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FINAL STATE DISTORTIONS D. Anchishkin

1. Introduction

Two-particle correlations provide information about the space-time structure and dynamics of
the emitting source [1, 2, 3, 4, 5]. Considering the correlations that occur in relativistic heavy-ion
collisions one usually assumes that: (i) the particles are emitted independently (or the source is
completely chaotic), and (ii) finite multiplicity corrections can be neglected. Then the correlations
reflect a) the effects from symmetrization (anti-symmetrization) of the wave function and b) the
effects that are generated by the final-state interactions of the detected particles between themselves
and with the source.

The nominal quantity expressing the correlation function in terms of experimental distributions
[2] is

C(ka,kb) =
P2(ka,kb)

P1(ka) P1(kb)
, (1.1)

whereP1(k) = E d3N/d3k andP2(ka,kb) = EaEb d6N/(d3kad3kb) are single- and two-particle

cross-sections andEi = ω(ki)≡
√

m2 +k2
i is free particle energy,i = a,b.

From the very first experiments while analyzing experimental data the people wanted to sepa-
rate the final state interactions (FSI) from that which is due just to the reaction zone dynamics, as
it was thought. At first sight, the FSI can be regarded as a contamination of “pure” particle cor-
relations. However, it should be noted that the FSI depend on the structure of the emitting source
and thus provide information about source dynamics as well [6]. Appreciable understanding of the
particle-particle and source-particle FSI was achieved last years [7, 8, 9, 10, 11, 12, 13]. Mean-
while, there are several problems connected to the distortion of particle-particle FSI which are not
clear enough so far. In the present paper we shall focus on two of them. First one is an old problem
of the strong final state interactions. The second one occur in the last years due to the growth of
the energy of colliding nuclei and consequently is due to impressive increasing of the secondary
particle multiplicities (1000 secondary pions at SPS and 2000–3000 at RHIC).

Strong FSI is a complex problem because on the fundamental level it concerns the non-
perturbative QCD. Solution of the problem in this aspect is beyond the scope of the paper, we
solve the problem in the model approach just to have reasonable estimations of the influence of
strong two-particle interaction (pions hard core repulsion) on the correlation function. In different
approaches it was discussed in Refs. [14, 15, 16, 17, 18] (see also [5], Section 3.2).

Actually, the release of pions from a small spatial region in any case is sensitive to hard core
repulsion of registered particles. Technically this means the following:i. Particles created in
finite volume can be represented by localized states, for the sake of simplicity let us say by cen-
tered Gaussian packets;ii . To obtain correlations we integrate over all positions of two Gaussian
centers in some finite spatial volume what is equivalent to integration over position of one center
over this volume plus integration over relative distance between centers. The second integration
includes separation distances between two particles which are comparable with the particle (pion)
core radius. Indeed, in the pair rest system the probabilityP2 to registrate two particles with certain
momentaka andkb can be written in the following form (it is mostly simplified form, for details
see [6, 16])

P2(ka,kb)≈
∫

d3x
∣∣Φq/2(x)

∣∣2
∫

dx0D(x,K) , (1.2)
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FINAL STATE DISTORTIONS D. Anchishkin

whereD(x,K) is the “relative distance distribution” of the source expressed through the Wigner
source functionS(x,K) (x is relative 4-coordinate),Φq/2(x) is the wave function distorted by
particle-particle interaction, which describes a relative motion of two particles, it plays a role of
a “weight function” or probability to find two pions separated by the distancex with relative mo-
mentumq = ka− kb, K = (ka + kb)/2 is a mean momentum of the pair. The integration in (1.2)
is taken over the 4-volume of the source. If this volume is small the contribution from the region
where strong interaction dominates appreciable in comparison to contribution from the Coulomb
interaction of pions. On the other hand, as we shall see in section II, when the emitting volume is
large one can neglect this region at all because the contribution from strong interaction is relatively
small.

