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1. Introduction

The idea of noncommuting position and time coordinates [1] has been first introduced in the
literature in Ref. [2]. In flat space-time, this amounts to postulate that Cartesian coordinate obey
commutation relations

[xµ
,xν ] = iθ µν

, (1.1)

for some constant antisymmetric matrix θ µν = −θ νµ . Classical fields ϕ(x) thus become noncom-
muting because of the noncommutativity of x. An equivalent implementation of noncommutativity
is through the Moyal [3] product, which is associative, but noncommutative:

ϕ1(x)∗ϕ2(x) = e
i
2 θ µν ∂ x

µ ∂ y
ν (ϕ1(x)ϕ2(y))

∣

∣

∣

y=x
, (1.2)

where the coordinates are considered as commuting1. We consider a dimension (1+3) space-time
with Minkowski metric (ηµν) = diag (1,−1,−1,−1).

The field theory under consideration contains a U(1) gauge field Aµ and a scalar field λ
(Slavnov’s field), with infinitesimal gauge transformations

δAµ = ∂µε − ig[Aµ ,ε] , δλ = −ig[λ ,ε] . (1.3)

Notice the presence of commutators, [X ,Y ] = X ∗Y −Y ∗X , due to the noncommutativity of the
Moyal product.

It is well known [4, 5, 6, 1] that such gauge theories in noncommutative space-time – which
would be renormalizable in commutative space-time – suffer from infrared (IR) singularities mixed
with the usual ultraviolet (UV) divergences.

Indeed, a gauge invariant action such as2

SMaxwell = −
1
4

∫

d4x Fµν Fµν
, (1.4)

possibly coupled with matter fields, with

Fµν = ∂µAν −∂νAµ − ig[Aµ ,Aν ] , (1.5)

leads to infrared (IR) singularities associated with ultraviolet (UV) divergent Feynman diagrams.
Typically, vacuum polarization graphs have IR singular parts

Πµν
IR (k) =

2g2

π2
k̃µ k̃ν

(k̃2)2
, with k̃µ = θ µν kν , (1.6)

and graphs with this insertion, such as the one shown in Fig. 1, are IR divergent.
Only special gauge theories are known to be free from these divergences (see e.g. the re-

view [7]. Among them, let us mention Chern-Simons topological theory with particular couplings
to matter [8], BF theories [9] and some supersymmetric Yang-Mills theories [10]. These theories
are either topological [11], or supersymmetric [12]. A relevant question is to ask if nontopological
gauge theories need to be supersymmetric in order to be free of IR singularities. A partial answer
to this question is the object of the rest of this talk, which summarizes results presented in Ref. [13]

1From now on all field products will be Moyal ones, and the symbol ∗ will be ommitted.
2Remember that all products are Moyal.
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Π
ρσ

Figure 1: IR divergent graph with vacuum polarization insertion.

2. Slavnov’s modification of the noncommutative U(1) theory

Slavnov [14, 15] has proposed a modification of the theory, adding to the action the term

1
2

∫

d4x λ θ µν Fµν , (2.1)

which involves the scalar field λ as a Lagrange multiplier. This term looks like a topological BF
action. It reduces the spin 1 gauge boson degrees of freedom to that of a spin 0 particle. Such a
suppression of local degrees of freedom indeed happens in true topological theories, but there the
suppression is complete. Slavnov has shown [14, 15, 16] through a power-counting argument that
IR singularities are absent in the theory obtained by adding the term (2.1) to the Maxwell action
(1.4). We shall point out that the absence of IR singularity is in fact a consequence of the invariance
of the theory under a vector supersymmetry.

In the following we shall choose the noncommutativity tensor to be space-like, in order to
avoid problems with unitarity hence, without loss of generality, in the (1,2)–plane:

θ i j = θε i j
, i, j = 1,2 (θ 12 = −θ 21 = 1) .

We use the notation i, j, · · · = 1,2 and I,J, · · · = 0,3.
The gauge invariant action thus reads

Sinv[A,λ ] =
∫

d4x
(

−
1
4

Fµν(x)Fµν(x)+
1
2

λ (x)θ i jFi j(x)
)

(2.2)

with Fµν given by (1.5).

