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We introduce an analysis method to measure elliptic flow (v2) fluctuations using the PHOBOS de-

tector for Au+Au collisions at
√

sNN = 200 GeV. In this method, v2 is determined event-by-event

by a maximum likelihood fit. The non-statistical fluctuations are determined by unfolding the

contribution of statistical fluctuations and detector effects using Monte Carlo simulations(MC).

Application of this method to measure dynamical fluctuations embedded in special MC are pre-

sented. It is shown that the input fluctuations are reconstructed successfully for 〈v 2〉 ≥ 0.03.
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1. Introduction

Studies of collective flow have proven to be fruitful probes of the dynamics of heavy ion colli-
sions. Elliptic flow (v2) in heavy ion collisions was first discussed in [1] and has been measured at
AGS[2, 3] and SPS[4, 5] energies. The first measurement of elliptic flow at RHIC was performed
by the STAR collaboration[6]. PHOBOS has measured elliptic flow as a function of pseudorapidity,
centrality, transverse momentum, center-of-mass energy and nuclear species[7, 8, 9, 10]. In partic-
ular, the measurements of v2 as a function of centrality provide information on how the azimuthal
anisotropy of the initial collision region drives the azimuthal anisotropy in particle production.
When two nuclei collide with non-zero impact parameter, the almond-shaped overlap region has
an azimuthal spatial asymmetry. If the particles do not interact after their initial production, the
asymmetrical shape of the source region will have no impact on the azimuthal distribution of de-
tected particles. Therefore, observation of azimuthal asymmetry in the outgoing particles is direct
evidence of interactions between the produced particles. In addition, the interactions must have
occurred at relatively early times, since expansion of the source, even if uniform, will gradually
erase the magnitude of the spatial asymmetry. Hydrodynamical models can be used to calculate
a quantitative relationship between a specific initial source shape and the distribution of emitted
particles[11]. At the high RHIC energies, the elliptic flow signal at midrapidity in Au+Au collisions
is as large as that calculated under the assumption of a boost-invariant relativistic hydrodynamic
fluid. The presence of a large flow signal has been considered to be a proof of early equilibration
in the colliding system[12].

The azimuthal anisotropy of the initial collision region is quantified by the eccentricity of the
overlap region of the colliding nuclei. The customary definition of eccentricity, which we call the
“standard eccentricity,” is determined by relating the impact parameter of the collision in a Glauber
model simulation to the eccentricity calculated assuming the minor axis of the overlap ellipse to be
along the impact parameter vector. Thus, if the x axis is defined to be along the impact parameter
vector and the y axis perpendicular to that in the transverse plane, the eccentricity is defined by:

εstandard =
σ 2

y −σ 2
x

σ 2
y +σ 2

x
, (1.1)

where σx and σy are the RMS widths of the participant nucleon distributions projected on the x and
y axes, respectively.

Measurement of v2 fluctuations as a probe of early stage dynamics of heavy-ion collisions
has been suggested earlier by Mrowczynski and Shuryak[13]. However, Miller and Snellings have
pointed out that fluctuations in the shape of the initial collision region must be understood first
before addressing other physical sources of v2 fluctuations[14]. Furthermore, the latter argue that
experimental measurements of v2 can be affected by these fluctuations. They show approximate
agreement between the predictions from a fluctuating eccentricity model and the differences in v2
measures obtained via two, four and six particle cumulant methods in Au+Au collisions, where the
standard definition of eccentricity is used.

The elliptic flow in Cu+Cu collisions is observed to be surprisingly large, particularly for the
most central events[10]. PHOBOS has proposed that event-by-event fluctuations in the shape of
the initial collision region can be a possible explanation for the large v2 signal in the small Cu+Cu
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Figure 1: Participant eccentricity, ε part , of
the collision zone as a function of number of
partipicant nucleons, Npart , for Au+Au colli-
sions at

√
sNN = 200 GeV from the PHOBOS

Glauber MC. The black points show the average
εpart [10].
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Figure 2: Squares show the average elliptic
flow parameter, v2, measured near mid-rapidity,
as a function of Npart for Au+Au collisions at√

sNN = 200 GeV. Only statistical errors are
shown. Dots show the RMS of event-by-event
v2 distribution from PHOBOS Glauber MC (see
text.)

