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tion of the vacuum energy density in ideal situations. With the additional help of the Hadamard

calculus, we have shown it to yield also finite and physicallymeaningful answers in more involved

cases, as when imposing physical boundary conditions in two– and higher–dimensional surfaces,

being then able to mimic in a convenient way other ad hoc cut-offs, as non-zero depths. These

recent developments are described in the first part of this presentation. Recently, those techniques

have also been used in calculations of the contribution of the vacuum energy of the quantum fields

which are presumably pervading the universe, to the cosmological constant. Naive calculations of

the absolute contributions of all known fields lead to a valuewhich is off by roughly 120 orders

of magnitude, as compared with the results obtained from observational fits, what is known as the

new cosmological constant problem. This is very difficult tosolve and we address here such issue

only indirectly, by means of some specific examples.
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1. Introduction

This material corresponds to my lecture, on some basic mathematics which are not sufficiently
well known in general to the theoretical physicist, and are central in order to deal, in a precise way,
with modern approaches to some outstanding processes in Quantum Field Physics and Cosmol-
ogy. All those have in common the fundamental use which is done of quantum fluctuations in the
physical vacuum of the quantum field theory under consideration, be at a nano-electro-mechanical
(NEM) or at a cosmological level. This is, to start with, the beauty of such mathematical meth-
ods, that has been indeed recognized by many authors, in particular, and at the very beginning, by
Stephen Hawking in a seminal paper he wrote some thirty yearsago [1].

We start by reviewing the definition of the concept of a pseudodifferential operator (ΨDO)
and of the zeta functionζA(s) associated to aΨDO A. We continue with the definitions of the
determinant and trace ofA, obtained in a unique way from the concept of Wodzicki residue. After
considering in more detail the singularity structure of thezeta functionζA(s), we address the issue
of the multiplicative (or noncommutative) anomaly (or defect) of the determinant. We then change
subject by considering a special but very important case in the zeta function family analysis, that is,
the celebrated Chowla-Selberg expansion formula (CS) and the non-trivial generalizations thereof
obtained by the author. At the last part of the paper, we addressed specific physical applications
of these mathematics to the calculation of what has become tobe called thecosmo-topological
Casimir effect, that is the possible influence of the fluctuations of the quantum vacuum of some
(scalar) fields at cosmological level, coming from the non-trivial topology of our spacetime. This
is a rather old issue [2], but treated here under new eyes thatconnect with very recent approaches
to the problem [3]. These ideas could be at the very origin of the acceleration in the expansion
of the universe that has been observed recently and could, atleast in part, be an ingredient of the
so-called dark energy component that pervades the universewe are living in.

2. ΨDOs, zeta functions, determinants, and traces

A pseudodifferential operator Aof orderm on a manifoldMn is defined through its symbol
a(x,ξ ), which is a function belonging to the spaceSm(Rn×R

n) of C
∞ functions such that for any

pair of multi-indexsα ,β there exists a constantCα ,β so that
∣

∣

∣∂ α
ξ ∂ β

x a(x,ξ )
∣

∣

∣ ≤Cα ,β (1+ |ξ |)m−|α |.
The definition ofA is given, in the distribution sense, by

A f(x) = (2π)−n
∫

ei<x,ξ>a(x,ξ ) f̂ (ξ )dξ , (2.1)

f is a smooth function,f ∈ S ; rememberS =
{

f ∈C∞(Rn);supx|xβ ∂ α f (x)| < ∞,∀α ,β ∈ R
n
}

,
S ′ being the space of tempered distributions andf̂ the Fourier transform off . Whena(x,ξ ) is
a polynomial inξ one gets a differential operator. In general, the orderm can be complex. The
symbolof a ΨDO has the forma(x,ξ ) = am(x,ξ ) + am−1(x,ξ ) + · · ·+ am− j(x,ξ ) + · · · , being
ak(x,ξ ) = bk(x)ξ k. a(x,ξ ) is said to beelliptic if it is invertible for large|ξ | and if there exists
a constantC such that|a(x,ξ )−1| ≤ C(1+ |ξ |)−m, for |ξ | ≥ C. An elliptic ΨDO is one with an
elliptic symbol.

Pseudodifferential operators are useful tools, both in mathematics and in physics. They were
crucial for the proof of the uniqueness of the Cauchy problem[4] and also for the proof of the
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Atiyah-Singer index formula [5]. In quantum field theory they appear in any analytical contin-
uation process (as complex powers of differential operators, like the Laplacian) [6]. And they
constitute nowadays the basic starting point of any rigorous formulation of quantum field theory
through microlocalization, a concept that is considered tobe the most important step towards the
understanding of linear partial differential equations since the invention of distributions [7].

2.1 The zeta function

Let A a positive-definite ellipticΨDO of positive orderm∈ R, acting on the space of smooth
sections ofE, ann-dimensional vector bundle overM, a closedn-dimensional manifold. Thezeta
functionζA is defined as

ζA(s) = tr A−s = ∑
j

λ−s
j , Res>

n
m

≡ s0. (2.2)

wheres0 = dimM/ordA is called theabscissa of convergenceof ζA(s). Under these conditions, it
can be proven thatζA(s) has a meromorphic continuation to the whole complex planeC (regular
at s = 0), provided that the principal symbol ofA (that isam(x,ξ )) admits aspectral cut: Lθ =

{λ ∈ C;Argλ = θ ,θ1 < θ < θ2} ,SpecA∩ Lθ = /0 (Agmon-Nirenberg condition). The definition
of ζA(s) depends on the position of the cutLθ . The only possible singularities ofζA(s) aresimple
polesatsk = (n−k)/m, k= 0,1,2, . . . ,n−1,n+1, . . . . M. Kontsevich and S. Vishik have managed
to extend this definition to the case whenm∈ C (no spectral cut exists) [8].