The concept of freeze-out accounts for the fact that nevertheless the particles interact always
electromagnetically one can neglect this interaction in favour of strong interaction in dense many-
particle system. Then, it is commonly accepted definition that on the background of expansion of
such a system the beginning of "freeze-out" starts just after a last strong rescattering and in the
further evolution of the system just electromagnetic interaction left. Natural question can arise in
this connection - is there contradiction (double counting) with respect to freeze-out definition if one
includes strong repulsion of pions into account of FSI? To this end let us note, if one integrates over
the relative distance in (1.2), even from the most naive classical point of view it is obvious, that the
volume of the pion mean radius〈rπ〉 should be excluded from integration to prevent appearance
of two pions in the same domain (something like spatial Pauli principal). On quantum mechanical
level this can be taking into account by the relevant pion-pion repulsive potential. Due to the strong
interaction the two pions emitted from a small spatial volume, which is comparable with pion
mean radius〈rπ〉 ≈ 0.66 fm, obtain always a repulsive kick which then appreciably reflected in the
correlation function, as we shall see further. This means that for small volumes (R≤ 3−−4 fm)
we cannot sharply separate the electromagnetic and strong interactions and must include the last
pion-pion strong rescattering in the post freeze-out consideration and by this, rigorously speaking,
we should reformulate the definition of the "freeze-out". Actually, it is reasonable because the
registered pions, in some sense, have amemory about their last strong interaction. Indeed, the
last pion-pion strong rescattering should be accounting separately or extracted from overall strong
production amplitude because the process of further averaging through multiple rescattering or
many-particle chaotization is no more going on after it and the last mutual rescattering of registrated
particles gives a contribution to the post emission relatve dynamics of these particles. It means
that we separate conventionally the overall creation process on three stages (parts): 1) fireball
production, 2) strong rescattering of two registered particles on one another, 3) particle-particle
electromagnetic interaction. This consideration is valid due to inclusive character of two-particle
spectrum (last strong interactions with other particles are integrated out). Note, that above logics
deals with quantum mechanical description where one accounts for effects using the probability
amplitude and two-particle wave function which is spread in space, 0thus we can speak about the
last strong interaction which gives contribution to a certain probability even in the case when the
centers of wave packets are further from one another than〈rπ〉.

3
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2. Final state interactions

Two-particle probability to registrate particles with certain momentaka andkb in the smooth-
ness approximation was calculated as [6]

P2(pa,pb)=
∫

d4xd4yS
(
x+ y

2, pa
)

S
(
x− y

2, pb
)[

θ(y0)
∣∣φq/2(y−vby0)

∣∣2 +θ(−y0)
∣∣φq/2(y−vay0)

∣∣2
]

±
∫

d4xd4yS
(
x+ y

2,K
)

S
(
x− y

2,K
)

φ ∗−q/2(y−vy0)φq/2(y−vy0) , (2.1)

whereS(X,K) is the single particle Wigner density of the source

S(X,K) =
∫

d4xeiK ·x ∑
γγ ′

ργγ ′ ψγ
(
X + x

2

)
ψ∗

γ ′
(
X− x

2

)
(2.2)

with ργγ ′ as the density matrix of the source which provides averaging over full set of singl-particle
quantum numbersγ of the particle wave functionψγ on the freeze-out hypersurface. We introduce
pair mean momentumK = (pa + pb)/2 and relative momentaum of the registrated particlesq =
pa−pb. Using the hermiticity of the density matrix one easily shows thatS(X,K) real. Here we
defined also the three velocities

v =
K
EK

, va =
pa

EK
, vb =

pb

EK
(2.3)

associated with the observed particle momentapa, pb, and their averageK . The energyEK is
defined asEK =

√
m2 +K2 and in the pair center off mass system it reduces to particle mass

EK = m.
The functionsφq/2 in Eq. (2.1) are the eigenstates of the stationary Schrödinger equation

Ĥ(r)φq/2(r) = Erelφq/2(r) (2.4)

(whereErel = q2/2µ andr is the relative coordinate) with asymptotic boundary conditions

lim
|r |→∞

φq/2(r) = e
i
2q·r . (2.5)

where hamiltonianĤ(r) reads

Ĥ(r) =− 1
2µ

∇2
r +V(r) (2.6)

with reduced massµ = m/2 for identical particles and potential which describes the interaction of
the registrated particles after freeze-out.

