| %) OF SCIENCE

On Zeta Regularization and Some of its Uses in
Cosmology

Emilio Elizalde*

Consejo Superior de Investigaciones Cientificas

Instituto de Ciencias del Espacio

Institut d’Estudis Espacials de Catalunya (IEEC/CSIC)
Campus UAB, Facultat de Ciéncies, Torre C5-Parell-2a pdant
08193 Bellaterra (Barcelona) Spain

E-mail: el i zal de@ eec. uab. es

Zetaregularization has been proven to be a fine, powerfuandreliable tool for the regulariza-
tion of the vacuum energy density in ideal situations. Wité &dditional help of the Hadamard
calculus, we have shown it to yield also finite and physicalbaningful answers in more involved
cases, as when imposing physical boundary conditions i tmal higher—dimensional surfaces,
being then able to mimic in a convenient way other ad hoc &fst-as non-zero depths. These
recent developments are described in the first part of tieisgmtation. Recently, those techniques
have also been used in calculations of the contributione¥#tuum energy of the quantum fields
which are presumably pervading the universe, to the coggitzlbconstant. Naive calculations of
the absolute contributions of all known fields lead to a valéch is off by roughly 120 orders
of magnitude, as compared with the results obtained frorareasional fits, what is known as the
new cosmological constant problem. This is very difficulsédve and we address here such issue
only indirectly, by means of some specific examples.

Fifth International Conference on Mathematical Method®Hmysics
24 — 28, April 2006
Rio de Janeiro, Brazil

*Speaker.
TPresently on leave at Dipartimento di Fisica, Universitaminto, Via Sommarive 14, I-38050 Povo (ltaly).

(© Copyright owned by the author(s) under the terms of the @@&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



On Zeta Regularization and Some of its Uses in Cosmology Emilio Elizalde

1. Introduction

This material corresponds to my lecture, on some basic megtties which are not sufficiently
well known in general to the theoretical physicist, and amtial in order to deal, in a precise way,
with modern approaches to some outstanding processes imtpudield Physics and Cosmol-
ogy. All those have in common the fundamental use which iddmquantum fluctuations in the
physical vacuum of the quantum field theory under consigerabe at a nano-electro-mechanical
(NEM) or at a cosmological level. This is, to start with, thealaty of such mathematical meth-
ods, that has been indeed recognized by many authors, inydart and at the very beginning, by
Stephen Hawking in a seminal paper he wrote some thirty yaegog1].

We start by reviewing the definition of the concept of a pselifterential operator YDO)
and of the zeta functioga(s) associated to &#DO A. We continue with the definitions of the
determinant and trace &, obtained in a unique way from the concept of Wodzicki residifter
considering in more detail the singularity structure of zbéa function{a(s), we address the issue
of the multiplicative (or noncommutative) anomaly (or ddjeof the determinant. We then change
subject by considering a special but very important casedizéta function family analysis, that is,
the celebrated Chowla-Selberg expansion formula (CS)leddn-trivial generalizations thereof
obtained by the author. At the last part of the paper, we adék specific physical applications
of these mathematics to the calculation of what has beconhe twalled thecosmo-topological
Casimir effect that is the possible influence of the fluctuations of the guarnvacuum of some
(scalar) fields at cosmological level, coming from the nawvigl topology of our spacetime. This
is a rather old issue [2], but treated here under new eyegtmatect with very recent approaches
to the problem [3]. These ideas could be at the very origirhefdcceleration in the expansion
of the universe that has been observed recently and coulehsdtin part, be an ingredient of the
so-called dark energy component that pervades the uniwersee living in.

2. WDOs, zeta functions, determinants, and traces

A pseudodifferential operator Af orderm on a manifoldM,, is defined through its symbol
a(x, &), which is a function belonging to the spa8g(R" x R") of C* functions such that for any
pair of multi-indexsa, B there exists a consta@, g so that dg&fa(x,f)‘ <Cqp(1+ |E[ym-lal,
The definition ofA is given, in the distribution sense, by

A9 = (2m " [ &% ax &) f(§)dE. (2.2)

f is a smooth functionf € .7; remembet? = { f € C*(R");sup|x?d% f(x)| < «0,Va,B € R"},
.’ being the space of tempered distributions dnithe Fourier transform of . Whena(x, &) is

a polynomial iné one gets a differential operator. In general, the orderan be complex. The
symbolof a WDO has the forma(x, &) = am(x,&) + am-1(X,&) +--- +am—j(x, &) +---, being
ac(x, &) = bk(x) EK. a(x, &) is said to beelliptic if it is invertible for large|&| and if there exists
a constanC such thatla(x,&)~1| < C(1+|&|)~™, for |€| > C. An elliptic WDO is one with an
elliptic symbol.

Pseudodifferential operators are useful tools, both irheragtics and in physics. They were

crucial for the proof of the uniqueness of the Cauchy probjépand also for the proof of the
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Atiyah-Singer index formula [5]. In quantum field theory yhappear in any analytical contin-
uation process (as complex powers of differential opesatlike the Laplacian) [6]. And they
constitute nowadays the basic starting point of any rigefmumulation of quantum field theory
through microlocalization, a concept that is considerededhe most important step towards the
understanding of linear partial differential equationscsi the invention of distributions [7].