2.2 The zeta determinant

Let A a ΨDO operator with a spectral decomposition:{ϕi ,λi}i∈I , where I is some set of
indices. The definition of determinant starts by trying to make sense of the product∏i∈I λi , which
can be easily transformed into a ‘sum’: ln∏i∈I λi = ∑i∈I lnλi . From the definition of the zeta
function ofA: ζA(s) = ∑i∈I λ−s

i , by taking the derivative ats= 0: ζ ′
A(0) =−∑i∈I lnλi , we arrive to

the following definition of determinant ofA [9]:

detζ A = exp
[

−ζ ′
A(0)

]

. (2.3)

An older definition (due to Weierstrass) is obtained by subtracting in the series above (when it is
such) the leading behavior ofλi as a function ofi, asi → ∞, until the series∑i∈I lnλi is made to
converge. The shortcoming is here —for physical applications— that these additional terms turn
out to benon-localand, thus, are non-admissible in any renormalization procedure [10].

In algebraic QFT, in order to write down an action in operatorlanguage one needs a functional
that replaces integration. For the Yang-Mills theory this is the Dixmier trace, which is theunique
extension of the usual trace to the idealL (1,∞) of the compact operatorsT such that the partial sums
of its spectrum diverge logarithmically as the number of terms in the sum:σN(T) ≡ ∑N−1

j=0 µ j =

O(logN), µ0 ≥ µ1 ≥ ·· · The definition of the Dixmier trace ofT is: Dtr T = limN→∞
1

logNσN(T),

provided that the Cesaro meansM(σ)(N) of the sequence inN are convergent asN→∞ (remember
that: M( f )(λ ) = 1

lnλ
∫ λ

1 f (u)du
u ). Then, the Hardy-Littlewood theorem can be stated in a way that

connects the Dixmier trace with the residue of the zeta function of the operatorT−1 at s= 1 (see
Connes [11]): DtrT = lims→1+(s−1)ζT−1(s).

3
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2.3 The Wodzicki residue

The Wodzicki (or noncommutative) residue [12] is theonly extension of the Dixmier trace to
theΨDOs which are not inL (1,∞). It is theonly trace one can define in the algebra ofΨDOs (up
to a multiplicative constant), its definition being: resA = 2 Ress=0 tr(A∆−s), with ∆ the Laplacian.
It satisfies the trace condition: res(AB) = res(BA). A very important property is that it can be
expressed as an integral (local form) resA =

∫

S∗M tr a−n(x,ξ )dξ with S∗M ⊂ T∗M the co-sphere
bundle onM (some authors put a coefficient in front of the integral: Adler-Manin residue).

If dim M = n=− ordA (M compact Riemann,A elliptic, n∈N) it coincides with the Dixmier
trace, and one has Ress=1ζA(s) = 1

n resA−1. The Wodzicki residue continues to make sense for
ΨDOs of arbitrary order and, even if the symbolsa j(x,ξ ), j < m, are not invariant under coordinate
choice, their integral is, and defines a trace. All residua atpoles of the zeta function of aΨDO can
be easily obtained from the Wodzciki residue [13].

2.4 The multiplicative anomaly and its implications

GivenA, B andABΨDOs, even ifζA, ζB andζAB exist, it turns out that, in general, detζ (AB) 6=
detζ A detζ B. The multiplicative (or noncommutative) anomaly (or defect) is defined as:

δ (A,B) = ln

[

detζ (AB)

detζ A detζ B

]

= −ζ ′
AB(0)+ ζ ′

A(0)+ ζ ′
B(0). (2.4)

Wodzicki’s formula for the multiplicative anomaly [12, 14,15]:

δ (A,B) =
res
{

[lnσ(A,B)]2
}

2 ordA ordB (ordA+ordB)
, σ(A,B) := AordBB−ordA. (2.5)

At the level of Quantum Mechanics (QM), where it was originally introduced by Feynman, the
path-integral approach is just an alternative formulationof the theory. In QFT it is much more than
this, being in many ocassionstheactual formulation of QFT [16]. In short, consider the Gaussian
functional integration

∫

[dΦ] exp
{

−∫ dDx
[

Φ†(x)
( )

Φ(x)+ · · ·
]}

−→ det
( )±

, and assume that

the operator matrix has the following structure (being eachAi an operator):

(

A1 A2

A3 A4

)

−→
(

A
B

)

, where the last expression is the result of diagonalizing the operator matrix. A question

now arises. What is the determinant of the operator matrix: det(AB) or detA ·detB? This has been
very much on discussion [17, 18]).

