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1. Introduction

Several aspects of spacetime physics in string theory have been made accessible due to the de-
velopment of world-sheet methods. In particular, the significant progress of algebraic techniques in
rational conformal field theory (RCFT) has been crucial in the advancement of knowledge in string
compactification and string phenomenology. Viceversa, motivated by the need to understand non-
trivial string backgrounds, many powerful results have been obtained in RCFT, with applications
in other areas of physics as well, mainly to statistical systems at criticality.

Strings propagating in compact target spaces have discretespectra. This feature simplifies
the analysis of the underlying world-sheet models and allows to solve the theory using algebraic
tools. More recent developments of string theory, such as the AdS/CFT correspondence, little string
theory, cosmological and time dependent processes, however, require to consider non-compact
backgrounds which lead to continuous spectra. In this case,the algebraic methods of RCFT have
to be replaced by more intricate analytic techniques. In this lecture I will discuss some recent
advancements beyond the rational cases which allow a description of closed strings moving in non-
compact target spaces. Unlike compact backgrounds, where many model independent results have
been obtained, the studies of non-compact target spaces arerestricted so far mainly to two models:
Liouville theory and theSL(2,R) WZW model. They both have very important applications to
gravity and black hole physics in two and three dimensions. The first one describes strings moving
in an exponential potential with a non-constant dilaton andthe second one represents strings in
three dimensionalAdSspacetime (AdS3). These examples are the non-rational analogues of the
minimal andSU(2) WZW models, which have been crucial for the development of RCFT and its
applications to string theory.

The first part of this short review is based on the complete andcomprehensive lecture notes
by V. Schomerus [1] on general aspects of non-rational CFT and non-compact string backgrounds,
and the second part summarizes results obtained in references [2]− [6] for the SL(2,R) WZW
model.

2. String propagation in background fields

The world-sheet of strings propagating in any target space with background metricG is de-
scribed by the following non-linear sigma model action

S[X] =
1

4πα ′

∫

Σ
d2z Gµν∂Xµ ∂̄Xν + · · · (2.1)

whereXµ(z, z̄) areD−dimensional spacetime coordinates,µ ,ν = 0, · · · ,D−1, Σ denotes the com-
pact topology of the world-sheet and the dots stand for othernon-trivial background fields that can
appear, such as dilaton, antisymmetric tensor or gauge fields.

String interactions are described by correlation functions in the theory (1) and they may be
computed, at least in principle, using Feynman path integrals. The remarkable success of two
dimensional RCFT, however, was mainly based on a different approach that systematically exploits
the representation theory of certain infinite dimensional symmetries, known as chiral algebras.
Strings moving in flat space already exhibit such symmetry algebra. In this case, the equations
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of motion for the fieldsXµ are the wave equations∂ ∂̄Xµ = 0, which imply the existence of a
holomorphic currentJµ(z) = ∂Xµ = ∑n αµ

n z−n−1 − and similarly an antiholomorphic̄Jµ(z̄). The
canonical commutation relations for the bosonic fieldsXµ , determine the simplest example of
infinite dimensional chiral algebra, namely

[αµ
m,αν

n ] = mδm+nη µν . (2.2)

When non-trivial background fields are turned on, more general algebras appear, and the string
scattering amplitudes are built from their representationtheoretic data along with structure con-
stants of the various operator product expansions.

Constructing the representation theoretic data is essentially a mathematical problem, which
is the same for all models that possess the same chiral symmetry. The most important notions in
the representation theory of chiral algebras include the set of representations, modular transforma-
tions, fusion of representations and the fusing matrix. Thefields in the theory can be considered as
operators on the state space of the modelH , which admits a decomposition into irreducible repre-
sentations of the two commuting chiral algebras,H = ⊕i,īVi ⊗ V̄ī. For non-compact backgrounds
the momenta are typically continuous and the sums have to be replaced by integrals. Particularly
important are the fields associated with ground states ofH . We shall denote them byΦiī and call
them primary fields. All other fields in the theory can be obtained multiplying the primary fields
with chiral fields and their derivatives.

The additional necessary data to characterize a string background are encoded in the short
distance singularities of correlation functions

Φiī(z1, z̄1) Φ j j̄(z2, z̄2) = ∑
n,n̄

Cnn̄
iī, j j̄ z

hn−hi−hj

12 z̄
h̄n−h̄i−h̄j

12 Φn,n̄(z2, z̄2)+ · · · , (2.3)

where the numbersCn,n̄
iī, j j̄ describe the scattering amplitude for three closed string modes. These

triple couplings are determined from associativity of the OPE and crossing symmetry of the four
point functions. They encode the full information about theclosed string background since all
higher scattering diagrams can be cut into such 3-point vertices.

Furthermore one can introduce the characters of the representations, and the full set of charac-
ters have the remarkable property to close under modular transformations.

RCFT have been systematically understood in the terms described above. Many classification
problems have been solved (of which the classification of minimal models andSU(2) modular in-
variant partition functions are simple examples) and the algebraic structure that underlies them has
been uncovered: their highest weight representations, characters, fusion rules, structure constants,
etc., are known. For non-unitary RCFT our understanding hasadvanced less, but partial results
have been obtained. In particular, in all these theories a lot is known about the relation between
the modular data and the fusion of representations as encoded in the OPE. An important relation is
given by the Verlinde formula, which encodes the fact that the modular S-matrix diagonalizes the
fusion matrix.

