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1. Introduction

We have had very interesting presentations on event-by-event fluctuations during this work-
shop (see other contributions to these proceedings). This work is based on our recent paper [1]
and explores from a theoretical viewpoint the correlation data published by the PHENIX [2, 3],
STAR [4, 5], and CERES [6] Collaborations. These measurements contribute to the previously
accumulated vast knowledge on event-by-event fluctuations in ultra-relativistic heavy-ion colli-
sions [6-31].

We bring up some basic and rather striking facts manifest in the data of Refs. [2,5] and discuss
their relevance to the cluster picture of correlations. Let us begin with the PHENIX measurement
[2] of the event-by-event fluctuations of the transverse momentum at /syy = 130 GeV. In order to
simplify the notation, p is used generically to denote the transverse momentum, || and p; is the
value of p for the ith particle. Finally, M = Y'I' | p;/n is the average transverse momentum in an
event of multiplicity n. The statistical treatment of the M variable has been presented in detail in the
contribution of the speaker to the discussion session (see “Round Table Discussion: Correlations
and Fluctuations in Nuclear Collisions” in these proceedings [32]).

2. A look at the data

The PHENIX results of Ref. [2] are reminded in Table 1. Several important features of the
data are immediately seen: firstly, the quantities M, the average p in a given centrality class, and
0,, the inclusive standard deviation of p, are practically constant in the reported “fiducial centrality
range” ¢ = 0 —30%.

M =const., 0, =const. (atlow c). 2.1

This allows us to replace the average momentum at each n by M and the variance at each n by
0, [1]. For distributions sharply peaked in the n variable we derive in [32] the following formula:

ot ~ 6, /\i. (2.2)

Table 1: Data for the event-by-event fluctuations in the transverse momentum. Upper rows: the PHENIX
measurement at /syy = 130 GeV [2]. Bottom rows: the mixed-event results.

centrality | 0-5% | 0-10% | 10-20% | 20-30%
7] 59.6 | 539 36.6 25.0
On 10.8 12.2 10.2 7.8
M 523 523 523 520
(o 290 290 290 289
oM 38.6 | 41.1 49.8 61.1
M™ix 523 523 523 520
o 37.8 | 40.3 48.8 60.0
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Table 2: Verification of the statistical result (2.2) holding for sharp distributions.

centrality | 0-5% | 0-10% | 10-20% | 20-30%
omix 378 | 403 | 488 | 60.0
o,/VAi | 376 | 395 | 479 | 590

Table 3: Verification of the scaling result (2.4), seen in the approximate constancy of O'dyn\/ﬁ.

centrality 0-5% 0-10% 10-20% 20-30%
OgynVii | 603+£1.6 [ 59.24+1.5|59.8+1.2 | 57.7+1.1

The derivation involves only the statistics and the assumption of sharp distributions, which is suf-
ficiently well satisfied at RHIC. Corrections to Eq. (2.2) appearing for broader distributions can be
obtained. They involve higher moments of n, for instance 6%(n) /7. Table 2 shows how well (2.2)
works — at the level of 1-2%, which is no wonder, just the statistical fact.

3. The cluster scaling

Next, we look at the difference of the measured and mixed-event variances of M, which is a
measure of dynamical fluctuations,

2 2 2,mix
Gdyn = GM —_ GM . (31)

Table 3 shows our main observation, namely, that the following scaling holds:
1
Tr

It works at the accuracy level of 2% in the available centrality range, as can be inferred from

Odyn ~ (3.2)

the approximate constancy of numbers displayed in Table 3. Elementary statistical considerations
shown in [32] lead to the result

P(n) ¢ 1 1
Gc%yn = Z—Q Z cov,(pi,pj) =~ =) Z covi(pi, pj), (3.3)
n 17]217J7él l‘]:17]7él

where in the second equality we have used the feature of sharp distributions in n. The quantity
cov,(pi, p;j) is the covariance of momenta p; and p; in events of multiplicity 7.

Now we come to the physics discussion. The scaling (3.2) imposes severe constraints on
the physics nature of the covariance term. For instance, if all particles were correlated to each
other, then Z? j=1,j£i COVii (pi,p j) would be proportional to the number of all pairs, and 64y, would
be independent of 7. Thus we see that the combinatorics is truncated — clearly not all pairs are
correlated, or a finite correlation length develops. A natural explanation of the scaling (3.2) comes
from the cluster model, depicted in Fig. 1. The system is assumed to have N clusters, each
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Figure 1: The cluster picture of correlations consistent with scaling (1.4).

containing (on the average) (r) particles. The particles are correlated if and only if they belong to
the same cluster, where the average covariance per pair is 2cov*. The number of correlated pairs
within a cluster is r(r — 1)/2. Some particles may be unclustered, hence the ratio of clustered to
all particles is (Ng)(r)/fi = o. If all particles are clustered then oo = 1. With these assumptions
Eq. (3.1) becomes