2.5 A word on determinants

Many fundamental calculations of QFT reduce, in essence, tothe computation of the determi-
nant of some suitable operator: at one-loop order, any such theory reduces in fact to a theory of
determinants. The operators involved are pseudodifferential (ΨDO), in loose terms ‘some analytic
functions of differential operators’ (such as

√
1+D or log(1+D), butnot logD). This is explained

in detail in [19]. It is surprising that this seems not to be a main subject of study among mathemati-
cians. I am referring to the determinants that involve in itsdefinition some kind of regularization

4
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(related to operators that are not trace-class). This pieceof calculus falls outside the scope of the
standard disciplines and even many physically oriented mathematicians know little about this. The
subject has many things in common with divergent series but lacks any reference comparable to
the book of Hardy [20]. Actually, this question was already addressed by Weierstrass in a way not
without problems, since it leads to non-local contributions that cannot be given a physical meaning
in QFT. For completion, let us mention the well established theories of determinants for degenerate
operators, for trace-class operators in the Hilbert space,Fredholm operators, etc. [21]

2.6 On the method of zeta-function regularization

Hawkwing introduced zeta-function regularization [1] to deal with infinities in QFT in curved
spacetime [16, 22, 23]. One could try to deal with Quantum Gravity using the canonical approach,
by defining an arrow of time and working on the space-like hypersurfaces perpendicular to it, with
equal time commutation relations, but: (i) There are many topologies of the space-time manifold
that are not a productR×M3. (ii) Such non-product topologies are sometimes very interesting. (iii)
What does it mean ‘equal time’ in the presence of Heisenberg’s uncertainty principle?

One thus turns naturally towards path-integrals:< g2,φ2,S2|g1,φ1,S1 >=
∫

D [g,φ ] eiS[g,φ ],

whereg j denotes the spacetime metric,φ j are matter fields,S j general spacetime surfaces (S j =

M j ∪ ∂M j ), D a measure over all possible ‘paths’ leading from thej = 1 to the j = 2 values of
the intervening magnitudes, andS is the action: S= 1

16πG

∫

(R− 2Λ)
√−gd4x+

∫

Lm
√−gd4x,

R being the curvature,Λ the cc,g the determinant of the metric, andLm the Lagrangian of the

matter fields. Stationarity ofSunder the BCsδg|∂M = 0, ~n·~∂δg
∣

∣

∣

∂M
= 0, leads to Einstein’s equa-

tions: Rab− 1
2gabR+ Λgab = 8πGTab, Tab being the energy-momentum tensor of the matter fields,

Tab = 1
2
√−g

δLm
δgab . The path-integral formalism provides a way to deal ‘perturbatively’ with QFT in

curved spacetime backgrounds [22]. First, through a rotation in the complex plane one defines an
Euclidean action:iS−→ −Ŝ. One can also easily introduce the finite temperature formalism by
the substitutiont2− t1 = iβ , which yields the partition functionZ = ∑n e−βEn. If one now adheres
to the principle that the Feynman propagator is obtained as the limit for β → ∞ of the thermal
propagator, we have shown [24] that the usual principal-part prescription in the zeta-function regu-
larization method neednotbe imposed any more as an additional assumption, since it follows from
this more general and natural principle. Next comes the stationary phase approach (also called
one-loop or WKB), for calculating the path integral, which consists in expanding around a fixed
background:g = g0 + ḡ, φ = φ0 + φ̄ , and leads to the following expansion in the Euclidean met-
ric: Ŝ[g,φ ] = Ŝ[g0,φ0]+S2[ḡ, φ̄ ]+ · · · This is most suitably expressed in terms of determinants (for
bosonic, resp. fermionic fields) of the kind (hereA,B are the relevant (pseudo)differential operators

in the corresponding Lagrangian):∆φ = det
(

1
2πµ2 A

)−1
, ∆ψ = det

(

1
2µ2 B

)

, optimally computed
with zeta techniques.

Now, for its application in practice [25], the method of zetaregularization relies on the exis-
tence of simple formulas that give the analytic continuation of ζ (s) from the region of the complex
plane extending to the right of the abscissa of convergence,Res> s0, to the rest of it [26, 27, 28].
These are not only the reflection formula, but also some otherexpressions, as Jacobi’s theta function
identity, Poisson’s and Plana’s resummation formulae, andthe Chowla-Selberg formula. But some
of these expressions are often restricted to specific cases,and their explicit derivation is usually

5
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involved [27]. A fundamental property shared by all zeta functions is the existence of a reflection
formula. For the Riemann zeta function:Γ(s/2)ζ (s) = πs−1/2Γ(1− s/2)ζ (1− s). For a generic
zeta function,Z(s), we may write it as:Z(ω −s) = F(ω ,s)Z(s). It allows for its analytic continu-
ation in an easy way —what is, in simple cases, the whole storyof the zeta function regularization
procedure. But the analytically continued expression thusobtained is just another series, which
has again a slow convergence behavior, of power series type (the same of the original series, on its
convergence domain). S. Chowla and A. Selberg found a formula [29] for the Epstein zeta function
in two dimensions, that yieldsexponentiallyquick convergenceeverywhere. In [30] a first attempt
was done to try to extend it to inhomogeneous forms; later, tohigher dimensions [19, 31], both
for the homogeneous (quadratic form) and non-homogeneous (quadratic plus affine form) cases.
However, some of the new formulas (remarkably the ones corresponding to the zero-mass case,
e.g., the original CS framework) were not explicit, and involved solving a non-trivial recurrence,
that was solved in [32] andexplicit formulas where obtained. Aside from the quadratic case, the
linear one is also important for its many applications (system of harmonic oscillators or a multi-
dimensional one). The most general linear zeta function studied is the Barnes’ one. Again, many
explicit expressions are missing here, as for its derivative in the general case.