2.1 The zeta function

Let A a positive-definite elliptitPDO of positive ordem € R, acting on the space of smooth
sections oft, ann-dimensional vector bundle ovéf, a closedh-dimensional manifold. Theeta
function, is defined as

da(s) =trA=°= Z)\ =S, Res> — =¢,. (2.2)

3>

wheresy = dimM /ordA is called theabscissa of convergenaé {a(s). Under these conditions, it
can be proven thafa(s) has a meromorphic continuation to the whole complex pldr{eegular
ats= 0), provided that the principal symbol &f (that isan(x,¢)) admits aspectral cut Lg =

{A € C;ArgA = 6,6, < 6 < 6,},SpeAnLg = 0 (Agmon-Nirenberg condition). The definition
of {a(s) depends on the position of the dug. The only possible singularities dh(s) aresimple
polesats, = (n—k)/m, k=0,1,2,...,n—1,n+1,.... M. Kontsevich and S. Vishik have managed
to extend this definition to the case whre C (no spectral cut exists) [8].

2.2 The zeta determinant

Let A a WDO operator with a spectral decompositiofig;, A }ici, wherel is some set of
indices. The definition of determinant starts by trying tokenaense of the produgy;c, Ai, which
can be easily transformed into a ‘sum’: [l Ai = Yig InAi. From the definition of the zeta
function of A: a(s) = Sic) A5, by taking the derivative &= 0: {4(0) = — Y InA;, we arrive to
the following definition of determinant & [9]:

dett A=exp[—Za(0)] . (2.3)

An older definition (due to Weierstrass) is obtained by sadiing in the series above (when it is
such) the leading behavior @f as a function of, asi — o, until the seriesy .| InA; is made to
converge. The shortcoming is here —for physical applicatie that these additional terms turn
out to benon-localand, thus, are non-admissible in any renormalization phawe[10].

In algebraic QFT, in order to write down an action in operéoguage one needs a functional
that replaces integration. For the Yang-Mills theory tlsishie Dixmier trace, which is thenique
extension of the usual trace to the idg&i>*) of the compact operatofissuch that the partial sums
of its spectrum diverge logarithmically as the number ofrigin the sum:on(T) = y5 uj =
O(logN), tp > p1 > --- The definition of the Dixmier trace doF is: Dtr T = limy_.c ﬁaN (T),
provided that the Cesaro medvi$o)(N) of the sequence iN are convergent &8 — o (remember
that: M(f)(A) = ﬁ ff f(u)d—u“). Then, the Hardy-Littlewood theorem can be stated in a \way t
connects the Dixmier trace with the residue of the zeta fanatf the operato —* ats= 1 (see
Connes [11]): DtT = limg_1+(S— 1){7-1(S).
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2.3 The Wodzicki residue

The Wodzicki (or noncommutative) residue [12] is iy extension of the Dixmier trace to
the WDOs which are not inZ(1*) It is theonly trace one can define in the algebra#¢dOs (up
to a multiplicative constant), its definition being: i&s= 2 Reg_ tr(AA~3), with A the Laplacian.

It satisfies the trace condition: réAB) = res(BA). A very important property is that it can be
expressed as an integral (local form) fes- [g\tr a_n(X,€)dé with S'M C T*M the co-sphere
bundle onM (some authors put a coefficient in front of the integral: Adianin residue).

If dim M = n= — ord A (M compact Riemanr elliptic, n € N) it coincides with the Dixmier
trace, and one has Resla(s) = %resA—l. The Wodzicki residue continues to make sense for
WDOs of arbitrary order and, even if the symbal$x, £ ), j < m, are not invariant under coordinate
choice, their integral is, and defines a trace. All residyaoéds of the zeta function of @DO can

be easily obtained from the Wodzciki residue [13].

2.4 The multiplicative anomaly and its implications

GivenA, BandABWDOs, even if{a, (g and{ag exist, it turns out that, in general, g¢AB) #
det;A det; B. The multiplicative (or noncommutative) anomaly (or defestdefined as:

det; (AB)

0(A,B)=1In [m

| = ~26(0)+ 400+ 4(0) 2.4
Wodzicki’'s formula for the multiplicative anomaly [12, 145]:

res{ Ino(A, B)]z}
~ 2 ordA ordB (ordA+ ordB)

5(A,B) . O(AB):= A0rdsg-orda (2.5)
At the level of Quantum Mechanics (QM), where it was origipnattroduced by Feynman, the
path-integral approach is just an alternative formulatibthe theory. In QFT it is much more than
this, being in many ocassiotise actual formulation of QFT [16]. In short, consider the Gaaiss
functional integrationy[d®] exp{ — [ dPx [®T(x)( )®(x)+---]} — det( )™, and assume that

. . . AL A
the operator matrix has the following structure (being eAclan operator): Al Aj) —
3

( E where the last expression is the result of diagonaliziegoiberator matrix. A question

now arises. What is the determinant of the operator matexAd) or detA- detB? This has been
very much on discussion [17, 18]).

