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1. Introduction

Duality between open and closed strings has been a well–known problem since the inception
of string theory. The AdS/CFT correspondence has revived the interest on this subject and has
offered the possibility to work on a concrete case: AdS/CFT is a kind of limiting case of such
duality in which the open string side of the correspondence is represented by a conformal gauge
theory. More recently A. Sen, [1], has extended the scope of such duality by suggesting that open
string theory might be able to describe all the closed string physics, at least in a background where
D–branes are present.

This talk is a review of some research work done in this direction. The idea behind it is to start
from some basic clue from AdS/CFT to learn more about the duality suggested by Sen. Witten’s
open string field theory should be a privileged ground to test this idea. For open string field theory
is of course formulated in terms of open strings degrees of freedom, but there is ample evidence
that tachyon condensation leads to a new vacuum and that this new vacuum is the closed string one.

The first thing we discuss is in fact (see [5]) a remarkable correspondence (in the context of
the AdS/CFT) between N=4 SYM states in 4D and star algebra projectors, or, more appropriately,
family of them and star algebra projectors in SFT. After taking a coarse graining limit, the former
give rise to the geometry of supergravity solutions (the 1/2 BPS solutions of [7]). Although the
correspondence is imperfect due to the lack of supersymmetry on the SFT side, it is very suggestive,
because it implies that supergravity solutions can be constructed out of open string bricks. One
would therefore expect that closed string modes should be expressible in terms of open string
degrees of freedom. Following this logical implication we turn to the task of establishing an explicit
relation between open and closed string modes, i.e. a dictionary to translate from the open string
to the closed string language.

The result of the analysis carried out in [14] can be summarized as follows: (perturbative)
closed string modes are string field theory (SFT) projectors. More precisely: momentum and
level–matched off–shell closed string states are in one–to–one correspondence with star algebra
projectors in SFT. One very interesting outcome of this proposal is that a boundary state (describing
a D–brane in the closed string language) under this correspondence gets translated into the open
string identity state.

Recently M. Schnabl [13] has found an exact analytic solution to the SFT equation of motion,
which corresponds to a vacuum without perturbative open strings modes and provide a proof of the
first two Sen’s conjectures. The existence of lower dimensional solutions (third Sen’s conjecture)
was shown in the past in the context of the vacuum SFT (VSFT) [16], a simplified (and singular)
version of Witten’s open SFT. We recall that the solutions to the VSFT equation of motion are star
algebra projectors (at least for the matter part). In the sequel the basic objects are precisely star
algebra projectors. Since the star product is the same in SFT and in VSFT, star algebra projectors
are well defined objects in SFT, even without reference to VSFT. This is the sense in which they
will be considered here, namely as objects pertaining to SFT. However it is useful to remember that
VSFT solutions were interpreted as D–branes and it is not excluded that to any such projector there
correspond a SFT solution á la Schnabl.

The talk is organized as follows. Section 2 is devoted to 1/2 BPS droplets. Section 3 is an
SFT reminder. Section 4 discusses the correspondence between droplets and SFT projectors. In
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section 5 I will introduce closed string oscillators in terms of open string ones. In section 6 the zero
momentum off–shell closed string states will be introduced. While in section 7 I will show how to
endow them with a nonzero momentum. In section 8 I will show a remarkable consistency check
of the proposed translation dictionary. Finally, section 9 is devoted to a discussion of the results
and of the questions they raise.

2. Half–BPS solutions

In the field theory side of the AdS/CFT correspondence, half–BPS multiplets of N = 4 Yang–
Mills theory fall into (0, l,0) representations of the SO(6) R–symmetry group. Highest weight
states can be constructed as gauge invariant polynomials of a complex scalar field X . The conformal
dimension of the latter is ∆ = 1 and the U(1) R–charge J = 1, where U(1) ∈ SO(6). A highest
weight therefore satisfies ∆ = J. The most general state of this type of charge n takes the form

(tr(X l1))k1(tr(X l2))k2 . . . (tr(X lp))kp (2.1)

where the integers li,ki form a partition of n: ∑p
i=1 liki = n. A basis for these states is given by the

degree n Schur polynomials of the group U(N). These in turn correspond to Young tableaux of
maximal column length N, [2, 8]. Therefore one can classify these highest weight states (chiral
primaries) by means of Young diagrams.

It can be shown that they can be represented in another useful way, as a system of N fermionic
harmonic oscillators, whose energy levels are Ei = ni +

1
2 (with h̄ = 1), where ni are nonnegative

integers. The ground state corresponds to n1 = 0,n2 = 1, . . .nN = N− 1. Therefore the generic
excited state can be represented by means of a Young diagram with rows (r1,r2, . . . ,rN), with
ri = ni− i+1 not all vanishing natural numbers in decreasing order. The energy of the state above
the Fermi sea is E = J = ∑i ri, which is the total number of boxes in the Young diagram.

Here is a short list a few states which will be considered in the sequel by means of their Young
diagram representation. A giant graviton is represented by a single column Young diagram, whose
maximum length is of course N. A giant graviton, [6] is a half–BPS state which can be described as
a D3–brane wrapping around an S3 cycles in the S5 factor of AdS5×S5. A dual giant graviton, i.e.
a D3–brane wrapping around an S3 cycle in AdS5, is represented by a one–row Young diagram of
arbitrary length. A black ring is represented by a large rectangular diagram of size N (see below). A
superstar [9] is represented by a large triangular diagram of size ∼ N. It represents a stack of giant
gravitons located at the origin of AdS5. From the supergravity viewpoint, it is a singular solution
in that it has a naked singularity.

In the last two cases the energy of the states is proportional to the area of the Young tableau
and therefore ∼ N2. Following in particular [3], these are the states we will be mostly interested in
in the following.