Assume the Hamiltonian operator,H, has a spectral decomposition of the form (think of a
quantum harmonic oscillator):{λi ,ϕi}i∈I , being I some set of indices (which can be discrete,
continuous, mixed, multiple, . . . ). Then, the quantum vacuum energy is obtained as: [27]

E/µ = ∑
i∈I

〈ϕi ,(H/µ)ϕi〉 = Trζ H/µ = ∑
i∈I

λi/µ = ∑
i∈I

(λi/µ)−s

∣

∣

∣

∣

∣

s=−1

= ζH/µ (−1), (2.6)

whereζA is the zeta function corresponding to the operatorA, and the equalities are in the sense
of analytic continuation (generically,A is not of the trace class).1 Note that the formal sum over
the eigenvalues is usually ill defined, and that the last stepinvolves analytic continuation. A regu-
larization parameterµ with dimensions of mass appears in the process, to render theeigenvalues
dimensionless, so that the zeta function can be defined! We shall not discuss these basic details
here, which are just at the starting point of the whole renormalization procedure).

2.7 The Casimir energy

In fact things do not turn out to be so simple. One cannot assign a meaning to theabsolutevalue
of the zero-point energy, and any physical effect is an energy difference between two situations,
such as a quantum field in curved space as compared with the same field in flat space, or one
satisfying BCs on some surface as compared with the same in its absence, etc. This difference is
the Casimir energy:EC = EBC

0 −E0 = 1
2

(

tr HBC− tr H
)

. But here a problem appears. Imposing
mathematical boundary conditions (BCs) on physical quantum fields turns out to be a highly non-
trivial act. This was discussed in detail in a paper by Deutsch and Candelas [34]. These authors
quantized em and scalar fields in the region near an arbitrarysmooth boundary, and calculated
the renormalized vacuum expectation value of the stress-energy tensor, to find out that the energy

1The reader should be warned that thisζ−trace is actually no trace in the usual sense. In particular,it is highly
non-linear, as often explained by the author elsewhere [33]. Some colleagues are unaware of this fact, which has lead to
important mistakes and erroneous conclusions too often.

6
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density diverges as the boundary is approached. Therefore,regularization and renormalization did
not seem to cure the problem with infinities in this case and aninfinite physicalenergy was obtained
if the mathematical BCs were to be fulfilled. However, the authors argued that surfaces have
non-zero depth, and its value could be taken as a handy dimensional cutoff in order to regularize
the infinities. Just two years after Deutsch and Candelas’ work, Kurt Symanzik carried out a
rigorous analysis of QFT in the presence of boundaries [35].Prescribing the value of the quantum
field on a boundary means using the Schrödinger representation, and Symanzik was able to show
rigorously that such representation exists to all orders inthe perturbative expansion. He showed
also that the field operator being diagonalized in a smooth hypersurface differs from the usual
renormalized one by a factor that diverges logarithmicallywhen the distance to the hypersurface
goes to zero. This requires a precise limiting procedure andpoint splitting. The issue was proven by
him to be meaningful within the domains of renormalized QFT.Here the BCs and the hypersurfaces
themselves were treated at a pure mathematical level (zero depth) by using Dirac delta functions.

Recently, a new approach has been postulated [36]. BCs on a field, φ , are enforced on a
surface,S, by introducing a scalar potential,σ , of Gaussian shape. When the Gaussian becomes a
delta, the BCs (Dirichlet here) are enforced: the delta-shaped potential killsall modes ofφ at the
surface. For the rest, the quantum system undergoes a full-fledged QFT renormalization, as in the
case of Symanzik’s. The results confirm those of [34] in the several models studied albeit they do
not seem to agree with those of [35]. They seem to be also in contradiction with the ones quoted
in the usual textbooks and review articles dealing with the Casimir effect [37], where no infinite
energy density when approaching the Casimir plates has beenreported.

3. On the topology and curvature of space

The Friedmann-Robertson-Walker (FRW) model, which can be derived as theonly family of
solutions to the Einstein’s equations compatible with the assumptions ofhomogeneityandisotropy
of space, is the generally accepted model of the cosmos. But the FRW is a family with a free
parameter,k, the curvature, that can be either positive, negative or zero (the flat or Euclidean case).
This curvature, or equivalently the curvature radius,R, is not fixed by the theory and should be
matched with cosmological observations. Moreover, the FRWmodel, and Einstein’s equations
themselves, can only provide local properties, not global ones, so they cannot tell about the overall
topology of our world: is it closed or open? finite or infinite?Even being quite clear that it
is, in any case, extremely large —and possibly the human species will never reach more than an
infinitesimally tiny part of it— the question is very appealing to any (note that this discussion
concerns only three-dimensional space curvature and topology, time will not be involved).

3.1 On the curvature

Serious attempts to measure the possible curvature of the space we live in go back to Gauss,
who measured the sum of the three angles of a big triangle withvertices on the picks of three
far away mountains (Brocken, Inselberg, and Hohenhagen). He was looking for evidence that the
geometry of space is non-Euclidean. The idea was brilliant,but condemned to failure: one needs
a much bigger triangle to try to find the possible non-zero curvature of space. Now cosmologist
have recently measured the curvature radiusR by using the largest triangle available, namely one

7
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with us at one vertex and with the other two on the hot opaque surface of the ionized hydrogen that
delimits our visible universe and emits the CMB radiation (some 3 to 4×105 years after the Big
Bang) [38]. The CMB maps exhibit hot and cold spots. It can be shown that the characteristic spot
angular size corresponds to the first peak of the temperaturepower spectrum, which is reached for
an angular size of.5o (approximately the one subtended by the Moon) if space is flat. If it has a
positive curvature, spots should be larger (with a corresponding displacement of the position of the
peak), and correspondingly smaller for negative curvature. The joint analysis of the considerable
amount of data obtained during the last years by balloon experiments (BOOMERanG, MAXIMA,
DASI) [39, 40], combined with galaxy clustering data, produced a lower bound for|R|> 20h−1Gpc,
i.e. twice as large as the radius of the observable universe,of aboutRU ≃ 9h−1Gpc.