system[10]. For small systems or small transverse overlap regions, fluctuations in the nucleon
positions frequently create a situation where the minor axis of the ellipse in the transverse plane
formed by the participating nucleons is not along the impact parameter vector. An alternative
definition of eccentricity, called the “participant eccentricity”, εpart , is introduced to account for
the nucleon position fluctuations such that the eccentricity is calculated with respect to the minor
axis of the ellipse defined by the distribution of participants found using a Monte Carlo approach.
Using the same coordinates as before:

εpart =

√
(σ 2

y −σ 2
x )2 +4σ2

xy

σ 2
y +σ 2

x
, (1.2)

where σxy = 〈xy〉 − 〈x〉〈y〉. The average values of εstandard and εpart are quite similar for all but
the most peripheral interactions for the Au+Au system. For the smaller Cu+Cu system, however,
fluctuations in the nucleon positions become quite important for all centralities and the average
eccentricity can vary significantly depending on how it is calculated[10].

Understanding fluctuations in the initial collision region has proven to be crucial to interpret
the 〈v2〉 results. Measurement of v2 fluctuations can be used to test the participant eccentricity
model. Fig. 1 shows a distribution of Glauber model simulated events as a function of εpart and
centrality[10]. These simulations have been used to caculate the mean, 〈εpart〉 and the RMS, σεpart ,
of participant eccentricity as a function centrality. Ideal hydrodynamics leads to v2 ∝ ε[11]. As-
suming this holds event-by-event, this condition would imply that:

σv2

v2
=

σε

ε
, (1.3)

where σv2 is the RMS of the event-by-event distribution of v2. PHOBOS 〈v2〉 results (Fig. 2) can
be used to estimate σv2 by Eq. 1.3. These estimates are also shown in Fig. 2 for Au+Au collisions
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at
√

sNN = 200 GeV. It is important to note that in these estimates, other sources of elliptic flow
fluctuations are neglected.

2. Method

2.1 Overview

We considered three different methods to measure elliptic flow fluctuations:

• Measuring 〈v2
2〉 via two particle correlations and extracting v2 fluctuations by a comparison

to the 〈v2〉 results.

• Measuring v2
2 event-by-event.

• Measuring v2 event-by-event.

Two particle correlations in AA collisions can be used to measure v22[15]. v2 fluctuations can
be calculated comparing 〈v2

2〉 and 〈v2〉 by:

σ 2
v2

= 〈v2
2〉− 〈v2〉2 (2.1)

However, the 〈v2〉 measurement has significant systematic uncertainties, mainly due to the
uncertainties in the reaction-plane determination[9]. The 〈v22〉 measurement will have systematic
uncertainties from various other sources. The comparison of two quantities obtained with different
techniques will make it hard to extract precise results. A similar approach has been suggested in
[16], where the effects of azimuthal correlations other than flow are also discussed.

Two particle correlations can also be used to make an event-by-event measurement of v22. This
method has two main advantages. The first advantage is the possibility to generate a mixed event
background to calculate statistical fluctuations. When single hits are mixed, the v2 signal disap-
pears whereas when pairs are mixed, the average v2 signal is preserved. The second advantage is
that there is only one event-by-event fit parameter, v22, since the reaction-plane dependence drops
out when the difference between the angles of particles is used. However, non-uniformities in ac-
ceptance are very hard to correct for with this approach, since the two-particle acceptance changes
event-by-event with respect to the reaction-plane angle.

Conceptually the simplest method is to measure v2 event-by-event. In this method, absolute
coordinates of the hits in the detector are used to measure v2 and the reaction plane. This ap-
proach also bears important difficulties. Due to finite number fluctuations, the event-by-event v2
resolution is limited. As mentioned above, mixed events generated using single hits have no v2
signal and therefore cannot be used as a background reference. Furthermore, the resolution of the
measurement changes with the true v2 value and the multiplicity in the event.

In this paper, we will concentrate on the last approach. We will describe the method we have
developed in order to address the difficulties outlined above for this approach.

In most fluctuation analyses, the statistical fluctuations are calculated using a mixed event
background of certain event classes. In this analysis, events in the same event class correspond to
events with the same reaction-plane angle. However the reaction-plane angle cannot be measured
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precisely, making it difficult to generate a mixed event background. Instead, MC simulations of the
detector response will be used to account for statistical fluctuations.

