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1. Introduction

The statistical approach to strong interactions is surprisingly successful in describing exper-
imental results on hadron production properties in nuclear collisions at high energies (see e.g.
Ref. [1], [2], [3] and references therein). This motivates a rapid development of statistical models
and it raises new questions, previously not addressed in statistical physics. In particular, an appli-
cability of the models formulated within various statistical ensembles. Recently, it was found that
global conservation laws suppress multiplicity fluctuations [4], [5] [6]. This paper illustrates the
influence of quantum statistics, resonance decays, and finite detector acceptance on this effect.

2. Global conservation of charges

Multiplicity fluctuations can be quantified by the scaled variance. For positively, and nega-
tively, charged particles the scaled variance reads:

ω± ≡ 〈N2±〉−〈N±〉2
〈N±〉 (2.1)

The scaled variance for Poisson distribution is 1, independently of its mean value:

ω±
poisson= 1 (2.2)

Experimentally, the averaging in the Eq. (2.1) means an averaging on event-by-event basis: a given
observable is measured in each collision event and the fluctuations are evaluated for the selected
set of these events (see, e.g., review [3]). To calculate a statistical "background" for multiplicity
fluctuations one has to choose a statistical ensemble for this calculation: grand canonical (GCE),
canonical (CE), or microcanonical (MCE).

As a simplest example, let us consider the system which consists of one sort of positively and
negatively charged particles (e.g.π+ and π− mesons) with total charge equal to zeroQ = 0 . In
the case of the Boltzmann ideal gas (the interactions and quantum statistics effects are neglected)
in the volumeV and at temperatureT the GCE and CE partition functions read:

Zg.c.e.(V,T) =
∞

∑
N+=0

∞

∑
N−=0

(λ+z)N+

N+!
(λ−z)N−

N−!
= exp(2z), (2.3)

Zc.e.(V,T) =
∞

∑
N+=0

∞

∑
N−=0

(λ+z)N+

N+!
(λ−z)N−

N−!
δ (N+−N−) = (2.4)

=
1

2π

∫ 2π

0
dφ exp

[
z(λ+ eiφ + λ− e−iφ )

]
= I0(2z), (2.5)

wherez is a single particle partition function:

z=
gV
2π2

∫ ∞

0
p2dp e−

√
p2+m2

T = 〈N±〉, (2.6)

g is a degeneracy factor (number of spin states),m - particle mass. The average values in both the
GCE and CE can be calculated as follows:

〈N±〉 ≡
[

1
Z

λ±
∂Z

∂λ±

]

λ±=1
, 〈N2

±〉 ≡
[

1
Z

λ±
∂

∂λ±

(
λ±

∂Z
∂λ±

)]

λ±=1
. (2.7)
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In thermodynamic limit,V → ∞, it gives:

〈N±〉= z, 〈N2
±〉= z+z2, (2.8)

〈N±〉c.e. ∼= z

(
1− 1

4z

)
, 〈N2

±〉c.e. ∼= z2, (2.9)

It then follows that the scaled variance in this system in the CE is two times smaller than in the
GCE [4]:

ω±
g.c.e. ≡

〈N2±〉−〈N±〉2
〈N±〉 = 1, (2.10)

ω±
c.e. ≡

〈N2±〉c.e.−〈N±〉2c.e.
〈N±〉c.e. =

1
2
. (2.11)

The same result can be obtained using the saddle point expansion technique [8] for quantum ideal
gas where the scaled variance is also two times smaller in the CE than in the GCE [6]:

ω±
c.e. =

1
2

ω±
g.c.e.

[
1+O(V−1)

]
. (2.12)

Exact energy conservation additionally suppress the scaled variance. It means that the thermody-
namical equivalence for mean particle number does not apply to fluctuations measured in terms of
the scaled variance [4], [5]:

〈N〉 ' 〈N〉c.e. ' 〈N〉m.c.e. , (2.13)

ωg.c.e. 6= ωc.e. 6= ωm.c.e. , V → ∞ (2.14)

Let us consider the fluctuations in the ideal relativistic gas with different types of hadrons in the
MCE with exactly fixed the global electric (Q), baryon (B), and strange (S) charges of the statistical
system. The system of non-interacting Bose or Fermi particles of speciesi can be characterized
by the occupation numbersnp,i of single quantum states labelled by momentap. The occupation
numbers run overnp,i = 0, 1 for fermions andnp,i = 0, 1,2, . . . for bosons. The GCE average values
and fluctuations ofnp,i equal the following:

〈np,i〉 =
1

exp

[(√
p2 +m2

i − µi

)
/T

]
− γi

, (2.15)

υ2
p,i ≡ 〈∆n2

p,i〉 ≡ 〈(np,i−〈np,i〉)2〉 = 〈np,i〉(1+ γi〈np,i〉) . (2.16)

In Eq. (2.15), T is the system temperature,mi is the mass ofi-th particle species,γi corresponds to
different statistics (+1 and−1 for Bose and Fermi, respectively, andγi = 0 gives the Boltzmann
approximation), and chemical potentialµi equals:

µi = qi µQ + bi µB + si µS , (2.17)

whereqi , bi , si are the electric charge, baryon number and strangeness of particle of speciesi, re-
spectively, whileµQ, µB, µS are the corresponding chemical potentials which regulate the average
values of these global conserved charges in the GCE.
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The average number of particles of speciesi, the number of positively and negatively charged
particles are equal:

〈Ni〉 ≡ ∑
p
〈np,i〉 =

giV
2π2

∫ ∞

0
p2dp〈np,i〉 , 〈N+〉 = ∑

i,qi>0

〈Ni〉 , 〈N−〉 = ∑
i,qi<0

〈Ni〉 , (2.18)

wheregi is the degeneracy factor of particle of speciesi. A sum of the momentum states means the
momentum integral, which holds in the thermodynamic limitV → ∞.

Particle number fluctuations and correlations can be calculated in all ensembles using the
microscopic correlator method.

〈∆Ni ∆Nj 〉... = ∑
p,k

〈∆np,i ∆nk, j〉... , (2.19)

where〈 〉... means GCE, CE, or MCE microscopic correlator. The scaled variances of negatively
and positively charged particles read:

ω− =
〈(∆N−)2〉
〈N−〉 , ω+ =

〈(∆N+)2〉
〈N+〉 , (2.20)

where

〈(∆N−)2〉 = ∑
i, j; qi<0,q j<0

〈∆Ni∆Nj〉 , 〈(∆N+)2〉 = ∑
i, j; qi>0,q j>0

〈∆Ni∆Nj〉 . (2.21)

The microscopic correlator in the GCE reads:

〈∆np,i ∆nk, j〉 = υ2
p,i δi j δpk , (2.22)

whereυ2
p,i is given by Eq. (2.16). This gives a possibility to calculate the fluctuations of different

observables in the GCE. Note that only particles of the same species,i = j, and on the same level,
p = k, do correlate in the GCE. Thus, Eq. (2.22) is equivalent to Eq. (2.16): only the Bose and
Fermi effects for the fluctuations of identical particles on the same level are relevant in the GCE.

The MCE microscopic correlator is as follows [6], [7]:

〈∆np,i∆nk, j〉m.c.e. = υ2
p,i δi j δpk −

υ2
p,iυ2

k, j

|A| [ qiq jMqq+bib jMbb+sisjMss (2.23)

+ (qisj +q jsi)Mqs − (qib j +q jbi)Mqb − (bisj +b jsi)Mbs

+ εpiεk jMεε − (qiεp j +q jεki)Mqε + (biεp j +b jεki)Mbε − (siεp j +sjεki)Msε ] ,

where|A| is the determinant andMi j are the minors of the following matrix:

A =




∆(q2) ∆(bq) ∆(sq) ∆(εq)
∆(qb) ∆(b2) ∆(sb) ∆(εb)
∆(qs) ∆(bs) ∆(s2) ∆(εs)
∆(qε) ∆(bε) ∆(sε) ∆(ε2)


 , (2.24)

with the elements,∆(q2) ≡ ∑p,k q2
kυ2

p,k , ∆(qb) ≡ ∑p,k qkbkυ2
p,k , ∆(qε) ≡ ∑p,k qkεpkυ2

p,k , etc.
The sum,∑p,k , means integration over momentump, and summation over all hadron-resonance
speciesk contained in the model. Note that the presence of MCE terms containing single particle

energies,εpi =
√

p2 +m2
j , in the last line of Eq.(2.23) is a consequence of exact energy conserva-

tion. In the CE, only charges are conserved exactly, thus the terms of the last line in Eq. (2.23) are
absent, andA in Eq. (2.24) becomes the3×3 matrix (see Ref. [6]).
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3. Effect of resonance decays

The average number ofi-particles in the presence of primary particlesN∗
i and different reso-

nance typesR is the following:

〈Ni〉 = 〈N∗
i 〉+∑

R

〈NR〉∑
r

bR
r nR

i,r ≡ 〈N∗
i 〉+∑

R

〈NR〉〈ni〉R (3.1)

The summation∑R runs over all types of resonances. The〈. . .〉 and〈. . .〉R correspond to the GCE
averaging, and that over resonance decay channels. Resonance decay has a probabilistic character.
This itself causes the particle number fluctuations in the final state. In the GCE the final state
correlators can be calculated as [9]:

〈∆Ni ∆Nj〉 = 〈∆N∗
i ∆N∗

j 〉 + ∑
R

[〈∆N2
R〉 〈ni〉R 〈n j〉R + 〈NR〉 〈∆ni∆n j〉R

]
, (3.2)

wherebR
r is the branching ratio of ther-th branch,nR

i,r is the number ofi-th particles produced in
that decay mode, andr runs over all branches with the requirement∑r bR

r = 1 and〈∆ni ∆n j〉R≡
∑r bR

r nR
i,rn

R
j,r − 〈ni〉R〈n j〉R . Note that different branches are defined in a way that final states with

only stable (with respect to strong and electromagnetic decays) hadrons are counted.
All primary particles and resonances become to correlate in the presence of exact charge con-

servation laws. Thus for the MCE correlators we obtain a new result [6]:

〈∆Ni ∆Nj〉m.c.e. = 〈∆N∗
i ∆N∗

j 〉m.c.e. + ∑
R

〈NR〉 〈∆ni ∆n j〉R + ∑
R

〈∆N∗
i ∆NR〉m.c.e. 〈n j〉R

+ ∑
R

〈∆N∗
j ∆NR〉m.c.e. 〈ni〉R + ∑

R,R′
〈∆NR ∆NR′〉m.c.e. 〈ni〉R 〈n j〉R′ . (3.3)

Additional terms in Eq. (3.3) compared to Eq. (3.2) are due to the correlations induced by exact
charge conservations in the MCE. The Eq. (3.3) remains valid in the CE too with〈. . .〉m.c.e. re-
placed by〈. . .〉c.e., the difference between them appears only when one specifies the microscopic
correlators (2.23) of the MCE or CE.

4. Scaled variances along the chemical freeze-out line

Mean hadron multiplicities in heavy ion collisions at high energies can be approximately fitted
by the GCE hadron-resonance gas model. The fit parameters are temperatureT, chemical potentials
(µB, µS, µQ), and strangeness suppression factorγS, which allows for non-equilibrium strange
hadron yields. There are several programs designed for the analysis of particle multiplicities in
relativistic heavy-ion collisions within the hadron-resonance gas model, see e.g., SHARE [10],
THERMUS [11] and THERMINATOR [12]. In this paper an extended version of the THERMUS
thermal model framework [11] is used.

For the chemical freeze-out condition we choose the average energy per particle〈E〉/〈N〉 =
1GeV [13]. Using the standard parametrization [2] we obtain theT−µB freeze-out line for central
A+A collisions (see Fig.1).

The center of mass nucleon-nucleon energies,
√

SNN, marked in the figures below correspond
to the beam energies at SIS (2A GeV), AGS (11.6A GeV), SPS (20A, 30A, 40A, 80A, and 158A

5
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Figure 1: The chemical freeze-out line in central A+A collisions.

GeV), colliding energies at RHIC (
√

SNN = 62.4 GeV, 130 GeV and 200 GeV) and LHC (
√

SNN =
5500 GeV).

Figure2 show the prediction for the scaled variances for negatively and positively charged
particles as a function of

√
sNN.

Figure 2: The scaled variances for negatively and positively charged particles, both primordial and final,
along the chemical freeze-out line for central Pb+Pb (Au+Au) collisions. Different lines present the GCE,
CE, and MCE results. Symbols at the CE and MCE lines for the final particles correspond to the specific
collision energies. The arrows show the effect of resonance decays.

The prediction can be compared with the preliminary NA49 data on Pb+Pb collisions at 20A-
158A GeV [14] using the following approximate formula:

ω±
acc = 1−q+qω±

4π , (4.1)

whereω4π refers to an ideal detector with full4π-acceptance andω±
acc is the scaled variance mea-

sured by a real detector with a limited acceptance), q is the ratio between mean multiplicities of

6
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accepted particles and all hadrons. In the limit of a very ‘bad’ (or ‘small’) detector,q→ 0, all scaled
variances approach linearly to 1, i.e., this would lead to the Piossonian distributions for detected
particles. However, we find a strong qualitative difference between the predictions of the statis-
tical model valid for any freeze-out conditions and experimental acceptances: the CE and MCE
correspond toω±

m.c.e. < ω±
c.e. < 1, and the GCE toω±

g.c.e. > 1.

Figure 3: The scaled variances for negative (left) and positive (right) hadrons along the chemical freeze-out
line for central Pb+Pb collisions at the SPS energies. The correspondingT andµB values at different SPS
collision energies are presented in Fig. 1. Different lines show the GCE, CE, and MCE results calculated
with the NA49 experimental acceptance.

From Fig.3 it follows that the NA49 data forω± extracted from the most central Pb+Pb
collisions at all SPS energies are close to the results of the hadron-resonance gas statistical model
within the MCE. The data reveal even stronger suppression of the particle number fluctuations.
A possible reason of this is an uncertainty in the determination of the detector acceptance and
an additional suppression due to momentum conservation and the excluded volume effects in the
hadron-resonance gas.

5. Summary

Scaled variances are different in different statistical ensembles, even in thermodynamic limit.
The analytical formula for the resonance decay contribution in CE and MCE has been shown. The
prediction for the energy dependence of the scaled variances in the most central Pb+Pb collisions
has been done. A comparison of the statistical model for hadron-resonance gas in CE and MCE
with NA49 data was made. The MCE results are the closest to the measured scaled variances for
positively and negatively charged particles.
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