3.2 On the topology

Let us repeat that GR does not prescribe the topology of the universe, or its being finite or not,
and the universe could perfectly be flat and finite. The simplest non-trivial model from the theo-
retical viewpoint is the toroidal topology. Traces for thisand more elaborated ones, as negatively
curved but compact spaces, have been profusely investigated, and some circles in the sky with near
identical temperature patterns were identified [41]. And yet more papers appear from time to time
proposing a new topology [42]. However, to summarize all these efforts and the observational sit-
uation, and once the numerical data are interpreted withoutbias (what sometimes was not the case,
and led to erroneous conclusions), it seems at present that available data point towards a very large
(we may call itinfinite) flat space.

4. Vacuum energy fluctuations and the cosmological constant

The issue of the cc has got renewed thrust from the observational evidence of an acceleration
in the expansion of our Universe, initially reported by two different groups [43]. There was some
controversy on the reliability of the results obtained fromthose observations and on its precise
interpretation, by a number of different reasons. Anyway, after new data has been gathered, there
is now consensus among the community of cosmologists that, in fact, an acceleration is there, and
that it has the order of magnitude obtained in the above mentioned observations [44, 45, 46]. As a
consequence, many theoreticians have urged to try to explain this fact, and also to try to reproduce
the precise value of the cc coming from these observations [47, 48, 49].

Now, as crudely stated by Weinberg [50], it is even more difficult to explain why the cc is
so small but non-zero, than to build theoretical models where it exactly vanishes [51]. Rigorous
calculations performed in quantum field theory on the vacuumenergy density,ρV , corresponding
to quantum fluctuations of the fields we observe in nature, lead to values that are over 120 orders of
magnitude in excess of those allowed by observations of the space-time around us. Energy always
gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation
value of the stress-energy tensor〈Tµν〉 ≡−E gµν appears on the rhs of Einstein’s equations:Rµν −
1
2gµνR= −8πG(T̃µν −E gµν). It affects cosmology:T̃µν contains excitations above the vacuum,
and is equivalent to acc λ = 8πGE . Recent observations yield [52]

λobs = (2.14±0.13×10−3 eV)4 ∼ 4.32×10−9 erg/cm3

8
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It is an old idea that the cc gets contributions from zero point fluctuations [2]

E0 =
h̄c
2 ∑

n
ωn, ω = k2 +m2/h̄2, k = 2π/λ . (4.1)

Evaluating in a box and putting a cut-off at maximumkmax corresponding to reliable QFT physics
(e.g., the Planck energy):ρ ∼ h̄k4

Planck/16π2 ∼ 10123ρobs.
Assuming one will be able to prove (in the future) that the ground value of the cc iszero(as

many suspected until recently), we will be left with thisincremental valuecoming from the topol-
ogy or BCs. This sort of two-step approach to the cc is becoming more and more popular recently
as a way to try to solve this very difficult issue [3]. We have seen, using different examples, that
this value acquires in fact the correct order of magnitude —corresponding to the one coming from
the observed acceleration in the expansion of our universe—under some reasonable conditions.
We put forward a quite simple and primitive idea (but, for thesame reason, of possibly far reach-
ing consequences), related with theglobal topology of the universe [53] and in connection with
the possibility that a faint scalar field pervading the universe could exist. Fields of this kind are
ubiquitous in inflationary models, quintessence theories,and the like. In other words, we do not
pretend to solve the old problem of the cc, not even to contribute significantly to its understanding,
but just to present simple and usual models which show that the right order of magnitude of (some
contributions to)ρV which lie in the precise range deduced from the astrophysical observations are
not difficult to get. To say it in different words, we only address here the ’second stage’ of what
has been termed by Weinberg [50] thenewcc problem.

5. Vacuum energy contribution in different models

5.1 Simple model with large and small compactified dimensions

We assume the existence of a scalar field extending through the universe and calculate the con-
tribution to the cc from the Casimir energy density of this field, for some typical BCs. Ultraviolet
contributions will be safely set to zero by some mechanism ofa fundamental theory. Another hy-
pothesis will be the existence of both large and small dimensions (the total number of large spatial
coordinates being always three), some of which may be compactified, so that the global topology
of the universe will play an important role. There is a quite extensive literature both in the subject
of what is the global topology of spatial sections of the universe [53] and also on the issue of the
possible contribution of the Casimir effect as a source of some sort of cosmic energy, as in the
case of the creation of a neutron star [54]. There are arguments that favor different topologies, as
a compact hyperbolic manifold for the spatial section, whatwould have clear observational conse-
quences [55]. Other interesting work along these lines was reported in [25] and related ideas have
been discussed very recently in [56]. However, we differ from all those in that emphasis is put
now in obtaining the right order of magnitude for the effect.At the present stage it has no sense to
consider the whole amount of possibilities concerning the nature of the field, the different models
for the topology of the universe, and the different BCs possible, with its effect on the sign of the
force too. This is left to a second, more detailed analysis. From previous results [27] we know that
the range of orders of magnitude of the vacuum energy densityfor the most common possibilities
is not so widespread, and may only differ by at most a couple ofdigits. This will allow us, both for
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the sake of simplicity and universality, to deal with two simple situations, corresponding to a scalar
field with periodic BCs or spherically compactified. As explained in [57], most cases with usual
BCs reduce to those, from a mathematical viewpoint.