The presence of singular vectors in the Verma modules of the primary states is a relevant
ingredient in the resolution of this program, since the requirement of null vector decoupling leads
to differential equations for correlation functions, which allow to completely solve the theory in
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the simplest cases of the minimal [7] and theSU(2) WZW models [8]. Alternatively, the Coulomb
gas construction developed by Feigin and Fuchs [9] and by Dotsenko and Fateev [10] gives a
more practical prescription to compute expectation valuesand, here again, the singular vectors
provide the formal mathematical basis for the background charge formalism [11, 12]. This method
has successfully reproduced the fusion rules and expectation values of physical states in several
rational theories. It has also allowed to explicitly construct and analyze various compact string
backgrounds, such as the Gepner models.

Nowadays the possibility of extending the systematic understanding gained in RCFT to non-
RCFT in order to describe non-compact string backgrounds isunder active investigation. In the
following sections I will discuss which of the algebraic structures discovered in RCFT can be ex-
tended to one particular non-rational example, theSL(2,R) WZW model describing strings propa-
gating in a three dimensionalAdSbackground. Ultimately one would certainly like to understand
strings moving inAdS5. But unfortunately, this goes far beyond the present technology, mainly
because consistency of theAdS5 background requires to turn on a RR 5-form field. The situation
is somewhat better inAdS3, where consistency may be achieved by switching on a NS-NS 3-form
field strengthH.

3. SL(2,R) WZW model and string theory on AdS3

A specially interesting application of theSL(2,R) WZW model is the description of strings
propagating in AdS3. The AdS/CFT correspondence provided new insights into this theory, initially
considered in this context using worldsheet techniques in the free field approximation [13]. The
construction of the exact theory was started in [14] and continued in a series of seminal papers
in [15] − [17]. However, despite the important progress achieved in recent years, the theory has
not been completely solved yet, mainly because AdS3 is non-compact and the worldsheet CFT is
non-rational. In particular, unitarity has not been provenyet in all the sectors of the theory.

Let us start by reviewing the non-linear sigma model action which describes this theory. The
metric of EuclideanAdS3, the hyperbolic spaceH+

3 , can be written inPoincarécoordinates as

ds2 = l2(dφ2 +e2φ dγdγ̄) , (3.1)

whereφ ∈ R, {γ , γ̄} are complex coordinates parametrizing the boundary ofH+
3 , which is located

at φ → ∞, and the parameterl is related to the scalar curvature asR = −2/l2. Consistent string
propagation in this background metric requires in additionan antisymmetric rank two tensor back-
ground fieldB = l2e2φ dγ ∧dγ̄ . The theory is described by the action

S=
k

8π

∫
d2z(∂φ∂̄ φ +e2φ ∂̄ γ∂ γ̄) , (3.2)

wherek = l2/l2
s and ls is the fundamental string length. This non-linear sigma model is equiv-

alent to a WZW model onSL(2,R) (or actually its Euclidean versionSL(2,C)/SU(2)). The
SL(2,R)−currents can be expanded in Laurent seriesJa(z) = ∑∞

n=−∞ Ja
n z−n−1, a = ±,3, and the

coefficients satisfy the following chiral symmetry algebra

[Ja
n,Jb

m] = iεab
c Jc

n+m−
k
2

ηabnδn+m,0 , (3.3)
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where the Cartan Killing metric isη+− = η−+ = 2, η33 = −1. And similarly for the antiholomor-
phic currents. The Sugawara stress-energy tensor is given by

T =
ηab

k−2
: Ja(z)Jb(z) : , (3.4)

and it leads to a Virasoro algebra with central chargec = 3k
k−2.

The classical solutions of this theory were presented in [15]. Timelike geodesics oscilate
around the center ofAdS3 whereas spacelike geodesics representing tachyons travelfrom one side
of the boundary to the opposite. Solutions describing string propagation are obtained from the
dynamics of pointlike particles through the spectral flow operation. Timelike geodesics give rise to
short strings, bound states trapped in the gravitational potential ofAdS3. Conversely,long strings
arising from spacelike geodesics can reach the boundary ofAdS3. The spectral flow parameterw is
an integer namedwinding number. Different values ofw correspond to distinct solutions, even at
the classical level (as exhibited, for instance, by the energy spectrum).

At the quantum level, the building blocks of the Hilbert space H are unitary hermitic repre-
sentations ofSL(2,R). The states| j,m> satisfy

C0| j,m>= j( j −1)| j,m> , J3
0| j,m>= m| j,m>, J±0 | j,m〉 = (m∓ j)| j,m±1〉, (3.5)

with {m∈ R, j ∈ R} ∨ {m∈ R, j ∈ −1
2 + iR} as required by hermiticity, andJa

n| j,m〉 = 0, n > 0.

The allowed representations are:
• Discrete lowest and highest weight representations

D
±
j = {| j,m〉; j ∈ R; m= ± j,± j ±1,± j ±2, ...} (3.6)

• Principal continuous representation

C
α
j = {| j,m〉; j =

1
2

+ iλ ; λ ∈ R; m= α ,α ±1,α ±2, ...; α ∈ R} (3.7)

For applications to string theory one considers the universal cover ofSL(2,R), where j is
not quantized. Notice that the vectors inH related by j ↔ 1− j represent the same physical
state and thereforej can be restricted toj ≥ 1

2. The complete basis ofL 2(AdS3) is given by
C α

j=−1/2+iλ ×C α
j=−1/2+iλ andD

±
j ×D

±
j with j > 1/2.

The representation space can be enlarged by acting on the primary states in these series with
Ja

n, n < 0. The corresponding representations are denoted byD̂
±
j , Ĉ α

j . They are called positive
energy representations since theirL0 eigenvalues are bounded below. The weight diagram ofD̂

+
j

is shown in Figure 1.
Furthermore the full representation space contains the spectral flow images of these series,

which correspond to winding classical strings. Actually the spectral flow operation leads to the
following automorphism of theSL(2,R) currents and Virasoro generators

J3
n → J̃3

n = J3
n −

k
2

wδn,0 , J±n → J̃±n = J±n±w, Ln → L̃n = Ln +wJ3
n −

k
4

w2δn,0 , (3.8)

with w∈ Z.
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J0
3

L 0

J  = j3
0

j(j-1)
k-2-L =0

Figure 1: Weight diagram of the representation̂D
+
j , whose the primary states form a discrete lowest weight

representationD+
j .