2.1 1/2–BPS states as supergravity solutions

In [7] a beautiful characterization of 1/2–BPS states in type IIB supergravity was found. Reg-
ular 1/2–BPS solutions with a geometry invariant under SO(4)×SO(4)×R correspond to the fol-
lowing ansatz

ds2 = −h−2(dt +Vi dxi)2 +h2(dy2 +dxi dxi)+ yeGdΩ2
3 + ye−GdΩ̃2

3
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h−2 = 2ycoshG

y∂yVi = εi j ∂ jz, y(∂iVj−∂ jVi) = εi j ∂yz

z =
1
2

tanhG (2.2)

where i, j = 1,2 and εi j is the antisymmetric symbol. There are also N units of 5–form flux, with

F(5) = Fµνdxµ ∧dxν ∧dΩ3 + F̃µνdxµ ∧dxν ∧dΩ̃3

where µ ,ν = 0, ...,3 refer to t,x1,x2,y. As for the ansatz for F and F̃ , see [7]. The full solution is
determined in terms of a single function z, which must satisfy the equation

∂i∂i z+ y∂y

(

∂yz
y

)

= 0 (2.3)

Regular solutions can exist only if at the boundary y = 0 the function z(0,x1,x2) takes the values
± 1

2 . Therefore regular solutions correspond to boundary functions z(0,x1,x2) that are locally con-
stant in the x1,x2 plane. The region of this plane where z =−1/2 are called droplets and denoted
by D . Now let us insert h̄ back into the game and make the identification h̄↔ 2π`4

p. It is useful
to introduce the new notation u(0;x1,x2) = 1

2 − z(0;x1,x2); u is the characteristic function of the
droplet, since it equals 1 inside the droplet and 0 outside. Solutions with such (sharp) characteris-
tic functions are regular since the boundary conditions are satisfied. Solutions characterized by a
function u which is not exactly 1 or 0, are singular [12]. This is the case of the superstar solution
[9].

The area of the droplet must equal N:

N =

∫

d2x
2π h̄

u(0;x1,x2) (2.4)

while the conformal dimension of the state corresponding to the droplet D is

∆ =
∫

d2x
2π h̄

1
2

x2
1 + x2

2

h̄
u(0;x1,x2)−

1
2

(

∫

d2x
2π h̄

u(0;x1,x2)

)2

(2.5)

In conclusion, the information about the solution is encoded in the droplet. For instance, if the
droplet is a disk of radius r0 we recover the AdS5×S5 solution; if the droplet is the upper half plane
one gets the plane wave solution. In general if the droplet is compact the solution is asymptotically
AdS5×S5.

2.2 The Wigner distribution

It is clearly of upmost importance to establish a dictionary between the 1/2–BPS states intro-
duced at the beginning of this section starting from N = 4 SYM and the droplet solutions. This
will give us a recipe to recognize the geometry emerging from a given gauge field theory state.
The clue is the free fermion representation introduced above: any state represented by a Young
diagram can be interpreted as a system of N fermions with energies above the Fermi sea. The for-
mulas (2.4,2.5) suggest that u be identified with the semiclassical limit of the quantum one-particle
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(q, p) phase–space distributions of the free dual fermions after the identification (x1,x2)↔ (q, p).
A well–known distribution is the Wigner one [10]:

W (q, p) =
1

2π h̄

∫ ∞

−∞
dy〈q− y|ρ̂ |q+ y〉e2ipy/h̄ (2.6)

where ρ̂ is the density matrix. In the case of a pure state ψ , 〈q′|ρ̂ |q′′〉= ψ(q′)ψ?(q′′), therefore

W (q, p) =
1

2π h̄

∫ ∞

−∞
dyψ?(q+ y)ψ(q− y)e2ipy/h̄ (2.7)

In general ρ̂ will take the form of

ρ̂(q′,q′′) = ∑
f∈F

ψ f (q
′)ψ?

f (q
′′)

F being a given family of pure states. We will consider family of pure states representing excited
states of N (fermionic) harmonic oscillators fn = rn + n− 1, with n = 1, ...,N (where we have
dropped h̄). In this case F will be a subset of the natural numbers and

ψ fn = A( fn)H fn(q/
√

h̄)e−q2/2h̄

where A(n) is a normalization constant and Hn are the Hermite polynomials. Using a well–known
integration formula for Hermite polynomials one gets, [10],

W (q, p) = ∑
fn∈F

Wfn(q, p) =
1

2π h̄
e−(q2+p2)/h̄ ∑

fn∈F
(−1) fn L fn

(

2
q2 + p2

h̄

)

(2.8)

Here we are interested in Wigner distributions because they represent a precise recipe to
bosonize associated fermion systems: from the fermion system we easily get the Wigner distri-
bution and from the latter we can reconstruct the former. In the sequel we will use Wigner distri-
butions in this sense, and will be concerned specifically with distributions relative to ensembles, in
which N is supposed to be very large. The semiclassical limit will correspond to h̄→ 0 while keep-
ing h̄N finite. We will use such distributions to make a comparison with the u droplet functions,
[3], and with space profiles of SFT projectors.

Let us consider a few significant cases. The first concerns the Fermi sea. The relevant distri-
bution is

2π h̄WFS = 2π h̄
N−1

∑
n=0

Wn(q, p) (2.9)

A numerical analysis shows that the limit h̄→ 0 with h̄N fixed reproduces the finite disk character-
istic of the latter solution (see, for instance, [11]).

The second example is the case corresponding to a rectangular Young diagram of row length
K. It represents N fermions all excited above the sea by the same amount K. We are interested in
the limit of large N and K such that h̄K as well as h̄N are finite. The Wigner distribution is

2π h̄Wrect = 2π h̄
N+K−1

∑
n=K

WK+n−1(q, p) (2.10)
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Setting u(0,x1,x2) = 2π h̄Wrect identifies a characteristic function which is (approximately) 1 in the
ring h̄K ≤ q2+p2

2 ≤ h̄(N + K) and 0 outside, in the large N and K limit. This corresponds to the
1/2–BPS called "black ring" in [7]. It has conformal dimension ∆ = NK ∼ N 2, since K must be
some multiple of N.