Consider a universe with a space-time of one of the followingtypes:Rd+1×T
p×T

q, R
d+1×

T
p×S

q, . . ., which are actually plausible models for the space-time topology. Here,d ≥ 0 stands
for a possible number of non-compactified dimensions. Recall the physical contribution to the vac-
uum or zero-point energy< 0|H|0 > is obtained by subtracting the vacuum energy corresponding
to the situation with the only change that compactification is absent (in practice this is done by
conveniently sending the compactification radii to infinity). As well known, both of these vacuum
energies are in fact infinite, but it is itsdifference EC = < 0|H|0 >|R− < 0|H|0 >|R→∞ (Ra typical
compactification length) that makes physical sense, givingrise to the finite value of the Casimir en-
ergyEC. Renormalization must be then carried out. In fact we will discuss the Casimir (or vacuum)
energydensity, ρC = EC/V, which can account for either a finite or an infinite volume of the spatial
section of the universe (from now on we shall assume that all diagonalizations already correspond
to energy densities, volume factors are replaced at the end). In terms of the spectrum{λn} of H:
< 0|H|0 >= 1

2 ∑nλn, where the sum overn is over the whole spectrum, which may involve several
continuum and several discrete indices. The last appear tipically when compactifying the space
coordinates (much as time compactification gives rise to a finite-temperature field theory), as in
the cases we are going to consider. Thus, integration overd continuous dimensions and multiple
summations overp+q indices appear (for a pedagogical description, see [57]).

The physical vacuum energy density in our case, where the contribution of a scalar fieldφ
living in a partly compactified spatial section of the universe is considered, with

S=
1
2

∫

d4x
√−g

[

gµν∂µφ∂ν φ +(m2 + ξ R)φ2] , (5.1)

will be denoted byρφ (this is just the contribution toρV coming from this field, there might be

other, in general),ρφ = 1
2 ∑i λi = 1

2 ∑k
1
µ
(

k2 +M2
)1/2

, where the sum∑k is a generalized one,
M2 = m2+ξ R is an effective mass term, andµ is the usual mass-dimensional parameter to render
the eigenvalues dimensionless (the renormalization parameter; we takēh = c = 1). The massm
of the field will be here considered to be arbitrarily small but different from zero, for now, for
computational reasons —as well as for physical ones, since avery tiny mass for the field can never
be excluded [58, 59]. Our model is stationary, while the universe is expanding. A more careful
calculation shows that this effect can actually be dismissed at the level of order of magnitude,
since its value cannot surpass the one that we will get (as is seen from the present value of the
expansion rate∆R/R∼ 10−10 per year or from direct consideration of the Hubble coefficient).
Recent considerations on the dynamical Casimir effect may be important in a future, more detailed
analysis [60]. For simplicity we perform a static calculation. As a consequence, the values obtained
correspond to the present epoch.

Let us write down in detail the formulas corresponding to thetwo first topologies, as described
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above. For a (p,q)-toroidal universe, withp the number of ‘large’ andq of ‘small’ dimensions:

ρφ =
π−d/2

2dΓ(d/2)∏p
j=1a j ∏q

h=1 bh

∫ ∞

0
dkkd−1

∞

∑
np=−∞

∞

∑
mq=−∞

[

p

∑
j=1

(

2πn j

a j

)2

+
q

∑
h=1

(

2πmh

bh

)2

+M2

]1/2

∼ 1
apbq

∞

∑
np,mq=−∞

(

1
a2

p

∑
j=1

n2
j +

1
b2

q

∑
h=1

m2
h +M2

)(d+1)/2+1

, (5.2)

where the last formula corresponds to the case when all large(resp. all small) compactification
scales are the same. In this last expression the squared massof the field should be divided by 4π2µ2,
but we have renamed it againM2 to simplify the ensuing formulas. We also will not take care
for the moment of the mass-dim factorµ in other places since formulas would get unnecessarily
complicated and there is no problem in recovering it at the end of the calculation. For a (p-toroidal,
q-spherical)-universe,

ρφ =
π−d/2

2dΓ(d/2) ∏p
j=1a j bq

∫ ∞

0
dkkd−1

∞

∑
np=−∞

∞

∑
l=1

Pq−1(l)

[

p

∑
j=1

(

2πn j

a j

)2

+
Q2(l)

b2 +M2

]1/2

∼ 1
apbq

∞

∑
np=−∞

∞

∑
l=1

Pq−1(l)

(

4π2

a2

p

∑
j=1

n2
j +

l(l +q)

b2 +M2

)(d+1)/2+1

, (5.3)

wherePq−1(l) is a polynomial inl of degreeq−1. On dealing with our observable universe, we
assume thatd = 3− p, the number of non-compactified, ‘large’ spatial dimensions (thus, nod
dependence will remain). All these expressions forρφ need to be regularized and we use the zeta
function method, as previously explained.

We will use zeta function regularization, taking advantageof the very powerful equalities
that have been derived by the author [19, 24], and which reduce the enormous burden of such
computations to the easy application of some formulas. For the sake of completeness, let us very
briefly summarize how this works [61, 57]. We deal here only with the case when the spectrum
of the Hamiltonian operator is known explicitly. Going backto the most general expressions of
the Casimir energy corresponding to this case, we replace the exponents in them with a complex
variable,s, thus obtaining the zeta function associated with the operator as:

ζ (s) =
1
2∑

k

(

k2+M2

µ2

)−s/2

. (5.4)

The next step is to perform the analytic continuation of the zeta function from a domain of the
complexs-plane with Res big enough (where it is perfectly defined by this sum) to the point
s= −1, to obtain: ρφ = ζ (−1). The effectiveness of this method has been sufficiently described
before (see, e.g., [27]). As we know from precise Casimir calculations in those references, no
further subtraction or renormalization is needed in the cases here considered, in order to obtain the
physical value for the vacuum energy density (there is actually a subtraction at infinity taken into
account, as carefully described above, but it is of null value, and no renormalization, not even a
finite one, very common to other frameworks, applies here).