In our further evaluations we will not concentrate on the dependence of the two-particle prob-
ability P2(pa,pb) on particle velocities putting them approximately equal to the velocity associated
with mean momentum of the pair, i.e.va ≈ v andvb ≈ v. Then, in pair center off mass system,
wherev = 0, Eq. (2.1) reduces to the expression

P2(q) =
∫

d4xad4xbS(xa, pa) S(xb, pb)
∣∣φq/2(xa−xb)

∣∣2

±
∫

d4xad4xbS(xa,K) S(xb,K) φ ∗q/2(xb−xa)φq/2(xa−xb) , (2.7)

4
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where the first term on the r.h.s. of this equation expresses the FSI of the nonidentical particles thus
it does not factorizes into the product of the two single-particle probabilities. It has transparent
physical meaning: two single-particle probabilities to find particles in the time-space pointsxa and
xb with certain momentapa andpb, which are expressed byS(x, p), is weighted by the probability∣∣φq/2(xa−xb)

∣∣2 to find these particles with relative distancexa−xb and relative momentumq. The
correlation function is the ratio of the obtained probabilityP2(q) Eq. (2.7) to the product of two
single-particle probabilities, it reads

C(q) =
P2(q)∫

d4xaS(xa, pa)
∫

d4xbS(xb, pb)
, (2.8)

where 4-vectorspa = (q2/4m, q/2) andpb = (q2/4m,−q/2).
In the noninteracting limitφq/2(x) → exp(iq ·x/2) one recovers known expression for the

correlation function

C(q,K) = 1±

∣∣∣∣
∫

d4xeiq·xS(x,K)
∣∣∣∣
2

∫
d4xaS(xa, pa)

∫
d4xbS(xb, pb)

. (2.9)

2.1 Application. Coulomb plus strong final state interaction

To make evaluations of the correlation function (2.8) we take the source function in the form

S(x, p) =
e−p0/Tf

4πm2TK1(m/Tf)
e−x2

0/2τ2

(2π)1/2τ
e−x2/2R2

0

(2π)3/2R3
0

. (2.10)

Then, in the pair c.m.s (K = 0) the expression for two-particle probability (2.7) reduces to the form

P2(q) =
e−2K0/Tf

[4πm2TK1(m/Tf)]2 π3/2(2R0)3

[ ∫
d3r e−r2/4R2

0
∣∣φq/2(r)

∣∣2

±
∫

d3r e−r2/4R2
0 φ ∗q/2(−r)φq/2(r)

]
, (2.11)

where time dependence is integrated out. In the present simple model ofS(x, p) (2.10) the single-
particle probability to registrate particle with definite momentumk reduces to the pure Boltzmann
exponent, i.e.P1(k) = [4πm2TK1(m/Tf)]−1exp[−ω(k)/Tf ], where time and spatial dependencies
are integrated out. Thus, we can write now the correlation function (1.1) in the form

C(q) =
1

π3/2(2R0)3

∫
d3r e−r2/4R2

0

[∣∣φq/2(r)
∣∣2 ± φ ∗q/2(−r)φq/2(r)

]
, (2.12)

where the Boltzmann exponents canceled because2K0 = ω(ka) + ω(kb) and we adopt that the
Boltzmann factors have the same freeze-out temperatureTf for the two-particle and single-particle
spectra (the single-particle spectra are taken usually from different collision event than the two-
particle spectrum).

The numerical evaluations of the distorted wave functionφq/2(r) is provided by solution
of the Schrödinger equation with the relevant potential which reflects two-pion interaction. We

5
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solved this equation by partial expansion of the wave function for the Coulomb potential en-
ergy VCoul(r) = α/r and for the potential energy which accounts for Coulomb interaction plus
strong interaction of the frozen pion pairVe f f(r) = VCoul(r) +Vstr(r), where “strong potential”
readsVstr(r) = V0exp(−mρ r)/(mρ r) with V0 = 2.6 GeV, mρ = 770 MeV. Potential of the strong
repulsion [16] was chosen to match the behavior of the pion-pion scattering phase shifts. In any
case the use of this strong potential can be considered as a model of the short-range repulsion
which is possessed by pions. The correlations functions which correspond to these potentials are
plotted in Figs. 1-4 for different samples of the freeze-out fireball radii:R0 = 2, 4.5, 7.1, 10 fm.
It is evidently seen in Figures that the contribution of the strong potential is appreciable for small
radii emission sources, i.eR0 = 2 fm andR0 = 4.5 fm. For the source size which is of the207Pb
radiusR0 = 7.1 fm (see Fig. 3) the contribution which can be put in correspondence to the strong
potential is comparatively small. And for the source of larger radius, for instanceR0 = 10 fm, the
influence of the strong FSI even negligible (see Fig. 4).