In a typical fluctuation measurement of a quantity x, the variance of x, σ2
x,obs, can be decom-

posed into contributions from the statistical fluctuations, σ2
x,stat, and dynamical fluctuations, σ2

x,dyn:

σ 2
x,obs = σ 2

x,dyn +σ 2
x,stat (2.2)

This equation holds if the average of the measurement, 〈xobs〉, gives the true average in the data,
〈x〉, and if the resolution of the measurement is independent of the true value. Neither of these
conditions are satisfied in the event-by-event measurement of v2. Therefore, a more detailed study
of the response function is required.

We define K(vobs
2 ,v2) as the distribution of the event-by-event observed elliptic flow, vobs

2 , for
events with constant input value of v2. If a set of events have an input v2 distribution given by
f (v2), then the distribution of vobs

2 , g(vobs
2 ), will be given by:

g(vobs
2 ) =

∫ ∞

0
K(vobs

2 ,v2) f (v2)dv2 (2.3)

It is important to note that Eq. 2.3 holds in general and Eq. 2.2 can be derived from it in the special
case described above.

Thus, we separate the event-by-event elliptic flow fluctuation analysis into 3 tasks:

• Finding g(vobs
2 ) for a set of events, by an event-by-event measurement of vobs

2 .

• Calculating the kernel, K(vobs
2 ,v2), by studying the detector response.

• Calculating the true v2 distribution, f (v2), by finding a solution to Eq. 2.3.

2.2 Event-By-Event Measurement

The PHOBOS detector employs silicon pad detectors to perform tracking, vertex detection
and multiplicity measurements. Details of the setup and the layout of the silicon sensors can be
found in [17]. The PHOBOS multiplicity array covers a large fraction of the full solid angle. At
midrapidity, the vertex detector and the octagonal multiplicity detector have different pad sizes and
the acceptance in azimuth is not complete. Fig. 3 shows the distribution of reconstructed hits in
the multiplicity array. The event-by-event measurement method has been developed to use all the
available information from the multiplicity array to measure a single value, vobs

2 , while allowing an
efficient correction for the non-uniformities in the acceptance.

The maximum likelihood method was applied for this purpose. We model the measured pseu-
dorapidity dependence of v2 as:

v2(η) = v2(η = 0) · (1−|η |/6) (2.4)

This ansatz describes the main feature of the pseudorapidity dependence of v2 over a range of
centralities, shown in Fig. 4. We will denote v2(η = 0) shortly as v2. We define the probability
distribution function (PDF) of a particle to be emitted in the direction (η ,φ) for an event with v2
and reaction plane angle φ0:

P(η ,φ |v2,φ0) = p(η)[1+2v2(η)cos(2(φ −φ0))], (2.5)
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Figure 3: The distribution of reconstructed hits in the PHOBOS multiplicity array for events in a narrow
vertex bin.

where p(η)dη is the probability for the particle to fall between η and η+dη and [1+2v2(η)cos(2(φ−
φ0))]dφ is the probability of the particle to fall between φ and φ +dφ . For a single event, the like-
lihood function of v2 and φ0 is defined as:

L(v2,φ0) =
n

∏
i=1

P(ηi,φi|v2,φ0), (2.6)

where the product is over all n hits in the detector. The likelihood function describes the probability
of observing the hits in the event for the given values of the parameters v2 and φ0. Treating the hit
positions as constants and the parameters v2 and φ0 as variables allows choosing an estimate of
the parameters, vobs

2 and φobs
0 , which render the likelihood function as large as possible. When

comparing different values of v2 and φ0 for a given event, p(η) is constant and does not contribute
to the calculation. However, it is crucial that the PDF folded with the acceptance is normalized to
the same value for different sets of parameters v2 and φ0. With these considerations, the PDF for
hit positions in the detector is redefined. If the acceptance is given by A(η ,φ), the normalization
constant s is calculated in bins of η as:

s(v2,φ0|η) =
∫
η

A(η ′,φ) · [1+2v2 (1−|η ′|/6) cos(2(φ −φ0))]dφ dη ′ (2.7)

Then the likelihood function becomes:

L(v2,φ0) =
n

∏
i=1

1
s(v2,φ0|ηi)

· [1+2v2 (1−|ηi|/6) cos(2(φi −φ0))] (2.8)

Instead of maximizing L(v2,φ0), it is more convenient for technical reasons to maximize the
auxiliary function l(v2,φ0), defined as:

l(v2,φ0) =
n

∑
i=1

ln
{ 1

s(v2,φ0|ηi)
· [1+2v2 (1−|ηi|/6) cos (2(φi −φ0))

]}
, (2.9)

where the sum is over the n reconstructed hits in the detector. Maximizing l(v2,φ0) as a function
of v2 and φ0 allows us to measure vobs

2 event-by-event.