-j-k/4k-2
j(j-1)

~

L  =-0

J3
0

L0L0

J
~

0
3

J  =j+k/23
0

~

~

~
~

Figure 2: The spectral flow of Figure 1 withw = 1

Unlike the compactSU(2) case, the new operators generate inequivalent representations of
SL(2,R) which are not bounded below. For instance, one unit spectralflow of the lowest weight
representation gives the weight diagram ofD̂

+,w=1
j shown in Figure 2.

The only case one gets a positive energy representation by the spectral flow isD̂±,w=∓1
j . Notice

that the representationŝD±,w=∓1
j̃

andD̂
∓,w=0
k
2− j̃

are equivalent. This has an important consequence

on the values allowed forj. Indeed,j is restricted as required by the no-ghost theorem [15] to

1
2

< j <
k−1

2
. (3.9)

Finally, the complete Hilbert space of string theory onAdS3 is obtained by applying creation

6
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operatorsJ̃a
n,n < 0 on the primary states. The physical state conditions are

(L0−1)| j̃,m̃,w, Ñ,h〉 =

(
−

j̃( j̃ −1)

k−2
−wm̃−

k
4

w2 + Ñ+h−1

)
| j̃,m̃,w, Ñ,h〉 = 0 ,

Ln| j̃,m̃,w, Ñ,h〉 =
(

L̃n−wJ̃3
n

)
| j̃,m̃,w, Ñ,h〉 = 0 for n > 0 , (3.10)

whereÑ is the excitation level andh is the conformal weight of the state in the internal theory1.
The primary states in the sectorw = 0 can be represented by an operatorΦ j(x, x̄;w,w̄) which

satisfies the following OPE with the currents

Ja(z)Φ j (x, x̄;w,w̄) ∼
Da

z−w
Φ j(x, x̄;w,w̄) , (a = 3,±) ,

where the differential operatorsD+ = ∂
∂x, D3 = x ∂

∂x + j, D− = x2 ∂
∂x + 2 jx, give a representation

of the Lie algebra ofSL(2). Herex, x̄ keep track of theSL(2) weights of the fields and they are
interpreted as the coordinates of the boundary in the AdS/CFT context.

Alternatively one can write operators in thembasis through the following transformation from
thex basis

Φ j;m,m̄ =
∫

d2x
|x|2

x j−mx̄ j−m̄Φ j(x, x̄) , (3.11)

wherem− m̄ is an integer.
The spectral flowed states in the sectorw = 1 are constructed by the fusion ofΦ j with the

spectral flow operatorΦ k
2

through the following operation [17]

Φw=1, j
J,J̄

(x, x̄;z, z̄) ≡ lim
ε ,ε̄→0

εmε̄m̄
∫

d2y yj−m−1ȳ j−m̄−1

× Φ j(x+y, x̄+ ȳ;z+ ε , z̄+ ε̄)Φ k
2
(x, x̄;z, z̄) , (3.12)

whereJ = m+ k
2, J̄ = m̄+ k

2, denote the left and right spins of thew = 1 field. In thex basis, the
winding numberw turns out to be always positive, unlike in them basis where the sign ofw is
correlated with the sign ofm, thus distinguishing by convention incoming from outgoingspectral
flowed states in the correlation functions.

Vertex operators for string states in higher winding sectors can be easily obtained in them
basis where they are expressed in terms ofSL(2) parafermions and one free boson [15]. However,
as the winding number increases, they become more complicated in thex basis.

4. Correlation functions in SL(2,R) WZW models

The correlation functions in WZW models obey linear differential equations which follow
from the Sugawara construction of the energy-momentum tensor T(z). The Knizhnik-Zamolodchikov
(KZ) equation inSL(2,R), obtained from

〈T(z)Φ j1(z1,x1) · · ·Φ jN(zN,xN)〉 →
(
(k−2)L1 +Ja

−1J
a
0)
)
〈Φ j1(z1,x1) · · ·Φ jN(zn,xN)〉 = 0 ,

(4.1)

1We have been considering string theory onAdS3, but more generally we could take a backgroundAdS3×N , with
N a compact internal manifold.
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determines the following equation forAN ≡ 〈Φ j1(x1,z1)Φ j2(x2,z2) · · ·Φ jN(xN,zN)〉, an N point
function of primaryw = 0 fields,

(k−2)
∂AN

∂zi
=

N

∑
n=1, n6=i

1
zi −zn

[
(xn−xi)

2 ∂ 2

∂xi∂xn
+

+ 2(xn−xi)

(
jn

∂
∂xi

− j i
∂

∂xn

)
−2 j i jn

]
AN . (4.2)

In addition, ifAN involves a spectral flow operator, sayΦ k
2
(x2,z2), then it must also obey the

following null vector equation

0 =
N

∑
n=1, n6=2

xn−x2

z2−zn

[
(xn−x2)

∂
∂xn

+2 jn

]
AN , (4.3)

sinceΦ k
2

has a null descendant, namelyJ−−1| j = k/2;m= k/2〉 = 0.
Furthermore, the globalSL(2) symmetry of the WZW model determines the Ward identities

to be satisfied by the correlation functions

0 =
N

∑
i=1

∂AN

∂xi
, (4.4)

0 =
N

∑
i=1

(
xi

∂
∂xi

+ j i

)
AN , (4.5)

0 =
N

∑
i=1

(
x2

i
∂

∂xi
+2 j ixi

)
AN . (4.6)