Remind, that in the absence of the two-particle FSI the source function (2.10) results in the
correlation function (K = 0) C(q) = 1±exp(−q2R2

0). For completeness of comparison we plot
in Figures this correlation function, corrected by the Gamov factorG(|q|), which for boson-boson
correlations takes form

C(q) = G(|q|)
(

1 + e−q2R2
0

)
, (2.13)

where

G(|q|) =| φq/2(r = 0) |2= 2πη
e2πη −1

(2.14)

with η = αmπ/|q|. It is seen in Figures 2, 3 and 4 that the finite size of the emission source softens
the manifestation of the FSI and the ‘Gamov factor’ tends to overestimate the FSI effects for the
source of big size (R0 ≥ 4 fm).

As it seen in Figs. 1, 2 additional repulsive potential (hadron hard core) essentially suppressed
the correlation function at small relative momentum. Actually, the physical reasons for this are
transparent: two strongly interacting particles emitted from the volume ofR0 ≈ 2−−3 fm, when
their "own mean radius", reflected by repulsive strong potentialVstr, is about〈r〉 ≈ 0.66 fm, should
sufficiently "feel" one another through mutual repulsion. On the other hand, when emision zone
is much larger than the particle mean radius〈r〉, for instance fireball radius isR0 = 10 fm, the
contribution of the short-range repulsion is negligible as it seen in Fig. 4. As a matter of fact, the
last can be regarded as undoubt indication that correlations of the particles which are emitted from
the large separate distances, starting for instance fromR≥ 4 fm, are not practically influenced
by hard strong repulsion, or in other words, for the particles which are emitted from perepherical
regions the contribution from short-range interactions is washed out and their correlations are not
suppressed by strong interaction.

It is very interesting to put this conclusion in connection with the so called concept of the
"dominant contribution to the correlation function of the regions of spatial homogeneity". This
notion states that on the scale of the collective (hydrodynamical) velocities of two local domains
it is difficult (small probability) to find two particles with approximately equal momenta. (For
instance, the most noticeable example is two local parts of the fireball which move in the opposite
directions to one another.) Thus, the contribution to the correlation function from the regions which

6
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Figure 1: Correlation function versus relative pion momentum,R0 = 2.0 fm. Dotted (far-between) curve
is the correlation function without FSI. Fat solid curve corresponds to the two-particle Coulomb potential
UCoul(r) = α/r. Dotted curve corresponds to the sum of the Coulomb and strong two-particle potentials
U(r) = α/r +V0exp(−mρ r)/(mρ r). The bottom solid curve is the correlation function corrected just by the
Gamov factor.

spatially stand far from one another is suppressed due to collective motion. Actually, in the present
simple model we do not consider expansion of the source.

On the other hand, as we have just proved a short-range repulsion of the strongly interacting
particles emitted from a small domain (R≤ 4 fm) decreases as well the probability to find two
particles with a small relative momentum, for example if the volume of homogeneity is of the size
R≈ 2−4 fm, then the correlation function of pions from this region, as we see from Figs. 1, 2, will
be suppressed by strong repulsion of these particles. Hence, both effects work in the same direction,
decreasing the correlations of the particles emitted from the small regions (hard core repulsion) and
decreasing the correlations of the particles emitted from the far separated regions (collective mo-
tion). If these effects have the same scale then they approximately uniformly decrease correlations
of two particles which are emitted from all regions of the fireball. The last statement results in con-
clusion that two-particle correlations does not occur preferably from the small regions where the
spatial separation of the particles is small (hence, they have the same collective velocity), but the
particles which are emitted from two regions which are separated by large distance contribute also
appreciably to the correlation function. Thus, the correlation function shows us the real size of the
fireball at freeze-out, but not just a size of the small region of homogeneity. If the region of spatial
homogeneity has the radiusR≥ 7 fm then the strong repulsion can be neglected. So, the strong FSI
effectively extends the size of the region from which the particles are allowed for correlations. If
we unite two cases where the radius of homogeneity is smallRhomo≤ 4 fm and largeRhomo≥ 7 fm
(hence, it is comparable with the size of the fireball) then we come to the conclusion that the radius
which is extracted from the correlation function is approximately the radius of the fireball.