The last example concerns Young diagrams which are approximately triangular with ∆ =

NNc/2 and so correspond to superstar ensembles. In this case we have fn = (n− 1)δn, with δn

an integer ∼ Nc
N +1. For illustrative purposes let us set δn = δ = Nc

N +1. Then

2π h̄Wtriangle = 2π h̄
N−1

∑
n=0

Wnδ (q, p) = 2e−
2H
h̄ ∑

n=0

(−1)nδ Lnδ (4H/h̄) (2.11)

where H = (q2 + p2)/2. In the large N limit

2π h̄W ∞
triangle =

1
δ

+oscillationsat scale∆H = h̄

Therefore identifying once again 2π h̄W ∞
triangle with u(0;x1,x2) we get approximately u(0,x1,x2) =

1/δ within a finite radius disk. This corresponds to a fractionally filled droplet and represents the
superstar solution, which, as we pointed out, is singular.

3. SFT: a reminder

In this section we will introduce string fields in SFT that mimic the behavior of the fermionic
systems and the relevant half-BPS Wigner distributions discussed in the previous section.

The SFT action is

S (Ψ) =−
(

1
2
〈Ψ|QB|Ψ〉+

1
3
〈Ψ|Ψ∗Ψ〉

)

(3.1)

where QB is the open string BRST charge.

The string state we are looking for are star–algebra projectors, that is states that satisfy the
equation

Ψ∗Ψ = Ψ

Since the star product factorizes into matter and ghost part it is natural to make for projectors the
following factorized ansatz

Ψ = Ψm⊗Ψg (3.2)

where Ψg and Ψm depend purely on ghost and matter degrees of freedom, respectively. The pro-
jector equation splits into

Ψg = Ψg ∗g Ψg (3.3)

Ψm = Ψm ∗m Ψm (3.4)

where ∗g and ∗m refer to the star product involving only the ghost and matter part. Solutions to
(3.4) have been studied in the past as VSFT solutions (and interpreted as D–branes).

6
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In the rest of the paper we will concentrate on the matter part, eq.(3.4), and forget about the
ghost part (see [14]). The ∗m product in the operator formalism is defined as follows

123〈V3|Ψ1〉1|Ψ2〉2 =3 〈Ψ1 ∗m Ψ2|, (3.5)

where 123〈V3| is the three strings vertex. The basic ingredient in this definition are the matrices of
vertex coefficients Vrs

nm, r,s = 1,2,3, n,m = 1, . . . ,∞.
As it turns out the projectors we need must be superpositions of matter projectors (stacks of

VSFT solutions) with the following characteristics: they must cover the ordinary 4D Minkowski
space (parallel directions), be, in the low energy limit (α ′→ 0), delta–function like in 16 directions
and have some width in the remaining 6 directions (these 22 directions will be referred to as the
transversal ones). Out of the latter two will have a special status, in that a constant B field will be
switched on along them. We can imagine that all the internal dimensions are compactified on tori,
but this is not strictly necessary for our argument. In the remaining part of this section we will
review the construction of such projectors.

In the following we need both translationally invariant (in the parallel directions) and non-
translationally invariant projectors (in the transverse directions).

Although there is a great variety of such projectors we will stick to those introduced in [16],
i.e. the sliver and the lump. The former is translationally invariant and is defined by

|Ξ〉= N e−
1
2 a†·S·a† |0〉, a† ·S ·a† =

∞

∑
n,m=1

aµ†
n Snmaν†

m ηµν (3.6)

where S = CT and

T =
1

2X
(1+X−

√

(1+3X)(1−X)) (3.7)

with X = CV 11, where Cnm = (−1)nδnm is the so–called twist matrix. N is a normalization con-
stant.

The lump projector was engineered to represent a lower dimensional brane (Dk-brane) in
VSFT, therefore it will have (25− k) transverse space directions along which translational in-
variance is broken. Accordingly we split the three string vertex into the tensor product of the
perpendicular part and the parallel part

|V3〉= |V3,⊥〉 ⊗ |V3,‖〉 (3.8)

The parallel part is the same as in the sliver case while the perpendicular part is modified as follows.
Following [16], we denote by xµ̄ , pµ̄ , µ̄ = 1, ...,k the coordinates and momenta in the transverse
directions and introduce the canonical zero modes oscillators

a(r)µ̄
0 =

1
2

√
bp̂(r)µ̄ − i

1√
b

x̂(r)µ̄ , a(r)µ̄†
0 =

1
2

√
bp̂(r)µ̄ + i

1√
b

x̂(r)µ̄ , (3.9)

where b is a free parameter. Denoting by |Ωb〉 the oscillator vacuum ( aµ̄
0 |Ωb〉 = 0 ), in this new

basis the three strings vertex is given by

|V3,⊥〉′ = K e−E ′ |Ωb〉 (3.10)

7
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K being a suitable constant and

E ′ =
1
2

3

∑
r,s=1

∑
M,N≥0

a(r)µ̄†
M V

′rs
MN a(s)ν̄†

N ηµ̄ν̄ (3.11)

where M,N denote the couple of indexes {0,m} and {0,n}, respectively. The coefficients V
′rs
MN are

given in Appendix B of [16]. The new Neumann coefficients matrices V
′rs satisfy the same relations

as the V rs ones. In particular one can introduce the matrices X
′rs =CV

′rs, where CNM = (−1)N δNM .
The lump solution |Ξ′k〉 has the form (3.6) with S along the parallel directions, while |0〉 is replaced
by |Ωb〉 and S is replaced by S′ along the perpendicular ones. Here S′ = CT ′ and T ′ has the same
form as T eq.(3.7) with X replaced by X ′. It can be verified that the ratio of tensions for such
projectors is the appropriate one for Dk–branes. For our basic projector we will choose k = 22.