(and similarly forxi → zi replacing alsoj i → ∆i).
Solving these equations, the following amplitudes have been computed so far. Correlation

functions of two, three and four unflowed string states have been obtained in [17] performing
analytic continuation on the results for the EuclideanSL(2,C)/SU(2) WZW model obtained in
[18, 19]. Actually the Hilbert space of this coset model consists of irreducible representations of
SL(2,C) parametrized byj = 1

2 + is, s∈ R≥0. The construction of expectation values of these
primary fields in [18] is based on a generalization of the bootstrap approach to this non-RCFT. The
structure constants are derived from four point functions involving one degenerate field which sat-
isfy differential equations following from the null vectordecoupling condition. Assuming crossing
symmetry these four point functions lead to a unique solution for the structure constants of generic
primary fields. Expressions for amplitudes of unflowed states have been also written in them-basis,
performing the integral transform (3.11) from thex-basis results [20, 21].

Scattering amplitudes ofn− unflowed states in string theory onAdS3 exhibit several subtleties
for n≥ 3. On the one hand, correlation functions of discrete statesare only well defined if the sum
of the isospinsj of the external operators satisfies∑i j i < k. Moreover the four point functions do
not factorize as expected into a sum of products of three point functions with physical intermediate
states unless the quantum numbers of the external states verify j1+ j2 < k+1

2 and j3+ j4 < k+1
2 . The

interpretation of these constraints presented in [17] indicates that correlation functions violating

8
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these bounds do not represent well defined computations in the dual CFT description of the theory
on the boundary. This explanation is similar to the interpretation of the upper bound on the spin
of the physical states (i.e., j < k−1

2 ) as the condition that only local operators be considered inthe
boundary CFT. However in the later case one has a clear understanding of the constraint from the
representations ofSL(2,R) which define the theory in the bulk. Similarly one would like to better
understand this unusual feature of the correlation functions from the worldsheet viewpoint.

As discussed in the previous section, spectral flowed statesare not simply related to states
in the coset model by analytic continuation. Consequently two alternative procedures to compute
correlation functions involving states inw 6= 0 sectors have been discussed in [17]. Starting from
x−basis correlators of states in thew = 0 sector which include also spectral flow operators, one
can either transform the result to them−basis and perform the spectral flow operation, or one can
spectral flow directly in thex−basis using the definition (3.12) of one unit spectral flowed states.
The following correlation functions involving spectral flowed operators have been computed so far.
The two point function of states in arbitrary winding sectors was obtained in reference [17] (see
also [4] for a derivation in them basis using the free field approach) and it is the following

〈Φw, j
J,J̄ (x1,z1)Φ

w, j ′

J,J̄ (x2,z2)〉 = x−2J
12 x̄−2J̄

12 z
−2∆w

j

12 z̄
−2∆̄w

j

12

×

[
δ ( j + j ′−1)+ δ ( j − j ′)

πB( j)
γ(2 j)

Γ( j +m)

Γ(1− j +m)

Γ( j − m̄)

Γ(1− j − m̄)

]
, (4.7)

where∆w
j = − j( j−1)

k−2 −mw− k
4w2 and

B( j) =
k−2

π
ν1−2 j

γ
(

2 j−1
k−2

) , ν = π
Γ
(

k−3
k−2

)

Γ
(

k−1
k−2

) , γ(x) ≡
Γ(x)

Γ(1−x)
. (4.8)

Recall that in thex basis the operators are labeled with positivew, so this two point function
conserves winding number as expected. Indeed, physical amplitudes ofn string states may violate
winding number conservation up ton−2 units. This fact is well understood from the representation
theory ofSL(2,R) [17].

The three point function including onew = 1 operator is the following [17]2

〈
Φw=1, j1

J,J̄
(x1,z1)Φ j2(x2,z2)Φ j3(x3,z3)

〉
=

= B( j1)C

(
k
2
− j1, j2, j3

)
π

1
γ( j1 + j2 + j3−k/2)

×
Γ( j1 +J− k

2)

Γ(1+J− j2− j3)
Γ( j2+ j3− J̄)

Γ(1− j1− J̄+ k
2)

×
(

x j3− j2−J
21 x j2− j3−J

31 xJ− j2− j3
32

)(
z

∆3−∆2−∆w=1
1

21 z
∆2−∆3−∆w=1

1
31 z

∆w=1
1 −∆2−∆3

32

)

× (antiholomorphic part) , (4.9)

2Actually this expression differs from the one in [17] by an irrelevant factor(−1)J−J̄, as it can be verified using the
propertyJ− J̄ ∈ Z together with the identityΓ(x)Γ(1−x) = π

sin(πx) .

9



P
o
S
(
I
C
2
0
0
6
)
0
0
4

String propagation in non-compact backgrounds Carmen A. Núñez

whereJ = m+ k/2, ∆w=1
1 = ∆1 − J + k

4 andC( j1, j2, j3) is the coefficient corresponding to the
amplitude of threew = 0 fields, namely

C( j1, j2, j3) = −
G(1− j1− j2− j3)G( j3− j1− j2)G( j2− j3− j1)G( j1− j2− j3)

2π2ν j1+ j2+ j3−1γ
(

k−1
k−2

)
G(−1)G(1−2 j1)G(1−2 j2)G(1−2 j3)

, (4.10)

where

G( j) = (k−2)
j(k−1− j)
2(k−2) Γ2(− j | 1,k−2)Γ2(k−1+ j | 1,k−2) ,

andΓ2(x|1,ω) is the Barnes double Gamma function which reads

log(Γ2(x | 1,ω)) = lim
ε→0

∂
∂ε

[
∞

∑
n,m=0

(x+n+mω)−ε −
∞

∑
n,m=0 ; (n,m) 6=(0,0)

(n+mω)−ε

]
.