It is interesting to point out that for the sources of the sizeR0 ≈ 3 fm correction of the cor-
relation function just by the Gamov factor effectively gives a right correction, literally it becomes

7
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Figure 2: The same as in Fig. 1, but forR0 = 4.5 fm.
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Figure 3: The same as in Fig. 1, but forR0 = 7.1 fm.

equal to the account of a finite size of the source exploiting potentialVe f f(r) which includes strong
FSI. It means, that if one starts from the Gamov factor correction then account for finite size of the
source softens Gamov’s correction. If we include strong interaction (in addition to Coulomb one)
then for the source of the small size account for finite size of the source makes correction more
hard (in comparison to Gamov factor correction). But in the intermediate point, which isR0≈ 3 fm
these two deviations from the Gamov corrections cancel one another

3. Summary and conclusions

We examined pion-pion final state interaction when the two-particle potential energy is not just

8



P
o
S
(
C
F
R
N
C
2
0
0
6
)
0
2
5

FINAL STATE DISTORTIONS D. Anchishkin

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50

C
(q

)

|q| (MeV/c)

R0 = 10 fm

VCoul

VCoul + Vstr

Corrected by the Gamov factor

Figure 4: The same as in Fig. 1, but forR0 = 10 fm.

the Coulomb one. Distortion of the Coulomb potential is taken in the additive form, what is due to
account for particle-particle strong interaction. To make our investigation transparent as much as
possible we take:
a) for the description of the fireball (particle emitting source), the Wigner source functionS(x,K) in
the Gaussian form; b) small relative momentum approximation what results in equlity of two parti-
cle velocities and pair c.m.s. velocity, then expression for the two-particle probability is sufficiently
simplified, see Eq. (2.7).

We argue that for inclusive two-particle spectrum one should explicitly account for strong in-
teraction of two registered particles because their mutual last rescattering essentially determines
dynamics of their post-freeze-out relative motion. Strong two-particle potential was chosen as
screened Yukawa potential and reflects short-core repulsion of pions. Then the wave function de-
scribing the relative motion of pions was founded as numerical solution of the Schrödinger equation
where potential is taken as sum of the Coulomb and Yukawa potentials. We obtained that corre-
lation function is sensitive to the presence of short range two-particle interaction when emission
volume is of the radiusR0≤ 4 fm, see Figs. 1 and 2. Indeed, two strongly interacting pions emitted
from the separate distance (separation of the centers of the wave packets), which is comparable
to the pion "mean radius"〈rπ〉 ≈ 0.66 fm, obtain a mutual repulsive kick which is then reflected
as decreasing of the two-particle probability to find particles with "initial production" relative mo-
mentum, i.e. the "strong kick" shifts along x-axis this particular probability value to higher values
of the relative momentum. Consequently, this will result in suppression of the correlation function
what is most noticeable for small relative momentum. (Obviously, the effect which is due to the
strong repulsion is additional to that one which is caused by the Coulomb repulsion.)

On the other hand the presence of strong particle-particle repulsion almost unnoticeable in
the correlation function when one considers the sources of big size,R0 ≥ 7 fm, see Figs. 3 and
4. This just confirms that the hard core repulsion of the registered particles appreciably influences
the correlation function when the particles are emitted from the region of a small size. If the

9
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region of homogeneity is also smallRhomo≤ 4 fm then the correlations originated by pions emitted
from this region are suppressed. This suppression can be of the same strength as suppression of
the correlations of pions emitted from the domains which are beyond the radius of homogeneity
(the latter suppression is due to collective motion of expanding system) what results in uniform
suppression of correlations of two pions emitted from Then, the radiusR0 which is measured by
the correlation function can be larger than the size of homogeneity region and tends to cover the
overall size of the fireball. In the opposite case, when the size of the region of homogeneity is
largerRhomo≥ 7 fm, the correlation function is not influenced practically by the strong interaction
of two registered pions. Hence, the radiusR0 which is extracted from the correlation function in
this case is aboutRhomo andR0 really reflects the size of homogeneity volume.

Summarizing all above we can say:
The strong final state interactions can be neglected when the volume of spatial homogeneity in the
fireball are of the sizeRhomo≥ 7 fm. Then, the radiusR0 which is extracted from the pion-pion
correlation function measures the size of the regions of homogeneity in the emitting source and
coincide withRhomo. When the radius of homogeneity volume is smallRhomo≤ 4 fm the strong
final state interactions are noticeable and their presence is reflected in the correlation function in
the way that radiusR0 (extracted from the correlation function) is larger thanRhomoand tends to be
the overall fireball radius.
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