKP and similar FFs. The FF from our analysis
accurately describes the data onxp over six orders of magnitude and extrapolates the full data
distribution down to zero momentum.

8. Scaling violations

Scaling violations [27]—variation of parton distributionfunctions (PDFs) and FFs with energy

8
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scale—are described by the DGLAP equations [14, 15]. Scaling violations of measured FFs can
be used to determineαs [38] and to test the predicted values of QCD color factorsCA andCF [37].
We use our FF parameterization to describe scaling violations on conventional momentum/energy
fractions and on rapidity variables .

8.1 Scaling violations on(x,Q2)

The DGLAP equations [14, 15] are defined to leading order (LO)by

dDb(x, s)
d lns

=
αs(s)
2π ∑

a

∫ 1

x

dz
z

Pab(z)Da(x/z, s). (8.1)

Pab(z) are the Altarelli-Parisi splitting functions [15], anda,b denote parton combinations. Scaling
violations are determined from FFs parameterized at several energy scaless (= Q2) with a model
function such asD(x, s) = N xα (1− x)β (1+γ/x) [19, 20, 37, 39]. Such parameterizations can be
quite extensive. The KKP parameterization [20] employs 14 parameters for each parton-hadron
combination, the energy dependence of each of(N,α ,β ,γ) being described by several polynomial
coefficients. The parameters are determined by using the DGLAP equations to evolve the model
FFs across energy scales, varying(N,α ,β ,γ) with energy to best fit the data and emphasizing the
regionx > 0.1 where pQCD is most applicable (cf. Fig. 5 – third panel).

To illustrate scaling violations we transform parameterized joint fragment distributionD(y,ymax)

(Fig. 4 – fourth panel) toD(xE ,Q2) = p/(E xE)D[y(xE,Q),ymax(Q)]. In Fig. 6 (first panel) we plot
resulting conditional distributionsD(xE,Q2) for xE = 0.02, 0.07, 0.15, 0.27, 0.41, 0.60, 0.81vs
Q = m0 cosh(ymax). The curves for both udsc jets (solid) and gluon jets (dashed) compare well with
a data analysis shown in the second panel (xE values are on the right) [40]. The general trends in the
first panel agree with the conventional description of scaling violations but extend over a broader
energy range than is usually obtained from data. The sharp falloffs at smallerQ andxE occur at
kinematic limits lnxE ∼ ymin −ymax defined by the dotted line in Fig. 4 (fourth panel).

The vertical dotted lines separate three regions. Region A (Q = 1−5 GeV) is dominated by
non-perturbative effects but produces the majority of parton fragments in nuclear collisions and
therefore requires a phenomenological characterization consistent with QCD theory. Extrapolat-
ing FF systematics into that region is the purpose of this study. Region B (Q = 5− 20 GeV) is
the transition region in which parton color emerges and fragmentation approaches a perturbative
description. In the energy range aboveQ = 20 GeV parameters(p,q) vary weakly and linearly:
fragmentation is fully perturbative. We conclude that muchof the variation in the perturbative
third region of Fig. 6 (first panel) is determined by phase-space acceptance variations with parton
energy. The small linear variations of the(p,q) parameters in that region may provide more differ-
ential access to the parton cascade process. We therefore consider a modified form of the DGLAP
equations.

8.2 Scaling violations on (y,ymax)

In a different approach to scaling violations we introduce thelogarithmic derivative [37] based
on the relation between Mellin transforms of FFs and splitting functions. The DGLAP equations,
written in terms of Mellin transformŝD(w, s) (w is conjugate tox) [14], are represented by a simple
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Figure 6: First panel: Scaling violations in a conventional format. Each curve is a conditional slice at fixed
xE from the distribution 2dn/dxE(xE ,Q2) suitably transformed from model function 2n(ymax)β(u (y); p,q)

in (second panel). Third panel: Scaling violations in the form of logarithmicderivatives of the distributions in
(left panel). Solid curves represent udsc quark jets, dashed curves represent gluon jets. The near uniformity
to the right of the dotted line (Q = 20 GeV) for largerxE is notable. Fourth panel: Logarithmic derivatives
for quark and gluon jets atymax = 7.8 vs energy fractionxE = cosh(y)/cosh(ymax).

matrix equation [15]. For thenon-singlet caseD̂ns= D̂q− D̂q̃ the logarithmic derivative is

d ln D̂ns(w, s)
d lns

=
αs(s)
2π

P̂qq(w) ≡ γqq(w, s), (8.2)

where P̂qq(w) is the Mellin transform of splitting functionPqq(z) for the process q→ q(z) +
g(1-z), with the respective momentum fractions, andγab(w, s) are theanomalous dimensions of
QCD [41, 42]. Sinced lns ≈ 2dymax we multiply through by 2ymax and use the results of the previ-
ous subsection to obtain

d ln D̂ns(w,ymax)

d lnymax
=

1
πA

P̂qq(w). (8.3)

Thus, for the non-singlet case the logarithmic derivative of the Mellin transform of an FF is pro-
portional to the Mellin transform of a splitting function,independent of energy scale (in LO). That
result motivates a similar approach to the FFs themselves.