The winding non-conserving three point function (4.9) was obtained in [17] by first computing
a four point function including one spectral flow operatorΦ k

2
. Such calculation is performed by

explicitly solving the corresponding KZ and null vector equations. The four point function gives
rise to (4.9) after spectral flowing as in the definition (3.12) or alternatively, after transforming to
thembasis, extracting the pole residue atm= − k

2 and acting with the spectral flow operator on the
unflowed fieldΦ j1.

The three point function involving twow = 1 fields was computed in [2]. The starting point is
the five point function with two spectral flow operators, namely

A5 ≡ 〈Φ k
2
(x1,z1)Φ k

2
(x2,z2)Φ j1(x3,z3)Φ j2(x4,z4)Φ j3(x5,z5)〉 . (4.11)

Thexi dependence of the solution to the null vector equations was found in [22] (see also [17]). The
complete solution, including the dependence on the worldsheet coordinateszi , which is determined
from the Ward identities and the KZ equations, is the following [2]

A5 = B( j1)B( j3)C

(
k
2
− j1, j2,

k
2
− j3

)
|z12|

k|z13|
−2 j1|z14|

−2 j2|z15|
−2 j3

×|z23|
−2 j1|z24|

−2 j2|z25|
−2 j3|z34|

2(∆3−∆1−∆2)|z35|
2(∆2−∆1−∆3)|z45|

2(∆1−∆2−∆3)

×|x12|
2( j1+ j2+ j3−k)|µ1|

2( j1− j2− j3)|µ2|
2( j2− j1− j3)|µ3|

2( j3− j1− j2) , (4.12)

with

µ1 =
x14x25

z14z25
−

x15x24

z15z24
,

µ2 =
x15x23

z15z23
−

x13x25

z13z25
,

µ3 =
x13x24

z13z24
−

x14x23

z14z23
. (4.13)

As an intermediate step before computing the three point function, one can spectral flow once
to obtain the following four point function

Aw=1
4 = 〈Φw=1, j1

J1,J̄1
(x1,z1)Φ k

2
(x2,z2)Φ j2(x4,z4)Φ j3(x5,z5)〉

10
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= 2iπ(−1)m1+m̄1B( j1)B( j3)C

(
k
2
− j1, j2,

k
2
− j3

)
γ( j2− j1− j3+1)

×
Γ( j1−J1 + k

2)Γ( j3− j2 + J̄1−
k
2)

Γ(1− j1+ J̄1−
k
2)Γ( j2− j3−J1+ k

2 +1)

×

[
2F1( j1 + j2− j3, j1−J1+

k
2
, j2− j3−J1+

k
2

+1;u)

× 2F1( j1 + j2− j3, j1− J̄1+
k
2
, j2− j3− J̄1 +

k
2

+1;ū)

+λu j3+J1− j2− k
2 ū j3+J̄1− j2− k

2 2F1( j1 + j3− j2, j1 +J1−
k
2
, j3 +J1− j2−

k
2

+1;u)

× 2F1( j1 + j3− j2, j1 + J̄1−
k
2
, j3 + J̄1− j2−

k
2

+1;ū)

]

× x
j2+ j3−J1−

k
2

12 x̄
j2+ j3−J̄1−

k
2

12 |x14|
−4 j2x

j2− j3−J1+
k
2

15 x̄
j2− j3−J̄1+

k
2

15

× x
J1−

k
2− j2− j3

25 x̄
J̄1−

k
2− j2− j3

25 z
∆3−∆w

1−∆2−∆k/2

14 z̄
∆3−∆̄w

1−∆2−∆k/2

14 z
∆2−∆w

1−∆3+∆k/2

15

× z̄
∆2−∆̄w

1−∆3+∆k/2

15 z
∆k/2+∆w

1−∆3−∆2

45 z̄
∆k/2+∆̄w

1−∆3−∆2

45 |z25|
k

× zJ1 z̄J̄1|1−u|2( j1− j2− j3)|1−z|−2 j2 . (4.14)

Herex = x12x45
x14x25

,z= z12z45
z14z25

, u = 1−x
1−z and

λ =
γ( j1 + j3− j2)Γ( j2− j3−J1+ k

2 +1)Γ( j1 + J̄1−
k
2)

γ( j1 + j2− j3)Γ( j3 + J̄1− j2− k
2 +1)Γ( j3 + J̄1− j2− k

2)

×
Γ(J̄1−

k
2 − j1+1)Γ( j2− j3−J1 + k

2)

Γ( j1−J1 + k
2)Γ(− j1−J1+ k

2 +1)
. (4.15)

This is not a physical correlator, since the spectral flow operator is outside the unitarity bound.
However, this auxiliary result is useful for the computation of four point functions involving one
spectral flowed and three unflowed generic states that we perform below.

Now, the three point function can be obtained either spectral flowing once more from this four
point function or fusing two physical fields in the five point function (4.12), sayΦ j1(x3,z3) and
Φ j2(x4,z4), with the spectral flow operators through the prescription(3.12). The final result is

〈
Φw=1, j1

J1,J̄1
(x1,z1)Φw=1, j2

J2,J̄2
(x2,z2)Φ j3(x3,z3)

〉
= B( j1)B( j2)C

(
k
2
− j1,

k
2
− j2, j3

)

×
Γ( j3−J1+J2)Γ( j3 + J̄1− J̄2)Γ(2− j1− j2− j3)2

Γ(1− j3−J1 +J2)Γ(1− j3 + J̄1− J̄2)
W( j1, j2, j3,J1,J2, J̄1, J̄2)