As said above, two of the transverse directions are special, in that a constant background B
field is switched on there. We denote these two directions by the labels α and β (for instance
α ,β = 24,25) and denote them simply by y1,y2; we take for B the explicit form

Bαβ =

(

0 B
−B 0

)

(3.12)

Then, as is well–known, in these two directions we have a new effective metric Gαβ , the open
string metric, as well as an effective antisymmetric parameter θαβ , given by

Gαβ =
√

DetGδαβ , θ αβ = εαβ θ (3.13)

where until further notice we set α ′ = 1 and DetG =
(

1+(2πB)2
)2

. In (3.13) εαβ represents the
2× 2 antisymmetric symbol with ε 1

2 = 1. The transverse vertex |V3,⊥〉 will become in this case
|V ′3,⊥〉

|V ′3,⊥〉= |V3,⊥,θ 〉 ⊗ |V3,⊥〉 (3.14)

where

|V ′3,⊥,θ 〉= Kθ e−Eθ |Ωb〉 (3.15)

Kθ is a suitable constant and, [22, 15],

Eθ =
1
2

3

∑
r,s=1

∑
M,N≥0

a(r)α†
M V

rs
αβ ,MN a(s)β†

N (3.16)

The coefficients V
αβ ,rs
MN are given in [22]. The new Neumann coefficients matrices Vrs satisfy the

same relations as the V rs ones. If one introduces the matrices Xrs = CVrs, then the lump solution
|S〉 along α and β has the form (3.6) with |0〉 replaced by |Ωb〉 and S replaced by S, where S = CT

and T has the same form as T in eq.(3.7) with X replaced by X. It can be verified that the ratio of
tensions for such solutions is the appropriate one for D–branes in a magnetic field, [22].

It is possible to construct a full family of such solutions which are ∗– and bpz–orthonormal.
This goes as follows, [22, 15]. First we introduce two ‘vectors’ ξ = {ξNα} and ζ = {ζNα}, which
are chosen to satisfy the conditions

ρRξ = 0, ρLξ = ξ , and ρRζ = 0, ρLζ = ζ , (3.17)

8
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where ρL,ρR are the half–string projectors [17]. Moreover we define the matrix τ by means of τ

= {τα
β}=

(

1 0
0 −1

)

. Next we set

x = (a†τξ )(a†Cζ ) = (aα†
N τα

β ξNβ )(aα†
N CNMζMα) (3.18)

Finally we introduce the Laguerre polynomials Ln(z), of the generic variable z, and define the
sequence of states

|Λn〉= (−κ)nLn

( x
κ

)

|S⊥θ 〉 (3.19)

where, for simplicity, we have written down the tensorial factor involving the the y1,y2 directions
only and understood the other directions. As part of the definition of |Λn〉 we require the two
following conditions to be satisfied

ξ T τ
1

I−T2 ζ = 1, ξ T τ
T

I−T2 ζ = κ (3.20)

where κ is a real number. To guarantee Hermiticity for |Λn〉, we require ζ = τξ ∗.
The states |Λn〉 satisfy the remarkable property

|Λn〉 ∗ |Λm〉= δn,m|Λn〉 (3.21)

〈Λn|Λm〉= δn,m〈Λ0|Λ0〉 (3.22)

Therefore each Λn, as well as any combination of Λn with unit coefficients, are lump projectors.
So far we have set α ′ = 1. It is easy to insert back α ′. In order to evaluate the low energy

profile of |Λn〉 we first contract it with the eigenstate of the position operators with eigenvalues yα :
〈y|Λn〉, and then take the limit α ′→ 0, [22]. The leading term in the α ′ expansion turns out to be

〈y|Λn〉=
1
π

(−1)n Ln

(

2r2

θ

)

e−
r2
θ |Ξ〉+O(

√
α ′) (3.23)

where r2 = yα yβ δαβ and |Ξ〉 is the sliver solution.
The projectors we need in the following have this α ′ → 0 limit in the yα directions; as for

the remaining directions, they have the form of the sliver in the parallel directions and, finally, they
become delta–like functions multiplied by the sliver in the remaining transverse directions, i.e. they
are localized at the origin of the latter. This can be easily seen by taking the limit θ → 0 in the case
n = 0 in (3.23).

4. Wigner distributions–projectors correspondence

Looking at eqs.(2.9,2.10,2.11) of section 2, one immediately notices that they can be seen (up
to an overall normalization constant) as the low energy limit space profiles of combinations of the
string states Λn introduced in the previous section, with unit coefficients. Since combinations of Λn

with unit coefficients are also projectors, one can view the above Wigner distributions as the low
energy profile of VSFT solutions (up to the common |Ξ〉 factor). It is therefore tantalizing to make
the following association

Wigner distribution for an N fermion system↔ SFTprojector

9
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For this to work we must require the correspondence h̄↔ θ and that the coordinates x1,x2 be
identified with y1,y2.

Let us delve into this correspondence. It can be read in two directions. First: one can say
that to any 1/2–BPS state to which we can associate a Wigner distribution of the type (2.6), there
corresponds a SFT projector given by a combination

|W 〉= ∑
fn∈F
|Λ fn〉, 2h̄W (q, p)|Ξ〉 = 〈y|W 〉 (4.1)

where (p,q) is identified with (y1,y2) and the latter are the eigenvalues of |y〉. Vice versa: to any
SFT projector of the type (4.1) we can associate a Wigner distribution W (q, p) according to (2.6).
In this way we can associate to |W 〉 a Young tableau and therefore a 1/2–BPS state in the N = 4
superconformal field theory (before taking the large N limit) and we can associate a geometry (after
taking it1). The latter point implies that we may be able to associate a geometry to a given SFT
projector. This immediately leads to open–closed string duality, since we see geometry emerging
from a SFT projector which is entirely expressed in terms of open string creation operators.

In the following we would like to list some arguments in support of this correspondence.
1) With the above association we connect a microstate corresponding to a given geometry, i.e.

a given supergravity solution, to a string state which is a SFT projector or a solution to the VSFT
equation of motion. The correspondence (4.1) is one–to–one.

2) The droplet geometry lives in a (x1,x2) plane which lies in the internal (compactified)
dimensions. In the same way the plane (y1,y2) lies in the compactified part of the bosonic target
space. As pointed out above, we identify the two planes. One could phrase it by saying that the
two space coordinates x1,x2, which had been replaced by two phase–space coordinates q, p in the
intermediate argument, have returned to their natural role via the identification with y1,y2.

3) The correspondence (4.1) tells us how the Pauli principle gets incorporated into a bosonic
setting. The numbers fn in the LHS of (4.1) correspond to the fermion energy levels in the original
fermion system. Therefore, due to the Pauli exclusion principle, each fn can appear only once in
the family F . Therefore in the summation each |Λ fn〉 appears only once. This guarantees that |W 〉
is a SFT projector since, for any ∗–projector|Λ〉, n|Λ〉 is a ∗–projector if and only if n = 0,1. On the
other hand any SFT projector that can be written in the form ∑ fn∈F |Λ fn〉 tells us that the numbers
fn ∈F can be interpreted as energy levels of a fermionic harmonic oscillator system, since each
appears only once.