2.5 A word on determinants

Many fundamental calculations of QFT reduce, in essendbgteaomputation of the determi-
nant of some suitable operator: at one-loop order, any suabry reduces in fact to a theory of
determinants. The operators involved are pseudodiffialgf#DO), in loose terms ‘some analytic
functions of differential operators’ (such @+ D or log(1+ D), butnotlogD). This is explained
in detail in [19]. It is surprising that this seems not to bea@msubject of study among mathemati-
cians. | am referring to the determinants that involve irde$inition some kind of regularization
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(related to operators that are not trace-class). This mé&calculus falls outside the scope of the
standard disciplines and even many physically orientedhemaaticians know little about this. The

subject has many things in common with divergent seriesduksl any reference comparable to
the book of Hardy [20]. Actually, this question was alreadgi@ssed by Weierstrass in a way not
without problems, since it leads to non-local contribusidinat cannot be given a physical meaning
in QFT. For completion, let us mention the well establishezbties of determinants for degenerate
operators, for trace-class operators in the Hilbert sgaeaholm operators, etc. [21]

2.6 On the method of zeta-function regularization

Hawkwing introduced zeta-function regularization [1] edlwith infinities in QFT in curved
spacetime [16, 22, 23]. One could try to deal with Quantunv@raising the canonical approach,
by defining an arrow of time and working on the space-like ngypdaces perpendicular to it, with
equal time commutation relations, but: (i) There are mappliogies of the space-time manifold
that are not a produd® x Ms. (ii) Such non-product topologies are sometimes very asimg. (iii)
What does it mean ‘equal time’ in the presence of Heisenbengtertainty principle?

One thus turns naturally towards path-integradsgs,, @, |91, @1, %1 >= [ 2[g, @] €599,
whereg; denotes the spacetime metrgg,are matter fields,”; general spacetime surface®’(=
M; U dM;j), 2 a measure over all possible ‘paths’ leading from he 1 to the j = 2 values of
the intervening magnitudes, arlis the action:S= 7= [(R—2A)\/—gd*™X+ [Lmy/—gd*x,

R being the curvature/\ the cc,g the determinant of the metric, arg, the Lagrangian of the
matter fields. Stationarity @&under the BCg| ;5 =0, ﬁ-??ég Vi 0, leads to Einstein’s equa-

tions: Ryp — %gabR-i- NQab = 8NG Ty, Tap being the energy-momentum tensor of the matter fields,
Tab= z—jjgg—'g-;“ﬁ. The path-integral formalism provides a way to deal ‘perdtitkely’ with QFT in
curved spacetime backgrounds [22]. First, through a mdti the complex plane one defines an
Euclidean actioniS — —S One can also easily introduce the finite temperature fosmaby
the substitutiort, —t; = i3, which yields the partition functiod = zne‘BEn. If one now adheres

to the principle that the Feynman propagator is obtainecdhadimit for 3 — o of the thermal
propagator, we have shown [24] that the usual principal{pescription in the zeta-function regu-
larization method needot be imposed any more as an additional assumption, sincéaw®from

this more general and natural principle. Next comes theéostty phase approach (also called
one-loop or WKB), for calculating the path integral, whiabnsists in expanding around a fixed
background:g=go+0, 0= @+ (B, and leads to the following expansion in the Euclidean met-
ric: é[g, Q= é[go, o]+ S0, (E] +--- This is most suitably expressed in terms of determinants (fo
bosonic, resp. fermionic fields) of the kind (he&xeB are the relevant (pseudo)differential operators
in the corresponding Lagrangiank, = det(ﬁA) l, Ay = det(ﬁB), optimally computed
with zeta techniques.

Now, for its application in practice [25], the method of zetgularization relies on the exis-
tence of simple formulas that give the analytic continuatsb (s) from the region of the complex
plane extending to the right of the abscissa of convergdres,> s, to the rest of it [26, 27, 28].
These are not only the reflection formula, but also some atkmessions, as Jacobi’s theta function
identity, Poisson’s and Plana’s resummation formulae thadChowla-Selberg formula. But some
of these expressions are often restricted to specific caséstheir explicit derivation is usually
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involved [27]. A fundamental property shared by all zetactions is the existence of a reflection
formula. For the Riemann zeta functiofi(s/2){(s) = & Y2 (1—s/2){(1—s). For a generic
zeta functionZ(s), we may write it asZ(w — s) = F(w,s)Z(s). It allows for its analytic continu-
ation in an easy way —what is, in simple cases, the whole siifye zeta function regularization
procedure. But the analytically continued expression thtgined is just another series, which
has again a slow convergence behavior, of power series ttypes@me of the original series, on its
convergence domain). S. Chowla and A. Selberg found a faf29] for the Epstein zeta function
in two dimensions, that yieldsxponentiallyquick convergenceverywhereln [30] a first attempt
was done to try to extend it to inhomogeneous forms; latehigber dimensions [19, 31], both
for the homogeneous (quadratic form) and non-homogenaqueifatic plus affine form) cases.
However, some of the new formulas (remarkably the ones sporaling to the zero-mass case,
e.g., the original CS framework) were not explicit, and imed solving a non-trivial recurrence,
that was solved in [32] andxplicit formulas where obtained. Aside from the quadratic case, the
linear one is also important for its many applications (eysiof harmonic oscillators or a multi-
dimensional one). The most general linear zeta functiodietuis the Barnes’ one. Again, many
explicit expressions are missing here, as for its derieativhe general case.