Mcov* = Oc_r cov®, (3.9

2
Odyn = (r\m 7

where we have introduced r* = (r(r—1))/(r), the ratio of the average number of pairs in the cluster
to the average multiplicity of the cluster. For a fixed number of particles in each cluster we have
r* = (r) — 1, for the Poisson distribution r* = (r), while for wider distributions r* > (r). Equation
(3.4) complies to the scaling (3.2) as long as the product ar*cov* does not depend on 7 (in the
fiducial centrality range). This is the basic physics constraint that follows from the data. For the
reasons discussed above it is appropriate to term the scaling (3.2) the cluster scaling.

4. Cluster scaling with other correlation measures

There are numerous quantities used as measure of the event-by-event fluctuations. Fortunately,
as shown in [32], for sharp distributions and for the case where the dynamical correlations are small
compared to the statistical correlations, Gayn << Oy, all the popular measures are simply related to
each other, or to the covariance, which is the basic quantity designed to describe correlations. We
have

Zi;&j covi(pi, Pj)

2 2 =2
ZPT = Gdyn/p ~

pZﬁZ

2
1 Ggyn Yizjcova(pi, p;)

- 2,mix — 7yl
2 GM 2n6p

F, = —1=

pr ’
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o = G_S2 O~ Yizjcova(pi, pj)
- n b 2no, ’

(Apidpj) =Y cova(pi,p)), 4.1
iZ

where in the definition of ®,, one uses S, = p; + ...+ p,. The last equality states the fact that
the STAR measure Ap;Ap; is just the statistical estimator of the covariance, see [1]. The cluster
scaling thus manifests itself for the various measures in the following manner:

ZPT ~
Fy ~ 1,
D, ~ 1,

ﬁ<Ap,-Apj> ~ 1. “4.2)

Since this is an important point, we stress again: since at RHIC the distributions are 1) sufficiently
sharply peaked in n and 2) the dynamical fluctuations are small compared to the statistical fluctua-
tions, all popular measures of event-by-event fluctuations are all proportional to each other and to
the covariance. One may pass from one measure to another without difficulty. If conditions 1) and
2) are not satisfied, as may be the case at lower energies, periferal collisions, efc., then of course the
measures remain different and some may be better tuned for certain analyses. Full information on
correlations could be acquired by simply evaluating the covariance }';.;cov, separately for each
n. Even if 1) or 2) are relaxed, the correlation measures are still related to the sum of the weighted
covariances at various n, with the weights dependent on the particular measure. The necessary
formulas can be very straightforwardly derived along the lines of [32]. We urge that such a study
of the dependence of covariance on n be made on data with sufficiently large samples.

5. Cluster scaling in various experiments

Now let us have a look at various experiments. The PHENIX results at /syy = 130 GeV [2]
discussed in Sect. 3 comply nicely to the cluster scaling. The same is true of the STAR data (see
Fig. 3 of [5]) at \/syy =200 GeV and 62 GeV, where the quantity dn/dn(Ap;Ap;) flattens out for
large centralities. For /syy = 130 GeV and 20 GeV the STAR data seems to somewhat depart from
the scaling, with sizeable error bars for 130 GeV. The PHENIX data at /syy = 200 GeV shows
non-monotonic behavior [3]. The STAR data at /syy = 200 GeV also shows non-monotonic
behavior at large centralities, but only for the analysis where all produced particles are taken into
account. When the analysis is constrained to the in-plane or out-of-plane particles, then the cluster
scaling is satisfied remarkably well (see Paul Sorensen’s talk showing the STAR preliminary data).
This is a very intriguing phenomenon that needs to be understood. The CERES data [15], using
the X, variable, also complies to the cluster scaling within the error bars. Recall that according to
(4.2) we look for £, ~ 1/ /1. In conclusion, the cluster scaling is seen in some measurements to a
remarkable accuracy, while is other non-monotonous behaviour is apparent. The situation requires
careful clarification.
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6. Strength of correlations

Before performing the analysis of clusters in a more quantitative manner we need to consider
the effects of acceptance and the detector efficiency. This is particularly important in the event-
by-event analysis, since the experiments select particles with very clearly identified tracks, hence
the detector efficiency a is reduced. The number of observed particles is proportional to a, and
the number of pairs contributing to the covariance is proportional to a®>. Thus Eq. (3.4) may be

rewritten as
r* r* .