4) The VSFT solution corresponding to the Fermi sea (2.9) is represented by a stack of N
projectors. The giant graviton solution is represented by one missing from the stack. The superstar
solution (2.11) is represented by a stack of such missing projectors. This is in keeping with the
interpretation of superstars as stack of giant gravitons, [9].

5) There is an algebra isomorphism between Wigner distributions of the type (2.6) and SFT
projectors like |W 〉, an isomorphism that was pointed out in [26, 27, 22]. It is a well–known fact
that any classical function f (q, p) in a (q, p) phase space can be mapped to a quantum operator
Ô f via the Weyl transform, and that the product for quantum operators Ô f Ôg is mapped into the
Moyal product f ?g for functions. Under this correspondence the (x1,x2)↔ (q, p) plane becomes

1In the process of taking the large N limit one smears out many details, so that multiple states are mapped to the
same geometry

10
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noncommutative. It is a well–known fact that, under this correspondence the classical Wigner
distributions like (2.9,2.10,2.11) are mapped into projectors of the Moyal star–algebra:

(2π h̄W )? (2π h̄W ) = 2π h̄W. (4.2)

Now, it was shown in [26, 27] that in the low energy limit, the SFT star product factorizes into
Witten’s star product and the Moyal ? product. Due to this factorization, the correspondence (4.1)
is in fact a star–algebra isomorphism

|W 〉 ∗ |W 〉 ←→ (2π h̄W )? (2π h̄W ) (4.3)

This remark should be adequately appreciated. Let us consider 2π h̄W and suppose it is such that
we can ignore its derivatives with respect to p and q. Then eq.(4.2) becomes (2π h̄W )2 = 2π h̄W ,
which is the equation of a characteristic function (it can only be either 0 or 1). This is indeed what
happens in the case of the vacuum and the black ring solutions, see [3, 4]. It is not the case of the
superstar distribution because in that case we cannot ignore derivatives. But this remark suggests
that the property of being Moyal projectors is basic for Wigner distributions to represent 1/2–BPS
states. The string state |W 〉 ‘inherits’ this property. It is the ‘continuation’ of the space profile to the
whole string theory. In this sense it is natural that |W 〉 correspond to a string field theory projector.
It should be remarked that on the SFT side noncommutativity is produced by the B field, which
mimics the role of the five–form flux (the latter being of course absent in the bosonic case).

The correspondence (4.1) must be thought as embedded in the following table:

N = 4 U(N) SYM
chiral primaries,
Young tableaux

m
N fermion systems
of harmonic oscillators,
Young tableaux

m

Wigner distributions
Young tableaux

⇐⇒
VSFT solutions:
sum of ∗–projectors,
Young tableaux

↓ ↓
Half BPS IIB
SUGRA solutions

←→ Singular gravity solutions (?)

where double–line arrows represent one–to–one correspondences, simple down arrows represent
the large N limit and the question mark indicates the conjectural part of our proposed correspon-
dence.

The fact that |W 〉 is a SFT projector is the strongest support of our conjectured correspon-
dence. The weak point is that we know it is a solution of bosonic SFT projector but we do not
know whether it corresponds to a supersymmetric vacuum string field theory. However it is not un-
conceivable that the bosonic part of 1/2–BPS states be well described by bosonic string field theory
projectors. Unfortunately the study of the tachyon condensation in superstring field theory has not

11
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progressed much, see [20, 21]. From what we know nowadays it is possible that the bosonic parts
of some supersymmetric SFT projectors take a form like |W 〉, although a satisfactory answer is not
yet at hand.

5. Closed string theory oscillators

Although the correspondence outlined in the previous sections is imperfect due to the lack of
supersymmetry on the SFT side, it is very suggestive, because it implies that supergravity solutions
can be constructed out of open string bricks. One is thus led to expect that closed string modes are
expressible in terms of open string degrees of freedom. In the rest of this paper we would like to
show how this conjecture could come true. The construction that follows is based on split string
field theory and the so–called comma vertex algebra, see [18] and references therein.

Let us consider the translationally invariant sliver projector, represented by the matrix S along
all directions. and introduce, as above, the projectors ρL and ρR:

ρ2
L = ρL, ρ2

R = ρR, ρL +ρR = 1 (5.1)

which project onto the left and right hand part of the string, respectively. Then we define the
operators

sµ = ω(aµ +Saµ †) = (aµ +Saµ †)ω , ω =
1√

1−S2
(5.2)

and the conjugate ones, where the labels n,m running from 1 to +∞ are understood. Using the
algebra of open string creation and annihilation operators these operators can be shown to satisfy

[sµ
m,sν†

n ] = δnmη µν (5.3)

while the other commutators vanish. Moreover, understanding the Lorentz indexes,

sn|Ξ〉= N e−
1
2 a†Sa†

ω(a−Sa† +Sa†)|0〉 = 0 (5.4)

Therefore the combinations sn represent Bogoliubov transformations, which map the Fock space
based on the initial vacuum |0〉 to a new Fock space in which the role of vacuum is played by the
sliver string field.