Assume the Hamiltonian operatdfi, has a spectral decomposition of the form (think of a
quantum harmonic oscillator){A;, ¢i }ic;, beingl some set of indices (which can be discrete,
continuous, mixed, multiple, ...). Then, the quantum vac@nergy is obtained as: [27]

E/u:Z(¢i,(H/u)¢i>:TrgH/u:Z/\i/u: Z()\i/ﬂ)s' = Chyu(=1); (2.6)

le s=—1

where, is the zeta function corresponding to the operdtpand the equalities are in the sense
of analytic continuation (generically is not of the trace class$).Note that the formal sum over
the eigenvalues is usually ill defined, and that the last istggives analytic continuation. A regu-
larization parameten with dimensions of mass appears in the process, to rendeigkavalues
dimensionless, so that the zeta function can be defined! \Alersbt discuss these basic details
here, which are just at the starting point of the whole reradization procedure).

2.7 The Casimir energy

In fact things do not turn out to be so simple. One cannot assigeaning to thabsolutevalue
of the zero-point energy, and any physical effect is an gndiffference between two situations,
such as a quantum field in curved space as compared with the faloh in flat space, or one
satisfying BCs on some surface as compared with the same atbsience, etc. This difference is
the Casimir energyEc = E§—Eo = 3 (tr HBS—tr H). But here a problem appears. Imposing
mathematical boundary conditions (BCs) on physical quarftalds turns out to be a highly non-
trivial act. This was discussed in detail in a paper by Ddutsnd Candelas [34]. These authors
guantized em and scalar fields in the region near an arbitnagoth boundary, and calculated
the renormalized vacuum expectation value of the stresgggriensor, to find out that the energy

IThe reader should be warned that tfistrace is actually no trace in the usual sense. In particiila,highly
non-linear, as often explained by the author elsewhere B&ine colleagues are unaware of this fact, which has lead to
important mistakes and erroneous conclusions too often.
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density diverges as the boundary is approached. Theraémelarization and renormalization did
not seem to cure the problem with infinities in this case andfamite physicalenergy was obtained
if the mathematical BCs were to be fulfiled. However, thehaws argued that surfaces have
non-zero depth, and its value could be taken as a handy diomahgutoff in order to regularize
the infinities. Just two years after Deutsch and Candelaskwdurt Symanzik carried out a
rigorous analysis of QFT in the presence of boundaries [Bigscribing the value of the quantum
field on a boundary means using the Schrédinger represemtaind Symanzik was able to show
rigorously that such representation exists to all orderhénperturbative expansion. He showed
also that the field operator being diagonalized in a smooftetsurface differs from the usual
renormalized one by a factor that diverges logarithmicalhen the distance to the hypersurface
goes to zero. This requires a precise limiting proceduregoaint splitting. The issue was proven by
him to be meaningful within the domains of renormalized Qfé&te the BCs and the hypersurfaces
themselves were treated at a pure mathematical level (sgrb)dby using Dirac delta functions.

Recently, a new approach has been postulated [36]. BCs oida ¢ieare enforced on a
surface,S by introducing a scalar potentiad, of Gaussian shape. When the Gaussian becomes a
delta, the BCs (Dirichlet here) are enforced: the deltggstigotential killsall modes ofgp at the
surface. For the rest, the quantum system undergoes adagetl QFT renormalization, as in the
case of Symanzik’s. The results confirm those of [34] in theesd models studied albeit they do
not seem to agree with those of [35]. They seem to be also imamtiotion with the ones quoted
in the usual textbooks and review articles dealing with tlasi@ir effect [37], where no infinite
energy density when approaching the Casimir plates hasreperted.

3. On the topology and curvature of space

The Friedmann-Robertson-Walker (FRW) maodel, which candréveld as thenly family of
solutions to the Einstein’s equations compatible with tguanptions ohomogeneityndisotropy
of space, is the generally accepted model of the cosmos. HBUERW is a family with a free
parameterk, the curvature, that can be either positive, negative @ ¢be flat or Euclidean case).
This curvature, or equivalently the curvature radiRsjs not fixed by the theory and should be
matched with cosmological observations. Moreover, the FRWéel, and Einstein’s equations
themselves, can only provide local properties, not globakpso they cannot tell about the overall
topology of our world: is it closed or open? finite or infiniteRven being quite clear that it
is, in any case, extremely large —and possibly the humaniesp&dll never reach more than an
infinitesimally tiny part of it— the question is very appewito any (note that this discussion
concerns only three-dimensional space curvature anddgpdime will not be involved).

3.1 On the curvature

Serious attempts to measure the possible curvature of Huwe spe live in go back to Gauss,
who measured the sum of the three angles of a big triangle weittices on the picks of three
far away mountains (Brocken, Inselberg, and Hohenhagee)w#s looking for evidence that the
geometry of space is non-Euclidean. The idea was brilliaunit,condemned to failure: one needs
a much bigger triangle to try to find the possible non-zerovature of space. Now cosmologist
have recently measured the curvature ratRusy using the largest triangle available, namely one
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with us at one vertex and with the other two on the hot opagtfaceiof the ionized hydrogen that
delimits our visible universe and emits the CMB radiatioonte 3 to 4x 1P years after the Big
Bang) [38]. The CMB maps exhibit hot and cold spots. It cantmwn that the characteristic spot
angular size corresponds to the first peak of the temperptwer spectrum, which is reached for
an angular size of5° (approximately the one subtended by the Moon) if space is fidt has a
positive curvature, spots should be larger (with a corredpm displacement of the position of the
peak), and correspondingly smaller for negative curvattitee joint analysis of the considerable
amount of data obtained during the last years by balloonrexpats (BOOMERanG, MAXIMA,
DASI) [39, 40], combined with galaxy clustering data, proéd a lower bound foR| > 20h~1Gpc,
i.e. twice as large as the radius of the observable univefsioutRy ~ 9h~1Gpc.