3. Gauge fixing and BRST symmetry

Gauge fixing will conveniently be chosen axial, in the plane of the noncommutative coor-
dinates. It is characterized by a vector (ni) = (0,1,0,0), a Lagrange multiplier field B(x) and
Faddeev-Popov ghosts c̄(x), c(x). The complete action is

S = Sinv[A,λ ]+Sgf[A,B,c, c̄] , (3.1)

with
Sgf[A,B,c, c̄] =

∫

d4x
(

B(x)niAi(x)− c̄(x)niDic(x)
)

,

and
Di = ∂ic− ig[Ai,c] .

3
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This action is invariant under the BRST transformations

sAµ = Dµc , sc̄ = B ,

sλ = −ig [λ ,c] , sB = 0 ,

sc =
ig
2

[c,c] ,

(3.2)

the BRST operator s being nilpotent: s2 = 0.

4. Vector supersymmetry, superalgebra and generalized BRST operator

We note that the Slavnov term, together with the gauge-fixing terms, have the form of a 2-
dimensional gauge fixed topological BF model, λ playing the role of the “B” field. Topological
models of this kind (“Schwarz type” topological models) are known to possess a symmetry gen-
erated by a fermionic vector charge, called vector supersymmetry (VSUSY), responsible for their
UV finiteness [17, 18, 19]. It turns out that this is true also here: the total gauge-fixed action is
invariant under the VSUSY transformations

δiAJ = 0 , δiAi = 0 , δiλ =
εi j

θ
n jc̄ ,

δic = Ai , δic̄ = 0 , δiB = ∂ic̄ .

(i = 1,2) (4.1)

In the pure topological theories, the BRST and VSUSY generators form a closed algebra together
with the translation generators. Here, in order to have a closed algebra, we must invoke an addi-
tional vector symmetry of the gauge-fixed action, peculiar to the present theory, with infinitesimal
transformations

d̂iAJ = −FiJ , d̂iλ = −
εi j

θ
θDKFK j

,

d̂iΦ = 0 for all other fields .

(i = 1,2) (4.2)

The algebra involving s, δi, d̂i and the (1-2)-plane translation generators ∂i is closed – modulo
equations of motion:

[∂i,s]Φ = [∂i,δ j]Φ = [∂i, d̂ j]Φ = 0 ,

[s,s]Φ = [s, d̂ j]Φ = 0 ,

[δi,δ j]Φ = [δi, d̂ j]Φ = 0 ,



















for all fields Φ , (4.3)

[s,δi]Φ = ∂iΦ+ d̂iΦ for Φ ∈ {AJ,c, c̄,B} ,

[s,δi]A j = ∂iA j + d̂iA j −
εi j

θ
δS
δλ

,

[s,δi]λ = ∂iλ + d̂iλ +
εi j

θ
δS
δA j

−
1

θ 2 Di
δS
δλ

,

(4.4)

4
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[d̂i, d̂ j]AJ =
εi j

θ
DJ

δS
δλ

,

[d̂i, d̂ j]λ =
εi j

θ
DJ

δS
δAJ

,

[d̂i, d̂ j]Φ = 0 for Φ ∈ {Ai,c, c̄,B} .

(4.5)

The various symmetries will be combined into a single generalized BRST operator ∆, with the
introduction of the constant ghosts ξ i

, ε i
, µ i playing the role of the infinitesimal parameters of the

symmetries ∂i, δi, d̂i. The statistics of these constant ghosts is fermionic, bosonic and fermionic,
respectively. The generalized BRST operator thus reads

∆ = s+ξ i∂i + ε iδi + µ id̂i , (4.6)

and its action on the various fields and on the constant ghosts is given by

∆Ai = Dic+ξ i∂iAi ,

∆AJ = DJc+ξ i∂iAJ + µ iFJi ,

∆λ = −ig [λ ,c]+ξ i∂iλ + ε i εi j

θ
n jc̄+ µ i εi j

θ
DKF jK

,

∆c =
ig
2

[c,c]+ξ i∂ic+ ε iAi ,

∆c̄ = B+ξ i∂ic̄ ,

∆B = ξ i∂iB+ ε i∂ic̄ ,

∆ξ i = Dµ i = −ε i
, ∆ε i = 0 .