Now we introduce the vector ξ such that

ρLξ = ξ , ρRξ = 0 (5.5)

As a consequence

ρRCξ = Cξ , ρLCξ = 0

There exists a complete basis ξn (n = 1,2, ...), which satisfy these conditions and are orthonormal
in the sense that

〈ξn|
1

1−T 2 |ξm〉= δnm (5.6)

12
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see, for instance, [24]. We can project ξn on the continuous basis |k〉, [19], and get the complete
basis of functions ξn(k) = 〈ξn|k〉,

Let us define, for any ξ ,

ξ L =
1√

1−S2
ξ , ξ R =− 1√

1−S2
Cξ (5.7)

In this way we have two complementary bases ξ L
n and ξ R

n . They are complementary in the sense
that

∞

∑
n=1

(

ξ L
n (k)ξ L

n (k′)+ξ R
n (k)ξ R

n (k′)
)

= δ (k,k′) (5.8)

Notice that

ξ R
n (k) = ξ L

n (−k), while ξ R
n (−k) = ξ L

n (k) = 0. (5.9)

We can project ξ L
n and ξ R

n on the ordinary vn(k) basis of eigenvectors of the continuous spectrum,
of X , [19], and define the coefficients

bnl = 〈ξ L
n |vl〉, b̃nl = 〈ξ R

n |vl〉

Using the latter we can introduce

β µ
m =

∞

∑
l=1

bmls
µ
l , β̃ µ

m =−
∞

∑
l=1

b̃mls
µ
l (5.10)

with the respective hermitian conjugates. The reason for the minus sign in the second definition
above will become clear shortly. These operators satisfy the algebra

[β µ
m ,β ν†

n ] = δm,nη µν

[β̃ µ
m , β̃ ν†

n ] = δm,nη µν

while all the other commutators vanish. It must be remarked that the definition of βn, β̃n depends
on the ξn basis we use. This entails an O(∞) ‘gauge’ freedom in the choice of these operators.

These β , β̃ operators are natural candidates as closed string creation and annihilation operators.
For the same reason it is natural to interpret the sliver |Ξ〉 as the closed string vacuum |0c〉.

6. Zero momentum closed string states

Let us consider the states we can construct by operating with β † and β̃ † on |Ξ〉. The most
general ones are defined as follows. Let us define sequences of natural numbers n ≡ (n1,n2, ...),
where the label l = 1,2, ... in nl corresponds to the oscillator type. For every type l half string
oscillator we will have a collection of symmetric Lorentz indexes µ l

1,µ l
2, ...,µ l

nl
. Then for any two

sequences n and m we define the states:

Λ{µ1...µn},{ν1...νm} =
∞

∏
l,r=1

(−1)mr

√
nl!mr!

β µ l
1 †

l ...β
µ l

nl
†

l β̃ ν r
1 †

r ...β̃ ν r
mr †

r |Ξ〉 (6.1)

13
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Their star product is given by

Λ{µ
l
1...µ

l
nl
},{ν l

1...ν
l
ml
} ∗Λ

{σ l
1...σ

l
ql
}

{ρ l
1 ...ρ l

pl
} = ∏

l

δml ,pl δ̂
ν l

1...ν
l
ml

ρ l
1...ρ l

pl

Λ{µ
l
1...µ

l
nl
},{σ l

1...σ
l
ql
} (6.2)

where we have used the symmetrized delta

δ̂ µ1...µn
ν1...νn =

1
n! ∑

σ(1...n)

δ µσ(1)
ν1 ... δ µσ(n)

νn

Among these states there are some that are already familiar to us. Let us consider, for instance,

1√
n!m!

(β †
k )n(−β̃ †

l )m|0c〉

where, for simplicity, we have dropped the Lorentz index µ . Written out explicitly they take the
form

(β †
k )n(−β̃ †

l )m|0c〉= 〈ξlCω2(a† +Sa)〉m〈ξkω2(a† +Sa)〉ne−
1
2 a†Sa† |0〉

After some algebra they can be shown to give rise to the identities

1√
n!m!

(β †
k )n(−β̃ †

l )m|0c〉=
√

n!
m!

(κkl)
nY m−n

l Lm−n
n (−XkYl

κkl
)|Ξ〉 (6.3)

where

κkl = 〈ξk
T

1−T 2 ξl〉 (6.4)

For n = m and k = l this type of states have already appeared in section 3. In the literature they
have been interpreted as D–brane solutions of vacuum SFT, [22, 23].

A very interesting property of this class of states is that they give rise to the identity

∑
n

β µ†
n β̃ ν†

n ηµν = ∑
n
〈sµ†|ξ L

n 〉〈ξ L
n |Csν†〉ηµν =

1
2

∞

∑
k=1

sµ†
k Ckls

ν†
l ηµν

The factor of 1
2 comes from the fact that ξn is a complete basis for the left ξ ’s. We have to consider

also the other half made of Cξn, which gives the same contribution, see (5.8). Hence the factor of
1
2 . The - signs come from the definition (5.10) and from the property (5.9).

Exponentiating the above identity and applying it to the closed string vacuum we get

e−∑n β µ†
n β̃ ν†

n ηµν |0c〉= e−
1
2 ∑∞

k=1 sµ†
k Ckls

ν†
l ηµν |Ξ〉 ∼ e−

1
2 ∑∞

k=1 aµ†
k Ckla

ν†
l ηµν |0〉 (6.5)

where |0〉 is the original open string vacuum. The last step of the proof can be found for instance
in [20], the equality holds up to a constant.

The LHS is proportional to the nonzero mode part of the boundary state in closed string theory,
the right hand side is the identity state in open string field theory. An interpretation of this identity
will be presented below.

What we have seen so far is enough to motivate our interest in the β , β̃ operators and the states
we can construct with them. Starting from the isomorphism between star–algebra operators and
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closed string creation and annihilation operators, the relevant question is now: what are the (open)
string fields that correspond to closed string Fock states created under the above correspondence?
By closed string states we mean both off-shell and on-shell states. For instance a graviton state
with momentum k in closed string theory is given by

θµνα µ†
1 αν†

1 |0c,k〉 (6.6)

where |0c,k〉 is the closed string vacuum with momentum k, and θµν is the polarization. This state
is on-shell when k2 = 0 and θµνkν = θµνkµ = 0. When the latter conditions are not satisfied the
graviton is off-shell. Off-shell states must have definite momentum (i.e. the left and right momenta
must be equal) and they must be level–matched. Usually in dealing with closed strings, these two
conditions are so obvious that they are understood, but, as we shall see, under the correspondence
with open strings, they become significant and select a very precise class of string fields, the pro-
jectors. In the present section, to start with, we consider only zero momentum off–shell states.
Non-zero momentum states will be introduced in the next section.

It is evident from the above that there is a correspondence between (zero momentum) states in
the Fock space of the closed string theory and open string fields of the type (6.1). The question is:
what are the string fields that correspond to off–shell states in the closed string theory?