3.2 On the topology

Let us repeat that GR does not prescribe the topology of thverse, or its being finite or not,
and the universe could perfectly be flat and finite. The sistpten-trivial model from the theo-
retical viewpoint is the toroidal topology. Traces for thisd more elaborated ones, as negatively
curved but compact spaces, have been profusely investigatd some circles in the sky with near
identical temperature patterns were identified [41]. Antngere papers appear from time to time
proposing a new topology [42]. However, to summarize als¢hefforts and the observational sit-
uation, and once the numerical data are interpreted withiast(what sometimes was not the case,
and led to erroneous conclusions), it seems at presentviiédlae data point towards a very large
(we may call itinfinite) flat space.

4. Vacuum energy fluctuations and the cosmological constant

The issue of the cc has got renewed thrust from the obsen#htavidence of an acceleration
in the expansion of our Universe, initially reported by twiffatent groups [43]. There was some
controversy on the reliability of the results obtained frtmse observations and on its precise
interpretation, by a number of different reasons. Anywétgranew data has been gathered, there
is now consensus among the community of cosmologists thé&ct, an acceleration is there, and
that it has the order of magnitude obtained in the above weedi observations [44, 45, 46]. As a
consequence, many theoreticians have urged to try to expiisi fact, and also to try to reproduce
the precise value of the cc coming from these observations4@, 49].

Now, as crudely stated by Weinberg [50], it is even more diffito explain why the cc is
so small but non-zero, than to build theoretical models wlieexactly vanishes [51]. Rigorous
calculations performed in quantum field theory on the vacemergy densitypy, corresponding
to quantum fluctuations of the fields we observe in naturel, fe@alues that are over 120 orders of
magnitude in excess of those allowed by observations offtheestime around us. Energy always
gravitates, therefore the energy density of the vacuumgermeoecisely, the vacuum expectation
value of the stress-energy tengdy,) = —&'gyy appears on the rhs of Einstein’s equatiof;, —
TguwR= —8nG(T, — £guv). It affects cosmology,,, contains excitations above the vacuum,
and is equivalent to ec A = 8nG¢&’. Recent observations yield [52]

Aops = (2144+0.13x 103 eV)* ~ 4.32x 10 ° erg/en?



On Zeta Regularization and Some of its Uses in Cosmology Emilio Elizalde

It is an old idea that the cc gets contributions from zero pibirctuations [2]

Eo = %Czwh, w =K +m?/R2, k=2m/A. (4.1)
n
Evaluating in a box and putting a cut-off at maximbmy, corresponding to reliable QFT physics
(e.g., the Planck energy)p ~ Ak}, /16 ~ 10"%3pgpg
Assuming one will be able to prove (in the future) that theugia value of the cc igero(as
many suspected until recently), we will be left with tiigremental valueoming from the topol-
ogy or BCs. This sort of two-step approach to the cc is becgminre and more popular recently
as a way to try to solve this very difficult issue [3]. We haverseusing different examples, that
this value acquires in fact the correct order of magnitudesresponding to the one coming from
the observed acceleration in the expansion of our universeder some reasonable conditions.
We put forward a quite simple and primitive idea (but, for Hane reason, of possibly far reach-
ing consequences), related with thkebal topology of the universe [53] and in connection with
the possibility that a faint scalar field pervading the urseecould exist. Fields of this kind are
ubiquitous in inflationary models, quintessence theoresl the like. In other words, we do not
pretend to solve the old problem of the cc, not even to canttgikignificantly to its understanding,
but just to present simple and usual models which show tleatigint order of magnitude of (some
contributions to)oy which lie in the precise range deduced from the astrophlysiiservations are
not difficult to get. To say it in different words, we only adds here the 'second stage’ of what
has been termed by Weinberg [50] thewcc problem.

5. Vacuum energy contribution in different models

5.1 Simple model with large and small compactified dimensicn

We assume the existence of a scalar field extending throegimikierse and calculate the con-
tribution to the cc from the Casimir energy density of thisdfjéor some typical BCs. Ultraviolet
contributions will be safely set to zero by some mechanisma foindamental theory. Another hy-
pothesis will be the existence of both large and small dinosss(the total number of large spatial
coordinates being always three), some of which may be catifipd¢ so that the global topology
of the universe will play an important role. There is a quitéeasive literature both in the subject
of what is the global topology of spatial sections of the erée [53] and also on the issue of the
possible contribution of the Casimir effect as a source ofiesgort of cosmic energy, as in the
case of the creation of a neutron star [54]. There are argigntleat favor different topologies, as
a compact hyperbolic manifold for the spatial section, whaitild have clear observational conse-
guences [55]. Other interesting work along these lines wpsrted in [25] and related ideas have
been discussed very recently in [56]. However, we diffendrall those in that emphasis is put
now in obtaining the right order of magnitude for the effektthe present stage it has no sense to
consider the whole amount of possibilities concerning taire of the field, the different models
for the topology of the universe, and the different BCs dassiwith its effect on the sign of the
force too. This is left to a second, more detailed analysisimFprevious results [27] we know that
the range of orders of magnitude of the vacuum energy defwsityre most common possibilities
is not so widespread, and may only differ by at most a couptégifs. This will allow us, both for
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the sake of simplicity and universality, to deal with two pimsituations, corresponding to a scalar
field with periodic BCs or spherically compactified. As exped in [57], most cases with usual
BCs reduce to those, from a mathematical viewpoint.