(4.7)

∆ is nilpotent, but only on-shell:

∆2Ai = ε j εi j

θ
δS
δλ

,

∆2AJ =
µ iµ j

2
εi j

θ
DJ

δS
δλ

,

∆2λ =
µ iµ j

2
εi j

θ
DJ

δS
δAJ

+ ε i εi j

θ
δS
δA j

− ε i 1
θ 2 Di

δS
δλ

,

∆2c = ∆2c̄ = ∆2B = 0 .

(4.8)

5. Slavnov identity and ghost equations

Useful Ward identities are consequences of the Slavnov-Taylor identity describing the invari-
ance of the theory under the transformations (4.7). In order to write it, we associate an external
field Φ∗ – an “antifield” in the terminology of the authors of Ref. [20] – to the ∆-variation of each
of the fields Φ = A, λ , c, respectively. The action Stot depending on the fields and antifields must
be a solution of the Slavnov-Taylor identity [20, 21]

S (Stot) ≡
∫

d4x
(

∑
Φ∈{Aµ ,λ ,c}

δStot

δΦ∗

δStot

δΦ
+
(

B+ξ i∂ic̄
) δStot

δ c̄
+
(

ξ i∂iB+ ε i∂ic̄
) δStot

δB

)

− ε i(
∂Stot

∂ξ i +
∂Stot

∂ µ i ) = 0 .

(5.1)
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The solution reads

Stot[A,λ ,c, c̄,B ;A∗
,λ ∗

,c∗;ξ ,µ,ε] =
∫

d4x(B+ξ i∂ic̄)niAi + S̄[A,λ ,c ; Â∗i
,A∗J

,λ ∗
,c∗; ξ ,µ,ε] ,

(5.2)
where Â∗i

= A∗i −nic̄, and

S̄ =
∫

d4x

(

−
1
4

Fµν Fµν +
θ
2

λε i jFi j

+ Â∗i (
Dic+ξ i∂iAi

)

+A∗J (DJc+ξ i∂iAJ + µ iFJi
)

+ λ ∗
(

−ig[λ ,c]+ξ i∂iλ + µ i εi j

θ
DKF jK

)

+c∗
(

ig
2

[c,c]+ξ i∂ic+ ε iAi

)

+

(

µ iµ j

2
εi j

θ
(DJA∗J)+ ε i εi j

θ
Â∗ j

− ε i 1
2θ 2 (Diλ ∗)

)

λ ∗

)

.

(5.3)
Due to the axial gauge fixing, the field equations for c and c̄ take the form of local functional

equations, namely, the antighost equation:

δStot

δc
+ ig

[

c̄,
δStot

δB

]

= −ni∂ic̄+DµA∗µ − ig[λ ,λ ∗]+ ig[c,c∗]+ξ i∂ic∗ , (5.4)

and the ghost equation:

δStot

δ c̄
+ ig

[

c,
δStot

δB

]

−ξ i∂i
δStot

δB
= −ni∂ic− ε i εi j

θ
n jλ ∗

. (5.5)

Note that both right hand sides are linear in the dynamical fields. This fact expresses the well-kown
freedom of the ghost fields in axial gauges [22].

6. Ward identities of vector supersymmetry

Interesting Ward identities may be extracted from the Slavnov-Taylor identity and from the
ghost and antighost equations. E.g., a Ward identity for VSUSY is obtained by differentiating the
Slavnov-Taylor identity (5.1) with respect to the VSUSY ghost ε i. The result is

WiStot = ∆i , (6.1)

with

WiStot =
∫

d4x

(

∂ic̄
δStot

δB
+Ai

δStot

δc
+

(

εi j

θ

(

n jc̄−A∗ j
)

+
1

θ 2 Diλ ∗

)

δStot

δλ

+λ ∗ εi j

θ
δStot

δA j
+

(

c∗ +
ig
θ 2 λ ∗λ ∗

)

δStot

δA∗i

)

,

and

∆i =
∂Stot

∂ξ i +
∂Stot

∂ µ i +
∫

d4x
εi j

θ
n j (B+ξ i∂ic̄

)

λ ∗
.