Let us (operationally) define Virasoro generators Ln, L̃n using the β , β̃ operators in the usual
way. Then using L0 and L̃0 we define the mass operator and the level matching condition by means
of

NL =
∞

∑
n=1

nβ †
n ·βn, NR =

∞

∑
n=1

n β̃ †
n · β̃n, (6.7)

Off-shell states are characterized in particular by the condition NR = NL = N, where the number
N specifies the level of the state. They are in general combinations of monomials of β† and β̃ †

applied to the vacuum with arbitrary coefficients. The statement one can prove is the following:

Closed string Fock space states of given level, satisfying the level matching condition, can
always be decomposed into combinations with arbitrary coefficients of states of the type (6.1) that
are ∗-algebra projectors. Loosely speaking, level–matched states of the closed string Fock space
come from star–algebra projectors.

The proof is not difficult but rather involved, see [14]. The basic idea is the following. Any
level–matched closed string state is a combination of states of the form (6.1). Among them there
always is a state −β µ

n β̃ ν
n |0c〉, with highest n. On the basis of (6.2), the states −β µ

n β̃ µ
n |0c〉 (i.e.

with µ = ν) are star–algebra projectors. The state −β µ
n β̃ ν

n |0c〉, for µ 6= ν is not a projector, but
−β µ

n β̃ µ
n |0c〉+aβ µ

n β̃ ν
n |0c〉, for an arbitrary constant a and µ 6= ν , is. By generalizing this example

it is possible to prove the theorem.

7. Closed string states with nonzero momentum

Every closed string state is constructed by tensoring a Fock space state with a momentum
eigenfunction, which, in the coordinate representation, is the plane wave e ikx . The momentum k
comes in equal parts from the left and the right-handed sectors. The purpose of this section is to
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explain where this factor comes from in the open-closed correspondence of the previous sections.
Once more we shall see that the origin of this factor is a star algebra projector.

To start with we remark that in the previous sections all developments were based on the
sliver projector, which is translationally invariant in all directions. If we want to find a momentum
dependence we have therefore to start from projectors that are not translationally invariant. To this
end we will use the lump projector, see section 3.

Next we repeat the same steps as in the previous section in order to define the operators βM and
β̃M . We are of course interested in particular in the zero mode. Let us consider a lump projector |Ξ ′〉
and concentrate on a transverse direction, say µ . We introduce, in a way analogous to the previous
section, left and right Fock space projectors ρ ′L and ρ ′R, with the same properties as ρL and ρR.
These operators can be diagonalized (see [25]). Differently from the sliver case here we have both
a continuous and discrete spectrum. The continuous spectrum is spanned by a real number k,−∞ <

k < +∞. The discrete spectrum can be written in terms of a positive real number η and by −η (η
is related to the parameter b). The corresponding eigenvectors are denoted VN(k),VN(η),VN(−η).

Using this basis, S′ and ω ′ = 1/
√

1−T ′2, we write down the analog of formula (5.2). The
operators s′M

µ satisfy the Heisenberg algebra

[s′M
µ
,s′N

ν†
] = δMNη µν (7.1)

and annihilate the lump projector |Ξ′〉.
In analogy with what we did in the previous section, we define now vectors ξ′ such that

ρ ′Lξ ′ = ξ ′ and ρ ′Rξ ′ = 0. There exists a complete basis of ξ ′N (N = 0,1,2, ...) that satisfy these
conditions and are orthonormal in the sense that

〈ξ ′N |
1

1−T ′2
|ξ ′M〉= δNM (7.2)

Then we define

ξ ′N
L

= ω ′ξ ′N , ξ ′N
R

= ω ′Cξ ′N (7.3)

When projected onto the continuous basis |k〉 and the discrete one |η〉, |−η〉, they give rise to a
vector of functions and numbers ξ ′N

L(k), ξ ′N
L(−η) and ξ ′N

R(k), respectively, ξ ′N
R(η), which satisfy

the orthogonality relations

∞

∑
N=0

(

ξ ′N
L
(k)ξ ′N

L
(k′)+ξ ′N

R
(k)ξ ′N

R
(k′)

)

= δ (k,k′) (7.4)

∞

∑
N=0

(

ξ ′N
L
(η)ξ ′N

L
(η)+ξ ′N

R
(η)ξ ′N

R
(η)

)

= 1 (7.5)

For later purposes it is convenient to choose the basis in such a way that

ξ ′0
L
(−k) = ξ ′0

R
(k) = 0, ξ ′n

R
(η) = ξ ′n

L
(−η) = 0, k > 0, n = 1,2, ... (7.6)

This will allow us to separate the continuous from the discrete spectrum–dependent objects.
Now, in analogy with the previous section, we define the coefficients

b′NM = 〈ξ ′N
L|VM〉, b̃′NM = 〈ξ ′N

R|VM〉 (7.7)
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and the operators

β µ
N =

∞

∑
M=0

b′NMs′M
µ
, β̃ µ

N =−
∞

∑
M=0

b̃′NMs′M
µ (7.8)

Needless to say they satisfy the algebra

[β µ
M,β ν†

N ] = η µνδMN , [β̃ µ
M, β̃ ν†

N ] = η µνδMN , (7.9)

while the other commutators vanish. Here µ ,ν are any two transverse directions. We remark that
we have dropped the prime from the β ’s, in order to use a uniform notation for the closed string
operators. However it should be kept in mind that the βn, β̃n operators are different from those
defined in the previous section.