Consider a universe with a space-time of one of the folloviyques: R4T1 x TP x T9, R4+1 x
TP x §9,..., which are actually plausible models for the space-timelmyy. Here,d > 0 stands
for a possible number of non-compactified dimensions. Réwaphysical contribution to the vac-
uum or zero-point energy. O|H |0 > is obtained by subtracting the vacuum energy corresponding
to the situation with the only change that compactificatieralbsent (in practice this is done by
conveniently sending the compactification radii to infihiths well known, both of these vacuum
energies are in fact infinite, but it is itfference & = < 0|H|0 >|y— < O|H|0 >|;_,., (Ratypical
compactification length) that makes physical sense, ging®to the finite value of the Casimir en-
ergy Ec. Renormalization must be then carried out. In fact we wakdiss the Casimir (or vacuum)
energydensity pc = Ec/V, which can account for either a finite or an infinite volumehsf spatial
section of the universe (from now on we shall assume thatagdjahalizations already correspond
to energy densities, volume factors are replaced at the émdgrms of the spectrurfil,,} of H:
<OH|0>= % Y nAn, Where the sum ovaris over the whole spectrum, which may involve several
continuum and several discrete indices. The last appeaaltiyp when compactifying the space
coordinates (much as time compactification gives rise toiteftemperature field theory), as in
the cases we are going to consider. Thus, integration @eentinuous dimensions and multiple
summations ovep+ q indices appear (for a pedagogical description, see [57]).

The physical vacuum energy density in our case, where thilootion of a scalar fieldp
living in a partly compactified spatial section of the unaeis considered, with

S=3 [ d%/=5 (0" 0,00,0-+ (i + ER)GF). (5.1)

will be denoted byp,, (this is just the contribution t@, coming from this field, there might be
other, in general)p, = 33iAi = 33 % (k2 +M2) Y2 where the suny is a generalized one,
M2 =P+ &R is an effective mass term, apdis the usual mass-dimensional parameter to render
the eigenvalues dimensionless (the renormalization patemnmwe takeh = ¢ = 1). The massn

of the field will be here considered to be arbitrarily smalt different from zero, for now, for
computational reasons —as well as for physical ones, sineeyainy mass for the field can never
be excluded [58, 59]. Our model is stationary, while the argse is expanding. A more careful
calculation shows that this effect can actually be disndssethe level of order of magnitude,
since its value cannot surpass the one that we will get (ases fom the present value of the
expansion raté\R/R ~ 10710 per year or from direct consideration of the Hubble coeffitie
Recent considerations on the dynamical Casimir effect neayniportant in a future, more detailed
analysis [60]. For simplicity we perform a static calcubati As a consequence, the values obtained
correspond to the present epoch.

Let us write down in detail the formulas corresponding totthe first topologies, as described

10
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above. For af, g)-toroidal universe, wittp the number of ‘large’ and of ‘small’ dimensions:

B /2 2mm;
Po= 291 (d/2)M}-12 Mh-1 bh/dkkjnp—oo mq—mlzl< >+z< >

1 00

1P L d (d+1)/2+1
2 2

~ S+ S S MM : (5.2)

apbqnp-rzq w(aZ le Lo hzl >

1/2

where the last formula corresponds to the case when all [@aegp. all small) compactification
scales are the same. In this last expression the squaredftlassield should be divided byr# 2,

but we have renamed it agaW? to simplify the ensuing formulas. We also will not take care
for the moment of the mass-dim factarin other places since formulas would get unnecessarily
complicated and there is no problem in recovering it at tlteadithe calculation. For gettoroidal,
g-spherical)-universe,

%2 dkid-1 C [ 2m; Qz(l) 2 v
Po= 29r(d/2) M —1aJ bd n cholz Fo-al ,;( > 3 M
(d+1)/2+1
4 &, 1(1+09) 2
apbq Z Z g1 (?lenﬁ' z M ; (5.3)

wherePy_1(l) is a polynomial inl of degreeq— 1. On dealing with our observable universe, we
assume thatl = 3 — p, the number of non-compactified, ‘large’ spatial dimensid¢thus, nod
dependence will remain). All these expressionsdgmneed to be regularized and we use the zeta
function method, as previously explained.