6
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Figure 4: Elliptic flow as a function of pseudorapidity v 2(η) for charged hadrons for Au+Au collisions at√
sNN = 200 GeV for the three different centrality classes, 25-50%, 15-25% and 3-15% central from top to

bottom[9]. The black lines show the fit given by Eq. 2.4.

2.3 The Response Function

To go from the measurement g(vobs
2 ) to the true v2 distribution, f (v2), one needs to determine

the response of the measurement. The response function is the kernel in Eq. 2.3. Finite number
fluctuations constitute the major part of the statistical fluctuations. Therefore, the kernel depends
on the multiplicity in the detector: K = K(vobs

2 ,v2,n) where n is the number of reconstructed hits.
Monte Carlo simulations are used to measure K(vobs

2 ,v2,n). HIJING[18] is used to generate
Au+Au events. The resulting particles in each event are redistributed in φ randomly with a proba-
bility distribution determined using Eq. 2.4, according to their η positions. These modified events
are run through GEANT[19] to simulate the PHOBOS detector response.

When the event-by-event measurement is done on a set of MC events with a constant value of
v2 and n, it is observed that K(vobs

2 )|v2,n is not Gaussian, but is well described by a Gaussian folded
by a linear function:

K(vobs
2 )|v2,n = vobs

2 · exp

(
−(vobs

2 −a)2

2b2

)
(2.10)

as shown in Fig. 5. In the range of the measurement, the parameters a and b have a one-to-one
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correspondence with 〈vobs
2 〉 and σvobs

2
. Therefore, the kernel can be found in MC simulations by

measuring the distribution of vobs
2 in bins of v2 and n and calculating 〈vobs

2 〉 and σvobs
2

. We use
700,000 events over a collision vertex range of -10 cm< z <10 cm in this study, where z is the
beam axis direction and the nominal vertex position is z = 0. The events are divided into 2 cm
wide vertex bins. It is worth noting that the vertex resolution, which is better than 400 µm for a
minimum-bias Au+Au event[20], is much smaller than the vertex bins used in this analysis. 〈vobs

2 〉
and σvobs

2
are calculated in 70 bins in v2 and 8 bins in n. The results for one of the vertex bins are

shown in Fig. 6. The statistical fluctuations in v2 and multiplicity bins limit the precision of our
knowledge of the kernel. Fitting smooth functions through the distributions, 〈vobs

2 〉 = 〈vobs
2 〉(v2,n)

and σvobs
2

= σvobs
2

(v2,n), reduces the bin-by-bin statistical fluctuations and provides a simple param-
eterization of the kernel. The smooth fits to the results in Fig. 6 are plotted in Fig. 7.

obs
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m
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f 
E
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10

210

Modified HIJING +GEANT

AuAu 200GeV

Figure 5: Distribution of the event-by-event measured quantity v obs
2 for MC events with a constant value of

input v2 and a small range of hit multiplicity. Dashed line shows fit given by Eq. 2.10.

The analysis is performed in bins of centrality. The paddle detectors which have pseudora-
pidity coverage of 3.2 < |η | < 4.5 and cover 2π in the azimuthal direction are used in centrality
determination. The details of the centrality determination can be found in [12]. Assuming that
the true v2 distribution, f (v2), is independent of the number of hits in the multiplicity array for a
set of events in the same centrality class, it is possible to integrate out the multiplicity dependence
according to:

K(vobs
2 ,v2) =

∫
K(vobs

2 ,v2,n)N(n)dn, (2.11)

where N(n) is the distribution of number of hits for the set of events. This integration yields the
appropriate kernel, plotted in Fig.9, for the given set of events with multiplicity distribution N(n),
shown in Fig.8.

2.4 Calculation of Dynamical Fluctuations

As discussed in section 2.1, the last step of the analysis is to extract f (v2) from g(vobs
2 ) and

K(vobs
2 ,v2). There are many possible ways to address this problem. The approach depends on the

question that we are trying to answer. In this case, we are interested in the mean and standard
deviation of f (v2). Therefore we assume an ansatz with two parameters:

8
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Figure 6: The mean (left) and the RMS (right) of the distribution of the event-by-event measured quantity
vobs

2 for MC events in bins of input v2 and hit multiplicity.
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Figure 7: Functions fitted through the distributions shown in Fig. 6.

f (v2) = exp

(
−(v2 −〈v2〉)2

2σ2
v2

)
(2.12)

f (v2) is only defined for v2 > 0. Therefore this ansatz is physically meaningful for the values,
σv2/〈v2〉 << 1. The validity of this ansatz, in particular for large σv2/〈v2〉 will be further studied.