We are now ready to discuss the momentum eigenstates. To start with let us define the state

|p,q〉= 1
K

√

b
2π

e−
b
4 (p2+q2)+

√
b(qβ †

0 +pβ̃ †
0 )− 1

2 (β †2
0 +β̃ †2

0 )|0′c〉 (7.10)

where p and q are real numbers, K is the constant that appear in eq.(3.10), and |0 ′c〉 stands for
the lump |Ξ′〉. For notational simplicity we drop Lorentz indexes. We remark the β0 and β̃0 are
not self-adjoint, therefore they cannot be interpreted as momenta, not even as half–momenta. We
define the self–adjoint half–momenta operators as

q̂ =
1

2
√

b
(β0 +β †

0 ), p̂ =
1

2
√

b
(β̃0 + β̃ †

0 ) (7.11)

It is easy to verify that the states (7.10) satisfy

p̂|p,q〉 = p
2
|p,q〉, q̂|p,q〉 = q

2
|p,q〉

The star product of two |p,q〉 states can be easily computed. The details are given in [14]. The
only caution is to introduce a regulator since a naive calculation would bring about infinite factors.
This is easily accomplished by multiplying the term (β †2

0 + β̃ †2
0 ) in the exponent of (7.10) by a

parameter ε and eventually taking the limit ε → 1. The result is as follows

|p1,q1〉 ∗ |p2,q2〉= lim
ε→1

C(ε ,q1, p2) |p1,q2〉

where

C(ε ,q1, p2) =
1
2

√

b
π(1− ε)

e−
b(q1−p2)2

4(1−ε)

The limit for ε→ 1 of this expression is δ (q1− p2). Therefore

|p1,q1〉 ∗ |p2,q2〉= δ (q1− p2)|p1,q2〉 (7.12)

This equation is clearly the natural generalization of equations like (6.2) when continuous param-
eters are involved (instead of discrete indexes). For this reason we say that |p, p〉 is a star algebra

17



P
o
S
(
I
C
2
0
0
6
)
0
1
1

Open–Closed String Duality Loriano Bonora

projector (by slightly extending this notion). We remark that this happens when the left half–
momentum is equal to the right half–momentum.

We can therefore improve our description of the closed string states, by giving them a nonzero
momentum in the transverse directions: we tensor the states discussed in the previous sections
(constructed as in the previous sections, but out of β µ†

n and β̃ µ†
n given by eq.(7.8)) with momentum

eigenstates |p, p〉. The resulting state will have transverse momentum pµ , which is the eigenvalue
of 1

2
√

b
(β µ

0 +β µ†
0 + β̃ µ

0 + β̃ µ†
0 ).

8. The boundary state in the transverse direction

It is very instructive to redo the computation we did at the beginning of section 6 for transverse
directions. Let i j denote transverse directions and let us consider the identity

∑
n

β i†
n β̃ j†

n ηi j =−∑
n
〈s′i†|ξ ′n

L〉〈ξ ′n
R|s′ j†〉ηi j

=−∑
n
〈s′i†|ξ ′nL〉〈ξ ′nL|Cs

′ j†〉ηi j =−1
2

∞

∑
k=1

s′k
i†Ckls

′
l

j†ηi j

The only difference with section 6 is the – sign, which comes from the definition (7.8). This is not
compensated anymore now by the twist properties of the basis since

ξ
′R = Cξ

′L, (8.1)

which in turn descends from the sign change implied by passage from the ‘sliver basis’ to the ‘lump
basis’, see [14].

For the transverse directions we have therefore the following identity

e∑n β i†
n β̃ j†

n ηi j |0c〉= e−
1
2 ∑∞

k=1 s′k
i†Ckls′l

j†ηi j |Ξ〉 ∼ e−
1
2 ∑∞

k=1 ai†
k Ckla

j†
l ηi j |0〉 (8.2)

where |0〉 is the original open string vacuum.
Suppose we have Dk–brane in closed string theory, i.e. we have 25− k transverse directions

and k + 1 parallel ones (including time). Then the oscillator part of the corresponding boundary
state in closed string theory is the tensor product of a factor like the LHS of eq.(6.5) and a factor
given by the LHS of the above eq.(8.2). As one can see the RHS of the two equations takes the
same form. This miracle has to be traced back to the twist properties of the ‘sliver basis’ and the
‘lump basis’.

The identification (8.2) generalizes the corresponding result in section 6. But we are now in
a position to offer an interpretation for it. The LHS is proportional to the boundary state in closed
string theory, the right hand side is the identity state in open string field theory. The boundary
state represents a Dk–brane in the closed string language. The identity state represents absence
of interaction in the open string field theory language. We can interpret the above equality in the
following way: closed strings are reflected by the Dk–brane (they feel it). Open string live on the
Dk–brane, therefore they perceive the corresponding state as an identity state (they don’t feel it).

At this stage it is also clear that one cannot speak about closed string states in absolute gener-
ality but only with respect to a given background. The closed string states we have introduced are
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the ones that interact with the open string excitations of a given D–brane, which is manifest in the
structure of the vacuum they act upon.

The elements brought forth in this section are evidence in favor of our identification of closed
string modes with open string star algebra projectors. In particular the above mentioned automatic
change in boundary conditions can hardly be a mere accident.

9. Conclusions and discussion

In this paper we have first discussed a correspondence between 1/2 BPS supergravity solutions
(LLM geometries) and SFT projectors. This example suggests that supergravity solutions can be
constructed out of open string theory bricks. Led by this example we have proposed a translation
dictionary between open and closed string theory in the framework of open string field theory.
We can summarize our proposal with the slogan: closed string modes are star algebra projectors,
where the star algebra is the one that appear in open string field theory. Our starting point has been
the identification of the left and right sectors of the open string theory with the holomorphic and
antiholomorphic sectors of the closed string via a Bogoliubov transform. The latter, in particular,
maps the open string vacuum into the sliver string field, which is identified with the closed string
vacuum. We have shown that zero momentum level–matched (off–shell) closed string states are
associated under our dictionary with star algebra projectors (or families thereof) in the open string
side. To associate a momentum to a given state we had to shift to the lump vacuum and to tensor the
previous states by a momentum eigenstate which is itself a star algebra projector. So, altogether,
we can claim that according to our dictionary, off-shell closed string states (i.e. momentum and
level-matched closed string states) correspond to star algebra projectors in the open string side.

We have presented one important consistency check of our proposal, by showing that the
boundary state that represents a Dk–brane in the closed string language is translated into the identity
state in the open string side, which is precisely the result one expects if our identification is correct.
In [14] we have tested this result by explicitly showing how one can compute the closed string
exchange between two boundary states by using elementary star algebra operations.

The string states that in section 4 were set in correspondence with the 1/2 BPS LLM geome-
tries, [7], turn out to be, in the light of the present paper, infinite superpositions of closed string
states of the type (6.3) with n = m and k = l. This is another element that fits the general scheme
presented here.
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