We will use zeta function regularization, taking advantafe¢he very powerful equalities
that have been derived by the author [19, 24], and which edioe enormous burden of such
computations to the easy application of some formulas. k@stke of completeness, let us very
briefly summarize how this works [61, 57]. We deal here onlyhvihe case when the spectrum
of the Hamiltonian operator is known explicitly. Going batkthe most general expressions of
the Casimir energy corresponding to this case, we replacexponents in them with a complex
variable,s, thus obtaining the zeta function associated with the apees:

o-33 (5"

The next step is to perform the analytic continuation of thZunction from a domain of the
complexs-plane with Res big enough (where it is perfectly defined by this sum) to thatpo
s= —1, to obtain: py, = {(—1). The effectiveness of this method has been sufficientlyradeest
before (see, e.g., [27]). As we know from precise Casimicudations in those references, no
further subtraction or renormalization is needed in thesd®re considered, in order to obtain the
physical value for the vacuum energy density (there is #igtassubtraction at infinity taken into
account, as carefully described above, but it is of null @alknd no renormalization, not even a
finite one, very common to other frameworks, applies here).

Using the formulas [19] that generalize the well-known Clam®elberg expression to the
situations considered above, Egs. (5.2) and (5.3) —nammelitidimensional, massive cases— we

(5.4)
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can provide arbitrarily accurate results for differentues of the compactification radii. However,
as argued above we only aim here at matchingatider of magnitudeof the Casimir value and,
thus, we shall just deal with the most simple cases of Eq8) (. (5.3), which yield the same
orders of magnitude as the rest of them). Also in accordanttethis observation, we notice that
among the models here considered and which lead to the vhlaewill be obtained below, there
are in particular the very important typical cases of isptaniverses with the spherical topology.
As all our discussion here is in terms of orders of magnituttk reot of precise values with small
errors, all these cases are includedenual footing But, on the other hand, it has no sense to
present a lengthy calculation dealing in detail with all fossible spatial geometries. Anyhow, all
these calculations can indeed be done, and are very simithetone here, as has been described
in detail elsewhere [25, 27].

For the analytic continuation of the zeta function corregjiog to (5.2), we obtain:[19]

00

Z g 2n5/2+1 0 p 2 0 ZT 1n2 (s-1)/4
() = arP—(st1)/2pa-(s-1)/2[ (s/2) qu Z<h> Z W

XK(sfl)/Z zga\l Z n2 (Z nﬁ-ﬁ- M2> , (5.5)

=1

whereK, (z) is the modified Bessel function of the second kind. Havindguered already the
analytic continuation, this expression is ready for thessitutions= —1, and yields

1 2/p > 2 Se M+M2 | 2ma
pm:_iapbq“hzo(h)z']nhz_lmzoo / kzl?_lnjz Ki| =5 Zlnz Zr‘rﬁ—kMZ (5.6)

Now, from the behaviour of the functidg, (z) for small values of its argumerK,,(z) ~ %F(v)(z/Z)‘V
z— 0, we obtain, in the case whévi is not large,

1 2rma p
p"’apbqﬂ{MKl( b M>+Z(h)2h 2, m

< +ﬁ[qul< m)}} (5.7)

The only presence of the mass-dim parametés asM/u everywhere. This does not affect the
smallM limit, M/u << b/a. Inserting now in the expression thendc factors, we finally get

1+h§o(ﬁ> . [qu (2’;'3)] , (5.8)

wherea is some finite, computable constant obtained as an exphkdtngtric sum in the limit
M — 0. It is remarkable that we obtain a well defined limit, indegent ofM?2, providedM? is not
large: a physically nice situation turns out to correspanthé mathematically rigorous case. This
is the expression one gets not just for the model considérgdpr manycases, corresponding to

hc

P = " 2map+ita
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different fields, topologies, and BCs —aside from the siginant of the formula, that may change
with the number of compactified dimensions and the natureeBICs (in particular, for Dirichlet
BCs one gets a value in the same order of magnitude but of tpsign).

5.2 Numerical results

For the most common variants, the constarin (5.8) has been calculated to be of ordef,10
and the whole factor, in brackets, of the first term in (5.8) aalue of order 10 This shows the
value of a precise calculation, as the one undertaken hayether with the fact that just a naive
consideration of the dependenciespgfon the powers of the compactification radiiandb, is not
enoughin order to obtain the correct result. Notice, moreover,ibe-trivial change in the power
dependencies from going from Eq. (5.7) to Eq. (5.8).

For the compactification radii at small scalés,we shall simply take the magnitude of the
Planck lengthb ~ Ipanck , While the typical value for the large scales,will be the present size
of the observable universa,~ Ry . With this choice, the order of the quotiemtb in the argument
of Ky is a/b~ 10°°. Thus, we see immediately that, in fact, the final expres&orthe vacuum
energy density is completely independent of the nissf the field, provided this is very small
(eventually zero). In fact, since the last term in Eq. (58gxponentially vanishing, for large
arguments of the Bessel functidfy, this contribution is zero, for all practical purposes, wisa
already a very nice result. Taken in ordinary units (andrdfeecing back all the transformations
suffered by the mass terM) the actual bound on the mass of the scalar fied is 1.2 x 1032
eV, that is, physically zero, since it is lower by severalessdof magnitude than any bound coming
from the more usual SUSY theoriesvhere in fact scalar fields with low masses of the order of
that of the lightest neutrino do show up [48], which may halssawsvable implications.

| _pPp [ p=0] p=1]p=2] p=3 |
b=Ip [10°1°] 10° 1 10°
b=10lp | 1014 | [10°8] | 1073 10
b=1Fp | 10® [ 10719 [ 10® | 10°
b=10p | 10| 101% |[1077] | (10 ")
b=10%p | 10| 101 [ 1012 | (10°1)
b=1C®lp | 1078 ] 1071 | 10| 10

Table 1: Orders of magnitude of the vacuum energy density contdbyitiy, of a massless scalar field to the pg, for

p large compactified dimensions aga= p+ 1 small compactified dimensionp,= 0,.. ., 3, for different values of the
small compactification lengthp, proportional to the Planck length. In brackets, values that better match the observed
cc result, and in parenthesis the otherwise closest appetiins.