× x j3−J1−J2
12 x̄ j3−J̄1−J̄2

12 x(J2−J1− j3)
13 x̄J̄2−J̄1− j3

13 xJ1−J2− j3
23 x̄J̄1−J̄2− j3

23

× z
∆3−∆w=1

1 −∆w=1
2

12 z̄
∆3−∆̄w=1

1 −∆̄w=1
2

12 z
∆w=1

2 −∆w=1
1 −∆3

13 z̄
∆̄w=1

2 −∆̄w=1
1 −∆3

13

× z
∆w=1

1 −∆w=1
2 −∆3

23 z̄
∆̄w=1

1 −∆̄w=1
2 −∆3

23 , (4.16)

where

W( j i ,Ji , J̄i) = s( j2− j1− j3)G

[
j2+J2−

k
2, j2− j1− j3 +1,1− j3+J2−J1

j2− j1+J2−J1+1,2− j1− j3+J2−
k
2

]

11
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×

{
s( j1− j2− j3)G

[
j1− j2− j3+1, j1 + J̄1−

k
2,1− j3+ J̄1− J̄2

2− j2− j3+ J̄1−
k
2, j1− j2+ J̄1− J̄2 +1

]

− s(1−2 j2)G

[
j2− J̄2+ k

2, j2− j1− j3+1,1− j3+ J̄1− J̄2

j2− j1 + J̄1− J̄2+1,2− j1− j3− J̄2+ k
2

]}

+ s( j1− j2− j3)G

[
j1− j2− j3+1, j1−J1+ k

2,1− j3−J1+J2

2− j2− j3−J1+ k
2,1+ j1− j2+J2−J1

]

×

{
−s(1−2 j1)G

[
j1− j2− j3+1, j1 + J̄1−

k
2,1− j3+ J̄1− J̄2

2− j2− j3+ J̄1−
k
2, j1− j2+ J̄1− J̄2 +1

]

+ s( j2− j1− j3)G

[
j2− J̄2 + k

2, j2− j1− j3 +1,1− j3+ J̄1− J̄2

j2− j1+ J̄1− J̄2+1,2− j1− j3− J̄2 + k
2

]}
,

(4.17)

with G

[
a,b,c
e, f

]
≡ Γ(a)Γ(b)Γ(c)

Γ(e)Γ( f ) 3F2(a,b,c;e, f ;1) ands(a) = sin(πa).

Let us analyze the properties of this result. The functionW( j i ,Ji , J̄i) is analytic in its arguments
for states belonging to the continuous representation or their spectral flow images. Therefore the
three point function (4.16) is perfectly well behaved and finite for normalizable operators with
j = 1

2 + is, as expected. If one of the original unflowed states, sayΦ j1, belongs to a lowest weight
representation,i.e.,m1 = j1 + n1,m1 = j1 + n1 with n1, n̄1 = 0,1,2· · ·, then it can be shown that
W( j i ,Ji , J̄i) greatly simplifies, and taking furthern1, n̄1 = 0 the hypergeometric functions become
unity. The analysis ofW( j i,Ji , J̄i) completely agrees with that of reference [21] (taking into account
the change in notation). However notice that we are dealing with a winding conserving three point
function which includes two one unit spectral flowed states whereas [21] considers unflowed states.
Moreover (4.16) is anx basis correlator unlike thembasis expression analyzed in [21].

The three point function (4.16) has various poles which comefrom the poles inC5, in the
Γ−functions and in the unrenormalized hypergeometric functions. C5 has the same poles as the
unflowed three point function, namely at

j = n+m(k−2), −(n+1)− (m+1)(k−2), n,m= 0,1,2, · · · , (4.18)

with
j = 1− j1− j2− j3, j1− j2− j3, j2− j3− j1, j3− j2− j1 . (4.19)

TheΓ−functions add the following poles

J1 = J2 + j3+n, J2 = J1 + j3+n , (4.20)

and similar ones for̄J1, J̄2. The poles ofG

[
a,b,c
e, f

]
are ata,b,c,u =−n, with u= e+ f −a−b−c,

and thus they are all contained in the previous ones except for the poles signaling the presence of
spectral flowed images of the discrete representations,e.g. m1 = j1 + n1,m1 = j1 + n1. Therefore
the pole structure is as discussed in reference [17] in the unflowed case with the addition of (4.20),
which are analogous to poles in theSmatrix of string theory in Minkowski space.

12
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The computation of more complicated correlation functionsalong the lines discussed above
would require to start from higher point amplitudes. Actually the cases following in complexity,
namely the three point function including three one-unit spectral flowed operators or the four point
function involving onew = 1 field require the knowledge of the six point function with three
spectral flow operators and three physical states or the five point function with oneΦ k

2
and four

generic unflowed fields respectively. Therefore, it seems important to find an alternative method
to compute such more complicated amplitudes. In the following sections we explore two possible
paths, namely general properties of correlation functionscontainingw= 1 spectral flowed operators
in thex basis and we discuss the free field approximation, a convenient way to compute correlation
functions which, so far, seems to reproduce the known exact results.

4.1 Ward identities, modified KZ and null vector equations

The form of the Ward identities for correlation functions involving one unit spectral flowed
fields was investigated in [2]. Using the definition (3.12) for thew= 1 field, it was shown that they
maintain the standard form (4.6) with the obvious replacements for the spin and conformal weight
of the fieldΦw=1, j

J,J̄ , i.e. j i → Ji = mi +
k
2 and∆i → ∆i −Ji +

k
4. The analysis can be generalized to

correlation functions including an arbitrary number ofw = 1 states. From here, the general form
of the two and three point functions containingw = 1 fields is completely determined, whereas the
four point functions depend, as usual, on the anharmonic ratios.