2 *
Ojyn = —= COV =a— CO 6.1

O o s D
where “full” denotes all particles (that would be observed with 100% efficiency), while “obs”
stands for the actually observed multiplicity of particles. Thus

2 Nobs

cov® = Gdynw. (62)

Our estimate for a in the PHENIX experiment is of the order of 10%, which together with the
numbers of Table 1 gives

*

0.035 GeV?
cov' > —

7*

(6.3)

In the considered problem the coefficient 0.035 GeV? is not a small number when compared to the
natural scale set by the variance G[% ~ 0.08 GeV? (we recall that | cov* |< G[%).

Very similar quantitative conclusions are reached with the STAR data. Taking the values from
Table I of Ref. [5] and guessing a = 0.75 we find cov*r* = 0.058,0.043,0.035,0.014 GeV? for
VSnvv = 200,130,62 and 20 GeV, respectively. The value at 130 GeV is close to the PHENIX
value (6.3). Interestingly, we note a significant beam-energy dependence, with cov*r* increasing
with /syy. This may be due to the increase of the covariance per correlated pair with the increasing
energy, and/or an increase of the number of particles within a cluster.

Using the above numbers we find that for »* = 1 (for instance the case where all clusters have
just two particles) the value of cov* assumes almost a half of the maximum possible value, GI%. This
is very unlikely, as dynamical estimates presented below give cov* of the order at most 0.01 GeV?2.
Thus a natural explanation of the values in (6.3) is to take a significantly larger value of r* — just
put more particles inside the cluster. Of course, the higher value, the easier it is to satisfy (6.3) even
with small values of cov*. This scenario will be elaborated in the next section.

7. The nature of clusters

Several mechanisms can be brought up to describe the formation of clusters in the momentum
space. The basic physics question concerns the nature of clusters. Here we discuss a few popular
scenarios.

7.1 Jets

The most prominently explored mechanism is the formation of (mini)jets. In Ref. [1] we have
discussed this issue, with the conclusion that the explanation of the centrality dependence of the pp
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covie, [GeV?]

Figure 2: The covariance cov’,, of the two pions produced in the decay of the resonance om mass M.

Tes

fluctuations in terms of jets based solely on scaling arguments is not conclusive. Any mechanism
leading to clusters in pr would do. Microscopic realistic estimates of the average number of jets
and the magnitude of the covariance of particles originating from a jet are necessary here, including
the interplay of jets and the medium. For the current status of this program the user is referred
to [31,33].

7.2 Resonance decays

Another natural mechanism for momentum correlations is provided by resonance decays. Re-
call that resonances are crucial behind the success of the statistical approach to particle production
in relativistic heavy-ion collisions. We have made an estimate of this effect in the thermal model
of Ref. [34,35]. The covariance cov},, of the two pions produced in a resonance decay is given by
the formula

@l T8 (0= pi—pa) C R (T —") (- 0"))
Jaop | 5 [ 505y~ p2) C B

; (1.1)

res

where dNg/d?p is the resonance distribution in the momentum space (obtained from the Cooper-
Frye formula as described in Ref. [36]), M is the mass of the resonance, p| and p; are the momenta
of the emitted particles, E, is the energy of a particle with momentum p, and the function C
represents the appropriate experimental cuts. Here we take C as for the PHENIX experiment,
with 0.2 GeV < pl, < 1.5 GeV, and |y| < 0.35. The average momentum of the pion is (p”) =
523 MeV. The pararheters of the model are T = 165 MeV (the universal freeze-out temperature),
Pmax = 7.15 fm (the transverse size of the system), and T = 7.86 fm (the proper time at freeze-
out). The numerical results presented in Fig. 2 show that for the resonance mass between 500 MeV
varies between 0.01 GeV? at low masses to —0.018 GeV?
at M ~ 1.1 GeV. These numbers are small compared to the scale G[% ~ 0.08 GeV>. Moreover,

and 1.2 GeV the covariance cov;,
there is a change of sign around M = 700 MeV and cancellations between contributions of various
resonances are possible. In fact, a full-fledged simulation with Therminator [37] revealed a
completely negligible contribution of resonances to the py correlations with model parameters
appropriate for the STAR and PHENIX experiments.
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Table 4: Predictions of the “lumped cluster” model. The quantity 7 is the universal freeze-out temperature,
(Br) is the average transverse flow velocity, covy, is the average covariance of the pion pair, and r* is
an estimate for the average number of charged particles in the cluster based on the PHENIX results for

\/SNN = 130 GeV.