Using the formulas [19] that generalize the well-known Chowla-Selberg expression to the
situations considered above, Eqs. (5.2) and (5.3) —namely,multidimensional, massive cases— we
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can provide arbitrarily accurate results for different values of the compactification radii. However,
as argued above we only aim here at matching theorder of magnitudeof the Casimir value and,
thus, we shall just deal with the most simple cases of Eqs. (5.2) or (5.3), which yield the same
orders of magnitude as the rest of them). Also in accordance with this observation, we notice that
among the models here considered and which lead to the valuesthat will be obtained below, there
are in particular the very important typical cases of isotropic universes with the spherical topology.
As all our discussion here is in terms of orders of magnitude and not of precise values with small
errors, all these cases are included onequal footing. But, on the other hand, it has no sense to
present a lengthy calculation dealing in detail with all thepossible spatial geometries. Anyhow, all
these calculations can indeed be done, and are very similar to the one here, as has been described
in detail elsewhere [25, 27].

For the analytic continuation of the zeta function corresponding to (5.2), we obtain:[19]

ζ (s) =
2πs/2+1

ap−(s+1)/2bq−(s−1)/2Γ(s/2)

∞

∑
mq=−∞

p

∑
h=0

(

p
h

)

2h
∞

∑
nh=1

(

∑h
j=1n2

j

∑q
k=1 m2

k +M2

)(s−1)/4

×K(s−1)/2





2πa
b

√

√

√

√

h

∑
j=1

n2
j

(

q

∑
k=1

m2
k +M2

)



 , (5.5)

whereKν(z) is the modified Bessel function of the second kind. Having performed already the
analytic continuation, this expression is ready for the substitutions= −1, and yields

ρφ = − 1
apbq+1

p

∑
h=0

(

p
h

)

2h
∞

∑
nh=1

∞

∑
mq=−∞

√

∑q
k=1 m2

k +M2

∑h
j=1n2

j

K1





2πa
b

√

√

√

√

h

∑
j=1

n2
j

(

q

∑
k=1

m2
k +M2

)



 .(5.6)

Now, from the behaviour of the functionKν(z) for small values of its argument,Kν(z)∼ 1
2Γ(ν)(z/2)−ν ,

z→ 0, we obtain, in the case whenM is not large,

ρφ = − 1
apbq+1







M K1

(

2πa
b

M

)

+
p

∑
h=0

(

p
h

)

2h
∞

∑
nh=1

M
√

∑h
j=1n2

j

×K1





2πa
b

M

√

√

√

√

h

∑
j=1

n2
j



+ O

[

q
√

1+M2K1

(

2πa
b

√

1+M2

)]}

. (5.7)

The only presence of the mass-dim parameterµ is asM/µ everywhere. This does not affect the
small-M limit, M/µ << b/a. Inserting now in the expression thēh andc factors, we finally get

ρφ = − h̄c
2πap+1bq

[

1+
p

∑
h=0

(

p
h

)

2hα

]

+O

[

qK1

(

2πa
b

)]

, (5.8)

whereα is some finite, computable constant obtained as an explicit geometric sum in the limit
M → 0. It is remarkable that we obtain a well defined limit, independent ofM2, providedM2 is not
large: a physically nice situation turns out to correspond to the mathematically rigorous case. This
is the expression one gets not just for the model considered,but for manycases, corresponding to
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different fields, topologies, and BCs —aside from the sign infront of the formula, that may change
with the number of compactified dimensions and the nature of the BCs (in particular, for Dirichlet
BCs one gets a value in the same order of magnitude but of opposite sign).

5.2 Numerical results

For the most common variants, the constantα in (5.8) has been calculated to be of order 102,
and the whole factor, in brackets, of the first term in (5.8) has a value of order 107. This shows the
value of a precise calculation, as the one undertaken here, together with the fact that just a naive
consideration of the dependencies ofρφ on the powers of the compactification radii,a andb, is not
enoughin order to obtain the correct result. Notice, moreover, thenon-trivial change in the power
dependencies from going from Eq. (5.7) to Eq. (5.8).

For the compactification radii at small scales,b, we shall simply take the magnitude of the
Planck length,b∼ lP(lanck), while the typical value for the large scales,a, will be the present size
of the observable universe,a∼ RU . With this choice, the order of the quotienta/b in the argument
of K1 is a/b∼ 1060. Thus, we see immediately that, in fact, the final expressionfor the vacuum
energy density is completely independent of the massM of the field, provided this is very small
(eventually zero). In fact, since the last term in Eq. (5.8) is exponentially vanishing, for large
arguments of the Bessel functionK1, this contribution is zero, for all practical purposes, what is
already a very nice result. Taken in ordinary units (and after tracing back all the transformations
suffered by the mass termM) the actual bound on the mass of the scalar field isM ≤ 1.2×10−32

eV, that is, physically zero, since it is lower by several orders of magnitude than any bound coming
from the more usual SUSY theories−where in fact scalar fields with low masses of the order of
that of the lightest neutrino do show up [48], which may have observable implications.