The KZ and null vector equations for correlators includingw = 1 fields, instead, suffer an
important modification. They become iterative expressionsin the spin and conformal dimension of
the spectral flowed states. Indeed, the modified KZ equation turns out to be

(k−2)
∂Aw

N(J)

∂zi
= −

(
j1−J+

k
2
−1

)
x2−xi

(zi −z2)2

[
(x2−xi)

∂
∂xi

−2 j i

]
Aw

N(J+1)

+
1

zi −z2

[
(x2−xi)

2 ∂ 2

∂xi∂x2
+

+ 2(x2−xi)

(
J

∂
∂xi

− j i
∂

∂x2

)
−2 j iJ

]
Aw

N(J)

+
N+1

∑
n=3, n6=i

1
zi −zn

[
(xn−xi)

2 ∂ 2

∂xi∂xn
+

+ 2(xn−xi)

(
jn

∂
∂xi

− j i
∂

∂xn

)
−2 j i jn

]
Aw

N(J) , (4.21)

for Aw
N ≡ 〈Φw=1, j1

m+ k
2 ,m̄+ k

2
(x2,z2)Φ j3(x3,z3) · · ·Φ jN(xN,zN)〉. The notationAw

N(J+1) indicates that one

must replaceJ −→ J+1 in Aw
N. Thus, Eq.(4.21) differs from the standard KZ equation for correla-

tors of unflowed fields. In fact, it is aniterativerelation in the spin of the spectral flowed field. This
feature is not surprising, since it is inherited from the following primary state condition for states
in thew = 1 sector

J(x′,z′)Φw=1, j
J,J̄ (x,z) = −( j −m−1)

(x−x′)2

(z′−z)2 Φw=1, j
J+1,J̄ (x,z)

13
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+
1

z′−z

[
(x−x′)2 ∂

∂x
+2

(
m+

k
2

)
(x−x′)

]
Φw=1, j

J,J̄ (x,z) , (4.22)

whereJ(x,z) = −J−(z)+2xJ3(z)−x2J+(z).

Following a similar procedure with the null vector equation(4.3), one obtains an additional
iterative equation, namely

(
j1 +J−

k
2
−1

)
Aw

N(J−1) =
N+1

∑
n=3

xn−x2

z2−zn

[
(xn−x2)

∂
∂xn

+2 jn

]
Aw

N(J) , (4.23)

which is understood as the modified null vector equation to besatisfied by correlators containing
onew = 1 field. It supplements (4.21), so that both equations must besolved in order to find the
explicit expression forAw

N. These results extend to correlators including any number of w= 1 fields,
where the spins of all the spectral flowed fields turn out to be iterative variables.

4.2 Four point function including one w = 1 field

The modified KZ and null vector equations were explicitly solved in [2] for the four point
function involving onew = 1 field, namely

Aw
4 =

〈
Φ j1(x1,z1)Φ j2(x2,z2)Φw=1, j3

J,J̄ (x3,z3)Φ j4(x4,z4)
〉

. (4.24)

From the arguments above, one expects thatAw
4 had the same functional form as an unflowed

four point function, but with the spin and conformal dimension of thew = 1 field given byJ =

m+ k
2, ∆w=1

3 = ∆3−J+ k
4, respectively. Thus, we consider the following expressionfor Aw

4

Aw
4 =

∫
d j B( j3)C( j1, j2, j) B( j)−1C

(
j,

k
2
− j3, j4

)

× D1( j1, j2, j3,J, j4, j) D2( j1, j2, j3, J̄, j4, j) F (z,x) F̄ (z̄, x̄)

×
(

x j1+ j2− j4−J
43 x−2 j2

42 xJ+ j2− j4− j1
41 x j4− j1− j2−J

31

)

×
(

z
∆1+∆2−∆4−∆w=1

3
43 z−2∆2

42 z
∆w=1

3 +∆2−∆4−∆1

41 z
∆4−∆1−∆2−∆w=1

3
31

)

× (antiholomorphic part) , (4.25)

where the dependence in the coefficientsB andC is inherited from the five point function involving
one spectral flow operator,D1 andD2 are the parts of the coefficient of the four point function de-
pending respectively on the right and left spins of the string states, whereasF andF̄ are functions
of the cross ratiosz= z21z43

z31z42
, x = x21x43

x31x42
.

Now plugging (4.25) into the modified KZ and null vector equations, one finds iterative expres-
sions which can be solved following a similar route to that inthe unflowed case [17, 19]. Namely,
expandF in powers ofzas follows

F (z,x) = z∆ j−∆ j1−∆ j2 x j− j1− j2
∞

∑
n=0

fn(x)z
n , (4.26)

14
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and focus on the lowest order of this expansion. Consideringfirst the KZ equation (4.21), the
following solution is found3

f0 = 2F1( j − j1 + j2, j +J− j4,2 j;x) , (4.27)

where2F1 is the standard hypergeometric function. The modified null vector equation (4.23) in
turn, allows to find iterative relations forfn in terms of fn−1 (for n≥ 1). However, the coefficients
D1,D2 cannot be determined in this way since (4.23) gives the following iterative relation

(
j3 +J−

k
2
−1

)
D1(J−1) = (J− j − j4)D1(J), (4.28)

and an analogous expression forD2. This means that the modified KZ and null vector equations do
not completely specify the spin dependence of the four pointfunction. This is not surprising since
a similar situation is found in the unflowed case. Nevertheless, we are still able to find a proper
expression for the coefficient by requiring the following two conditions: i) that it satisfies (4.28)
(and a similar expression forD2), andii ) thatAw

4 in (4.25) correctly reduces to (4.9), the three point
function involving one spectral flowed field, when one of the unflowed operators is the identity.