By replacing all these values in Eq. (5.8), we obtain theltedisted in Table 1, for the orders
of magnitude of the vacuum energy density corresponding ganaple of different numbers of
compactified (large and small) dimensions and for diffesaities of the small compactification
length in terms of the Planck length. Notice again that ti& taumber of large space dimensions
is three, as corresponds to our observable universe. Asawfecse Table 1, good coincidence with
the observational value for the cc is obtained for the cbation of a massless scalar fief, for
p large compactified dimensions agd= p+ 1 small compactified dimensionp,= 0,...,3, and
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this for values of the small compactification lengthpf the order of 100 to 1000 times the Planck
lengthlp. Full agreement is obtained only for cases where there igtlgxane small compactified
dimension in excess of the number of large compactified démas. We must point out that the
p large andg small dimensions are not all that are supposed to exist @hdasep should be at
least, and at most, 3 and the other cases would lack any phys&aning). In fact, as we have
pointed out beforep andq refer to the compactified dimensions only, but there may berphon-
compactifed dimensions (exactly-3p in the case of the ‘large’ ones), what translates into a sligh
modification of the formulas above, but does not change ttheraf magnitude of the final numbers
obtained, assuming the most common BCs for the non-configalctiimensions (see e.g. [27] for
an explanation of this technical point). In particular, tases of pure spherical compactification
and of mixed toroidal (for small magnitudes) and spherifat big ones) compactification can
be treated in this way and yield results in the same order gnitzde range. Both these cases
correspond to (observational) isotropic spatial georagtriAlso to be remarked again is the non-
triviality of these calculations, when carried out exaclg done here, to the last expression, what
is apparent from the use of the generalized Chowla-Sellmrgula. Simple power counting is
unable to provide the correct order of magnitude of the tesul

Dimensionally speaking, within the global approach adodptethe present paper everything
is dictated, in the end, by the two basic lengths in the prablehich are its Planck value and the
radius of the observable Universe. Just by playing withé¢hmsnbers in the context of this precise
calculation of the Casimir effect, we have shown that theeplesd value opy may be remarkably
well fitted, under general hypothesis, for the most commomnletsoof the space-time topology.
Notice also that the most precise fits with the observatimadlle of the cc are obtained fdr
betweenb = 100lp andb = 10001, with (1,2) and (2,3) compactified dimensions, respegtivel
The fact that the value obtained for the cc is so sensitiveaartput may be viewed as a drawback
but also, on the contrary, as a vggsitivefeature of our model. For one, the Table 1 has a sharp
discriminating power. In other words, there is in fact noitignof a ‘free parameter’ in our model
and the number of large compactified dimensions could haee biged beforehand, to respect
what we know already of our observable universe.

Also, it proves that the observational value is not easylababdbtain. Table 1 itself proves
that there is only very little chance of getting the right figia truly narrow window, since very
easily we are off by several orders of magnitude). In faciyéftrust this value with the statistics
at hand, we can undoubtedly clairthrough use of the model that the ones so clearly picked
up by Table 1 ar¢heonly two possible configurations of our observable univétsgether with a
couple more coming from corresponding spherical compeatifins). And all them correspond to
a marginally closed universe, in full agreement too witheottompletely independent analysis of
the observational data [45, 43].

Many questions may be posed to the simple models presented ag concerning the dy-
namics of the scalar field, its couplings with gravity andeotfields, a possible hon-symmetrical
behaviour with respect to the large and small dimensionsherelevance of vacuum polariza-
tion (see [62] concerning this last point). Above we haveady argued that they can be proven
to have little influence on the final numerical result (cf. particular, the mass obtained for the
scalar field in [58], extremely close to our own result, ane dorresponding discussion there).
From the very existence and specific properties of the cosnumwave radiation (CMB)}-which
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mimics somehow the situation described (the ‘mass’ comeding to the CMB is also in the sub-
lightest-neutrino range) we are led to the conclusion that such a field could be actpatigent,
unnoticed, in our observable universe. In fact, the exegtarf scalar fields of very low masses is
also demanded by other frameworks, as SUSY models, whesz#tieg behaviour of the cc has
been considered [48].

Let us finally recall again that the Casimir effect is an uliimus phenomena. Its contribution
may be small (as seems to be the case, yet controverted,dtusuniscence), or of some 10-30%
(the right order of magnitude, as in wetting phenomena inikgl He in condensed matter physics).
Here we have seen that it is of the right order of magnitudegesponding to our present epoch in
the evolution of the universe. The implication that thiscoédtion may bear for the early universe
and inflation is not clear from the final result, since it sliobé adapted to the situation and BCs
corresponding to those primeval epochs, what cannot besseseghtforwardly.
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