We multiply Eq. (8.1) byx ln(s/m2
0)/xD(x, s). What remains on the RHS is the convolution

integral, including splitting functionzP(z) = P(ζ ) with ζ = ln(1/z) and fragmentation-function
ratioDa(ξ −ζ , s)/Db(ξ , s). We then use the following transformations:ξ → ymax −y, ζ → ymax −
y′, D(ξ ) → D(ymax −ξ ) ∼ D(y) andD(ξ −ζ ) → D(ymax −ξ +ζ ) ∼ D(y+ymax −y′), to obtain

d lnDb(y,ymax)

d lnymax
=

1
πA ∑

a

∫ ymax

y
dy′Pab(ymax−y′)

Da(y+ymax −y′,ymax)

Db(y,ymax)
, (8.4)

an alternative form of the DGLAP equations on(y,ymax).
In Fig. 6 (third panel) we plotd lnD(y,ymax)/d lnymax vs ymax for quark (solid) and gluon

(dashed) FFs using the parameterizedD(y,ymax) from Fig. 4 (fourth panel) for each parton type.
There are three main features of the distributions: 1) nearly horizontal linear trends at larger energy
scales (to the right of the dotted line), 2) ‘singularities’at smaller energy scales due to kinematic
boundaries and 3) minima at intermediate energies corresponding to a transition from ‘small’ (1-2)
to ‘large’ (3 or more) fragment number, which may also relateto the emergence of parton color
(quark-gluon distinction) atQ ∼ 8 GeV. This form of the DGLAP equations eliminates the scale
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dependence of factorαs and approximately cancels the scale dependence of the FFs inthe ratio. In
the perturbative region aboveymax = 5 (Q = 20 GeV) the RHS is then dominated by the splitting
function and nearly independent of energy scale, as with theMellin transform version.

In Fig. 6 (fourth panel)d lnD(y,ymax)/d lnymax vs xE = cosh(y)/cosh(ymax) is plotted for
quarks and gluons. In the limitxE → 1 (y → ymax) and largeymax we expect [37]

{d lnD(y,ymax)/d lnymax}gluon

{d lnD(y,ymax)/d lnymax}quark
→ CA

CF
= 2.25. (8.5)

The dotted lines area(xE + b) and 2.25×a(xE + b), with a = −1.8 andb = 0.35 adjusted to best
match the quark points. The ratio trend is in reasonable agreement with the QCD expectation above
xE = 0.2.

9. Discussion

Our goal has been phenomenological extrapolation ofe+-e− FFs to lowQ2 where the pertur-
bative description of QCD is not applicable. Parton scattering and fragmentation at lowQ2 are in
turn important for understanding the role of minijets in p-pand A-A collisions at RHIC. The beta
distribution provides a simple but precise description of all measured FFs and accomplishes the
desired extrapolation, but also reveals some interesting new aspects of parton fragmentation.

β(u; p,q) describes systems in which entropy is maximized (e.g., by a parton cascade) on a
bounded interval (e.g., bounded by the leading-parton momentum). The beta distribution max-
imizes the Shannon entropyS = −∫

dx p(x) ln[p(x)] subject to constraints on geometric means
ln(x) =

∫
dx p(x) ln(x) andln(1−x) (parameters of the splitting functions) [43]. Fragmentation of

light quarks and gluons can thus be viewed as an equilibration process controlled by two opposing
tendencies: parton splitting as a form of downscale energy transport which increases entropy and
gluon coherence which constrains the splitting at a scale conjugate to hadron size. The observed
fragment distribution is then a maximum-entropy configuration balancing those two tendencies.

Conventional scaling-violation systematics are easily and precisely reproduced by our param-
eterization over a broad energy range, as demonstrated downto kinematic limits in Fig. 6 (first
panel). It is straightforward to explore the consequences of varying(p,q) energy trends. For exam-
ple, Fig. 6 (fourth panel) demonstrates that theCA/CF limit for logarithmic derivatives previously
established by specific experimental measurements (e.g., [37, 40, 44, 45]) is consistent with the
(p,q) parameterization determined by the present study.

10. Conclusions

Low-Q2 parton collisions play a dominant role in nuclear collisions at RHIC. Little was known
about low-Q2 parton scattering and fragmentation prior to this work, andthere exists little theoret-
ical support for our experimental results in nuclear collisions. We therefore sought a phenomeno-
logical description by extrapolating energy trends ofe+-e− fragmentation functions. We find that
FFs plotted on rapidityy vary with energy in a nearly self-similar manner. FFs transformed tou
are well described by a product of the dijet multiplicity anda unit-normal form factor modeled
by the beta distribution. The latter is determined by parameters(p,q) which exhibit modest linear

11
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variations within perturbative energy scale rangeQ > 20 GeV. The beta distribution shape, when
combined with an energy-conservation sum rule, also determines FF multiplicities. The factored
representation onu thus provides a simple and compact representation ofe+-e− FFs over a broad
energy range and permits extrapolation to small energy scales.

In this analysis we have described all measurede+-e− fragmentation functions with a precise
(few percent) model function. The model function (beta distribution) allows us to extrapolate frag-
mentation trends to lowQ2, to a kinematic region not accessed by conventional methods. Such
low-Q2 extrapolation provides a phenomenological context for minijet-related two-particle corre-
lations in p-p and A-A collisions at RHIC, forming a basis fortheoretical treatments of in-medium
dissipation of low-Q2 partons and the subsequent hadronization process in heavy ion collisions.

This work was supported in part by the Office of Science of the U.S. DoE under grant DE-
FG03-97ER41020.
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