It can be shown that a solution toi) andii ) is given by

D1D2 ∼
1

γ
(

j1 + j2+ j3+ j4− k
2

) Γ
(

j3 +J− k
2

)

Γ(1+J− j4− j)
Γ( j4 + j − J̄)

Γ
(
1− j3− J̄+ k

2

) , (4.29)

up to ak dependent coefficient. However this solution is not unique.Such residual uncertainties
might be removed studying the factorization properties of the four point function (4.25), following
a similar path to that of section 4 in reference [17] for the unflowed case. However here the
pole structure of the four point function presents additional difficulties since there are poles in the
integral in the complexj plane crossing the integration contour even before performing the analytic
continuation and thus this analysis has not been completed.

This summarizes the already known explicit expressions forcorrelators including spectral
flowed fields. Note that, whereas the two point function is known for fields in unlimited wind-
ing sectors, the situation gets more complicated in the caseof the three point function, where only
the case involving onew = 1 and twow = 0 operators and that including twow = 1 and onew = 0
fields have been computed so far. Moreover, the four point function is only known for unflowed
states. The increasing difficulties to compute correlationfunctions including additional spectral
flowed fields are due to the fact that one has to start from amplitudes containing more spectral flow
operators.

Therefore it seems necessary to develop techniques that simplify these computations and allow
to perform others that would clarify the full structure of the model. The free field description of
the theory appears as a powerful tool in this direction, thusin the following section we discuss the
status of this approximation.

3Actually the solution is a linear combination of the functions 2F1( j − j1 + j2, j +J− j4,2 j ;x) andx1−2 j
2F1(1−

j − j1 + j2,1− j +J− j4,2−2 j ;x). However, analogously as in the unflowed case [17], we may usethe fact that, when
inserted in (4.25), the two solutions are related to each other through the symmetryj −→ 1− j which allows to keep
only the first solution provided that in (4.11) we now integrate j over the entire imaginary axis, i.e.1

2 + iR.
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5. Free field approximation

The free field approximation to string theory onAdS3 was initially applied in [13, 14] to derive
the spacetime CFT and establish the conjecturedAdS/CFT correspondence in the three dimensional
case. Even though this approach is expected to give a good picture of the theory only near the
boundary ofAdS3, the computation of two and three point amplitudes of stringstates using the
Coulomb gas formalism in [3, 4] has produced results in complete agreement with the exact ones.
Moreover, the analysis of unitarity in this approximation might give important information on the
consistency of the complete theory. For that reason, the aimof this section is to discuss the current
status of this approach.

The assumption that conformal field theories in general should admit a representation in terms
of free field operators, with some reduction in the Fock spaces of states, governed by the BRST
structure [23], is very attactive. However the extension ofthe free field representation to non-
rational models presents several complications. Actually, as stressed in [23] there are different
levels in the free field realization of a CFT. In the case ofSL(2,R), the well known Wakimoto
construction [24] successfully gives the current algebra.The representation for the primary and
screening operators was originally given in [25]. The next step would be to construct the conformal
blocks, as specified Fock-space expectation values, which results then in an integral representation
of particular analytic functions. Finally, the correlation functions are to be constructed out of the
conformal blocks, and the operator algebra of primary operators is to be derived. The theory is
then fully solved. Minimal models andSU(2) WZW CFT are prototypical examples where this
program has been completed. Actually, in the compactSU(2) case, the characters and fusion rules
were successfully reproduced in the free field approach developed by Griffin and Hernandez [26].
Expectation values ofSU(2) primary fields on the plane were computed in an alternative free field
realization in terms of minimal models in [8]. While this alternative strategy was successfully
applied toSL(2,R) by relating it to Liouville correlators [27], the standard Feigin-Fuchs formalism
failed to reproduce the spectrum and fusion rules of unitaryrepresentations inSL(2,R) [28] 4.
Moreover, contrary to extended expectations [31], the Hilbert space of physical states of string
theory on AdS3 constructed as the BRST cohomology on the Fock space of free fields in [32],
presents several differences with the spectrum proposed byMaldacena and Ooguri in [15]. This is
not surprising since there are no singular vectors in the relevant representations associated to the
physical states of string theory on AdS3 [33].

Nevertheless, the explicit computation of the partition function [34] seems to support the idea
that the spectrum can be cast in terms of free fields. Furthermore, free field methods also seem
to reproduce the exact results for correlation functions. Actually, both the functional integration
used in reference [35] and the Coulomb gas formalism implemented in reference [36] for two and
three point functions of unflowed states, give results in complete agreement with the expresions
found in [18, 19] (see [21]). Moreover, the Coulomb gas construction developed in [3] to deal with
correlation functions of spectral flowed states, was applied in [4] to compute two and three point
functions, both conserving and violating winding number, and the results also agree with the exact

4Correlation functions in theSL(2,R) WZW model have been computed in terms of free fields in references [29, 30]
for the hamiltonian reduction and fractional levels of the algebra.
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computations in [17]. So the questions about how far and why these coincidences hold seem worth
being investigated further.

6. Conclusions

There are several reasons why it is important to understand string propagation in non-compact
backgrounds. In particular, strings moving inAdS3, one of the simplest examples beyond flat space-
time, are not well understood yet. Several consistency checks have been performed to determine
consistency and unitarity of this theory, but the spectral flow sector needs to be studied further in
order to definitely settle these questions.

Furthermore, it seems to be of great significance to develop new techniques to compute cor-
relation functions in this theory, since this would not onlyultimately establish the consistency of
the model, but it could also enlighten more general questions regarding non-rational CFT. Actu-
ally, unlike RCFT, the naive free field representation ofSL(2,R) does not seem to reproduce the
spectrum obtained using algebraic methods. However, it seems possible to interprete the partition
function in terms of free field contributions and moreover, correlation functions of two and three
string states computed in the Coulomb gas formalism seem to agree with the exact results. The
resolution of this puzzle might give important clues on these matters.
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