For given values of 〈v2〉 and σv2 , it is possible to take the integral in Eq. 2.3 and calculate
the expected distribution gexp(vobs

2 |〈v2〉,σv2). Comparing gexp(vobs
2 |〈v2〉,σv2) with the observation

in data and minimizing the χ2 defined as:

χ2 = ∑
vobs

2 bins

[g(vobs
2 ) − gexp(vobs

2 |〈v2〉,σv2)]
2

g(vobs
2 )

(2.13)

values of 〈v2〉 and σv2 can be obtained.
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2.5 Verification of the Complete Analysis Chain
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Figure 8: Distribution of the observed number
of hits for a set of events.
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Figure 9: The kernel calculated for the set of
events with multiplicity distribution shown in
Fig. 8 according to Eq. 2.11.
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Figure 10: The true v2 distribution for a set of
selected MC events with multiplicity distribution
shown in Fig. 8. Smooth line shows the parent
Gaussian distribution.
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Figure 11: Distribution of the event-by-event
measured quantity, vobs

2 , for the set of events with
multiplicity distribution shown in Fig. 8 and in-
put v2 distribution in Fig. 10.

The whole analysis procedure was tested using sets of MC events, selected from the events
used to construct the kernel. Approximately 20,000 15-20% central events with a Gaussian dis-
tribution of v2 were used to construct each set. It should be noted that the functional form of the
distribution of v2 in these sets is the same as our ansatz(Eq. 2.12) and the pseudorapidity depen-
dence of v2 is the same as in our PDF(Eq. 2.4). Sample sets were selected with 〈v2〉 = 0.02, 0.03,
0.04 and 0.05. For each value of 〈v2〉, six different values of σv2 (0.01, 0.015, 0.02, 0.025, 0.03,
0.035) were chosen. Each set was divided in the 10 collision vertex bins, for which the kernels were
constructed. The multiplicity distribution N(n), the kernel K(vobs

2 ,v2), the input distribution fin(v2)
and the measured distribution g(vobs

2 ) are plotted in Figures 8, 9, 10, and 11 for a set of events from
one vertex bin with 〈v2〉 = 0.05 and σv2 = 0.02. Minimizing the χ2 defined in Eq. 2.13, yields the
estimate of the true 〈v2〉 and σv2 from the measurement. For this set, the values were found to be
〈v2〉 = 0.048 and σv2 = 0.023. The Gaussian distribution with these values is the estimate of the
true v2 distribution from the measurement. The distribution is plotted in Fig. 12 together with the
true MC v2 ditribution.

Results obtained from different vertex bins were averaged. Fig. 13 shows the combined results.
It is seen that the method successfully reconstructs the input fluctuations down to 〈v2〉 ≈ 0.03.
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Figure 12: Solid line shows the reconstructed v2

distribution for the set of events with input v2 dis-
tribution shown in dashed lines (also in Fig. 10)
and kernel shown in Fig. 9.
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Figure 13: Reconstructed σv2 as a function of
input σv2 for different sets of 15-20% central MC
events. Plots are shown for input 〈v2〉 = 0.02
(top left), 0.03 (top right), 0.04 (bottom left) and
0.05 (bottom right). Statistical errors from com-
bining 10 different vertex bins are shown.

3. Conclusion and Outlook

The participant eccentricity model has increased the interest in measuring elliptic flow fluctua-
tions. We have introduced a new analysis approach to perform this measurement. In this approach,
all the available information from the PHOBOS multiplicity array is used to determine v2 event-
by-event. The response function of the event-by-event measurement, containing the contribution
of statistical fluctuations and detector effects is calculated using Monte Carlo simulations. Non-
statistical fluctuations are extracted by unfolding the response function from the distribution of the
event-by-event measurement. Our approach has been tested on small sets of MC events, selected
from the events used to calculate the response function. The input fluctuations are reconstructed
successfully for 〈v2〉 ≥ 0.03.

The analysis can readily be applied to real data. The next step in the analysis will be to
systematically study how the differences between HIJING MC and data in dN/dη , v2(η) and
azimuthal correlations other than flow influence the results. Different MC event generators and
MC events with different input v2(η) distributions will be used for this purpose.
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