ρφ p = 0 p = 1 p = 2 p = 3

b = lP 10−13 10−6 1 105

b = 10lP 10−14 [10−8] 10−3 10
b = 102lP 10−15 [10−10] 10−6 10−3

b = 103lP 10−16 10−12 [10−9] (10−7)
b = 104lP 10−17 10−14 10−12 (10−11)
b = 105lP 10−18 10−16 10−15 10−15

Table 1: Orders of magnitude of the vacuum energy density contribution,ρφ , of a massless scalar field to the cc,ρV , for

p large compactified dimensions andq = p+1 small compactified dimensions,p = 0, . . . ,3, for different values of the

small compactification length,b, proportional to the Planck lengthlP. In brackets, values that better match the observed

cc result, and in parenthesis the otherwise closest approximations.

By replacing all these values in Eq. (5.8), we obtain the results listed in Table 1, for the orders
of magnitude of the vacuum energy density corresponding to asample of different numbers of
compactified (large and small) dimensions and for differentvalues of the small compactification
length in terms of the Planck length. Notice again that the total number of large space dimensions
is three, as corresponds to our observable universe. As we see from Table 1, good coincidence with
the observational value for the cc is obtained for the contribution of a massless scalar field,ρφ , for
p large compactified dimensions andq = p+ 1 small compactified dimensions,p = 0, . . . ,3, and
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this for values of the small compactification length,b, of the order of 100 to 1000 times the Planck
length lP. Full agreement is obtained only for cases where there is exactly one small compactified
dimension in excess of the number of large compactified dimensions. We must point out that the
p large andq small dimensions are not all that are supposed to exist (in that casep should be at
least, and at most, 3 and the other cases would lack any physical meaning). In fact, as we have
pointed out before,p andq refer to the compactified dimensions only, but there may be other, non-
compactifed dimensions (exactly 3− p in the case of the ‘large’ ones), what translates into a slight
modification of the formulas above, but does not change the order of magnitude of the final numbers
obtained, assuming the most common BCs for the non-compactified dimensions (see e.g. [27] for
an explanation of this technical point). In particular, thecases of pure spherical compactification
and of mixed toroidal (for small magnitudes) and spherical (for big ones) compactification can
be treated in this way and yield results in the same order of magnitude range. Both these cases
correspond to (observational) isotropic spatial geometries. Also to be remarked again is the non-
triviality of these calculations, when carried out exactly, as done here, to the last expression, what
is apparent from the use of the generalized Chowla-Selberg formula. Simple power counting is
unable to provide the correct order of magnitude of the results.

Dimensionally speaking, within the global approach adopted in the present paper everything
is dictated, in the end, by the two basic lengths in the problem, which are its Planck value and the
radius of the observable Universe. Just by playing with these numbers in the context of this precise
calculation of the Casimir effect, we have shown that the observed value ofρV may be remarkably
well fitted, under general hypothesis, for the most common models of the space-time topology.
Notice also that the most precise fits with the observationalvalue of the cc are obtained forb
betweenb = 100lP andb = 1000lP, with (1,2) and (2,3) compactified dimensions, respectively.
The fact that the value obtained for the cc is so sensitive to the input may be viewed as a drawback
but also, on the contrary, as a verypositivefeature of our model. For one, the Table 1 has a sharp
discriminating power. In other words, there is in fact no tuning of a ‘free parameter’ in our model
and the number of large compactified dimensions could have been fixed beforehand, to respect
what we know already of our observable universe.

Also, it proves that the observational value is not easy at all to obtain. Table 1 itself proves
that there is only very little chance of getting the right figure (a truly narrow window, since very
easily we are off by several orders of magnitude). In fact, ifwe trust this value with the statistics
at hand, we can undoubtedly claim−through use of the model− that the ones so clearly picked
up by Table 1 aretheonly two possible configurations of our observable universe(together with a
couple more coming from corresponding spherical compactifications). And all them correspond to
a marginally closed universe, in full agreement too with other completely independent analysis of
the observational data [45, 43].

Many questions may be posed to the simple models presented here, as concerning the dy-
namics of the scalar field, its couplings with gravity and other fields, a possible non-symmetrical
behaviour with respect to the large and small dimensions, orthe relevance of vacuum polariza-
tion (see [62] concerning this last point). Above we have already argued that they can be proven
to have little influence on the final numerical result (cf., inparticular, the mass obtained for the
scalar field in [58], extremely close to our own result, and the corresponding discussion there).
From the very existence and specific properties of the cosmicmicrowave radiation (CMB)−which
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mimics somehow the situation described (the ‘mass’ corresponding to the CMB is also in the sub-
lightest-neutrino range)− we are led to the conclusion that such a field could be actuallypresent,
unnoticed, in our observable universe. In fact, the existence of scalar fields of very low masses is
also demanded by other frameworks, as SUSY models, where thescaling behaviour of the cc has
been considered [48].

Let us finally recall again that the Casimir effect is an ubiquitous phenomena. Its contribution
may be small (as seems to be the case, yet controverted, to sonoluminiscence), or of some 10-30%
(the right order of magnitude, as in wetting phenomena involving He in condensed matter physics).
Here we have seen that it is of the right order of magnitude, corresponding to our present epoch in
the evolution of the universe. The implication that this calculation may bear for the early universe
and inflation is not clear from the final result, since it should be adapted to the situation and BCs
corresponding to those primeval epochs, what cannot be seenstraightforwardly.
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