We note that the breaking term ∆i vanishes at vanishing antifields.

6
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Knowing that the total action ST [Φ,Φ∗
, · · ·] is the functional generator of the vertex functions

(1-particle irreducible amputated graph contributions) in the tree graph approximation, and that the
Legendre transform

Zc[JΦ,Φ∗
, · · ·] = Stot[Φ,Φ∗

, · · ·]+∑
Φ

∫

JΦΦ , with JΦ = −
δStot

δΦ
,

yields the functional generator of the connected Green functions, we obtain Ward identities for
the connected Green functions – here in the tree approximation. The Ward identity for VSUSY at
vanishing antifields, which reads, for the vertex functions, as

∫

d4x
(

∂ic̄
δStot

δB
+Ai

δStot

δc
+

εi j

θ
n jc̄

δStot

δλ

)

= 0 ,

yields, for the connected Green functions,
∫

d4x
(

JB ∂i
δZc

δJc̄
− Jc

δZc

δJi
A

+
εi j

θ
n jJλ

δZc

δJc̄

)

= 0 .

Differentiating the latter, e.g. with respect to Jc and to Jν
A , yields, for the gauge field propagator,

the condition
∆AiAµ = 0 . (6.2)

Other consequences of VSUSY are obtained from the Ward identity for vertex functions, differen-
ciated with respect to Aµ and AJ , or Ai and A j:

ΓλAµ AJ (x,y,z) = 0 , (6.3)

and
ΓλAiA j(x,y,z) = igθεklK(x,y,z) , (6.4)

where
K(x,y,z) = e

i
2 θε i j∂ x

i ∂ u
j (δ (x− y)−δ (u− z)−δ (x− z)−δ (u− y))|u=x .

If we assume the latter result, which coincides with the tree vertex deduced from the classical
action Stot, to be valid for the quantized theory, we would conclude that the vertex ΓλAiA j would not
adquire radiative corrections.

7. Cancellation of the IR singularities

Let us now show through a graphical analysis how the IR singularities are cancelled as a con-
sequence of the VSUSY Ward identities. We first see, from Fig. 2, that the λAA-vertex contracted
with a AA-propagator vanishes because of (6.2). Secondly, looking at Fig. 3, we observe that one
cannot build a Feynman loop graph containing a λAA-vertex without the presence of at least one
AA-propagator. It then follows that loop corrections to the λλ and λA propagators vanish.

More generally, we can conclude that all loop graphs involving a λAA vertex vanish. In
particular, dangerous vacuum polarization insertions as in Fig. 1 cancel. Finally, contributions of
IR singular parts of vertices ΓAµ1 ···AµN

(N ≥ 2) connected to AA-propagators in loop graphs vanish,

7
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A

λ

A

= 0

A

Figure 2: The λAA-vertex contracted with a photon propagator.

A

λ

A
A

A
λ

Figure 3: Trying to build loop graphs with a λAA-vertex and Aλ -propagators, but without AA-propagators.

too, since these singularities are present in vertices with indices i = 1,2 only. E.g. in the singular
part (1.6) of the vacuum polarization, the indices µ and ν take the values 1 or 2 due to our choice
of the noncommutativity matrix θ .

In conclusion, no IR singularities are left.

8. Conclusions and outlooks

We can conclude from our analysis that Poincaré supersymmetry is not needed in order to cure
the IR-UV mixing in gauge theories constructed in noncommutative space.

However the concept of supersymmetry, manifest in the form of VSUSY, seems to play a
decisive role in theories which are not Poincaré supersymmetric. Indeed, as we have seen in our
case, the Ward identities of VSUSY yield exactly the propagator and vertex properties which are
needed for cancelling the IR singularities.

What is the role of VSUSY with respect to the IR-UV mixing in topological gauge theories in
general remains an open question.

Finally, the study of more general theories, based on a rigorous quantization scheme (pertur-
bative [21] or not) seems desirable.
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