T [MeV] 10 [ 100 | 120 | 140 | 165 | 200
(Br) 094 | 072 | 069 | 058 | 049 | 031
o, [GeV?] 0.056 | 0.19 | 0.15 | 0.15 | 0.14 | 0.12

covi. [GeV?] || 0.027 | 0.011 | 0.0088 | 0.0063 | 0.0034 | 0.0006
pr=0035GeV2 || 3 | 39 4.0 5.6 103 | 583

*
covip

7.3 Lumps of matter

Finally, let us consider a model of momentum correlations which assumes that the particle
emission at the lowest scales occurs from local thermalized sources. We call this picture the
“lumped clusters”: lumps of matter move at some collective velocities, correlating the momenta of
particles belonging to the same cluster, see Fig. 1. Each element of the fluid moves with its col-
lective velocity and emits particles with locally thermalized spectra. This picture was put forward
as a mechanism creating correlations in the charge balance function [36, 38] resulting from charge
conservation within a local source. The covariance between particles i and j emitted from a cluster
moving with a velocity u is given by the equation

JdZuu [ &pi(p] = (P"N S (1) [ & pa(p] = (P")fY (p2)
Jazuut [&pifi(p1) [ & paf}(p2) ’

where f*(p) = (exp(p-u/T)=41)"! is the thermal distribution in the local reference frame and

cov*(i,j) = (7.2)

dX,, denotes integration over the freeze-out hypersurface. In this calculation we adjust the average
transverse flow velocity (fB7) at each T such that the slope of the pion spectra agrees with the data.
Of course, lower 7 requires higher (7). The result turns out to depend strongly on the temperature.
For the emission of correlated pion pairs one gets the results shown in Table 4. The last row of
the table gives the number of particles based on formula (6.3), obtained for PHENIX at /syy =
130 GeV. We note that for realistic values of thermal freeze-out parameters the experimentally
estimated value of the covariance cannot be accounted for, unless the number of charged particles
belonging to the same cluster is at least of the order 4 — 10 (assuming the Poisson distribution). For
wider distributions in the variable r a lower number is requested. Thus the number of all particles
(charged and neutral) belonging to a cluster is estimated as

oy~ 6— 15, (7.3)

which is one of our main results.

8. Dependence on maximum transverse momentum

An interesting result is obtained when the upper limit of integration in the transverse momen-

tum, p7®, is imposed. Figure 3 shows the dependence of F),. on p7** and compares the result to
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Figure 3: Dependence of F,;, on the cut in the transverse momentum. The data points come from Ref. [3].
Red points show the model calculation with T = 165 MeV, while the black points are for 7 = 130 MeV.

the PHENIX data. The red points show the model calculation with 7 = 165 MeV and ar* = 2.1,
while the black points are for 7 = 130 MeV and ar* = 2.9. The value of ar* is tuned such that the
model describes the data well. For realistic values of the acceptance a we get values of r* of the
same order as in estimate (7.3).

A feature of our model is a saturation of F),, at large values of p7®*. This saturation is a con-
sequence of the thermal model. As a matter of fact, all relevant quantities saturate when integrated
over pr. Unfortunately, the experimental data do not extend to the saturation region. What is some-
what surprising at the first sight is the rather large value of p7** needed for saturation: about 2 GeV
for T = 130 MeV and about 3 GeV for T = 165 MeV. Figure 4 shows the results for the average
momentum, its variance, and the covariance resulting from the lumped cluster model. We note that
all these quantities saturate at rather large values of p7*. In that sense in the present context the
“soft” thermal physics reaches transverse momenta up to 2-3 GeV!

9. Conclusion

‘We list our main results:

1. The cluster scaling of Ggyn with 1/7 in the fiducial centrality range 0-30% at PHENIX points
at the cluster picture of the fireball.

2. Similar scaling can be also seen at STAR [4,5] (see also Paul Sorensen’s talk) and at CERES
[6].

3. Scaling can be found with various correlation measures, which in the limit of sharp distribu-
tions and small dynamical compared to statistical fluctuations become equivalent and related
in simple ways to the covariance, as discussed in [32].

4. The clusters may a priori originate from very different physics: (mini)jets, droplets of fluid
formed in the explosive scenario of the collision, or other mechanisms leading to multiparti-
cle correlations.
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Figure 4: The dependence of the average momentum (top), its variance (middle), and the covariance (bot-
tom) resulting from the lumped cluster model for T = 130 MeV (left) and T = 165 MeV (right) on the
cut-off in the transverse momentum, p7®*.

5. (Mini)jets just produce clusters, so it is impossible to prove or disprove their existence based
solely on the centrality dependence of the correlation data at soft/medium values of py.
6. Resonance decays in a thermal model yield a very small value of the py-covariance.

7. In a model where matter forms lumps moving at similar collective velocity and particles
move thermally within a cluster, description of the RHIC data requires on the average 6-15
particles in the cluster. In general, a larger number of particles within a cluster helps to obtain
the large (compared to G[%) /i) measured value of Ggyn.

8. In the “lumped cluster” model the p7** dependence of F),, grows monotonically and then
saturates. It would be interesting to confront this finding to the data.

9. Detailed microscopic modeling would be very useful in order to better understand the prob-
lem on transverse momentum correlations in relativistic heavy-ion collisions.

10
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