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1. Introduction

It is well-known that “scalar Cooper pairs" do not occur in the framework of pure Chern-
Simons theory [1]. Nonetheless, charged-scalar-boson — charged-scalar-boson bound states do
exist in the framework of Mawell-Chern-Simons theory [2]. Interesting enough, numerical calcu-
lations show that there are also scalar Cooper pairs within the context of three-dimensional elec-
tromagnetism with a cutoff [3, 4] (three-dimensional electromagnetism with higher derivatives)
enlarged by a Chern-Simons term. The electromagnetic part of this model is defined by the La-
grangian

L = −1
4

FµνFµν +
a2

2
∂νFµν∂ λ Fµλ ,

whereFµν ≡ ∂νAµ − ∂µAν is the usual electromagnetic tensor field, anda is a cutoff. This La-
grangian is, of course, gauge and Lorentz invariant; in addition it leads tolocal field equations
which are linear in the field quantities. Moreover, at distances much larger than the cutoff, the
fields described by it become essentially equivalent to the Maxwell fields. The classical and quan-
tum formalism for the constrained Hamiltonian related to the singular higher-order Lagrangian
in (2 +1) dimensions mentioned above were constructed by Grecoet al. [5], and afterward the
canonical and the path-integral quantization were performed [5, 6]. The latter was accomplished
by extending the Faddeev-Senjanovic method [7]. The massive spin-1 part of the electromagnetic
field unluckily has negative energy, which implies that three-dimensional electromagnetism with a
cutoff is nonunitary due to the presence of a ghost state with negative norm. On the other hand, the
breakdown of causality may perhaps only occur on a microscopic scale if the parametera is small
enough to make the massive field only important on distance scales near the Planck length∼ 10−33

cm. It is therefore not unlikely that a higher-derivative model can represent aneffectivetheory of
electromagnetism at more familiar lengths.

It is worth noticing that recently it was shown that in the framework of four-dimensional
electromagnetism with a cutoff, the electromagnetic mass of a point charge occurs in the equation
of motion in a form consistent with special relativity; furthermore, the exactequation of motion
does not exhibit runaway solutions or non-causal behavior, when thecutoff is larger than half of
the classical radius of the electron [8, 9].

Our main objective here is to analyze whether or not higher-derivative terms may be used as
a mechanism for increasing the number of charged-scalar-boson — charged-scalar-boson bound
states (scalar Cooper pairs) related to the usual three-dimensional Maxwell-Chern-Simons theory.

The paper is organized as follows. In section 2, we discuss the occurrence of bound states
is both Maxwell-Chern-Simons and higher-derivative models. A rough estimate of the number of
bound states in the context of the preceding models is made in section 3. Finally,the concluding
remarks are presented in section 4.

2. Scalar Cooper Pairs

To begin with, we derive an expression that allows us to calculate the three-dimensional nonrel-
ativistic potential for the interaction of two identical charged scalar bosonsvia a photon exchange.
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This expression is used afterward to find the bound states for both Maxwell-Chern-Simons and
higher-derivative models.

2.1 Charged-Scalar-Boson — Charged-Scalar-Boson Low energy Potential or the Marriage
of Nonrelativistic Quantum Mechanics and Quantum Field Theory in the Nonrelativistic
Limit

Nonrelativistic quantum mechanics tells us that in the first Born approximation the cross
section for the scattering of two indistinguishable massive particles, in the center-of-mass frame
(CoM), is given by

dσ
dΩ

=

∣

∣

∣

∣

m
4π

∫

e−ip′· rV(r)eip· r d2 r

∣

∣

∣

∣

2

,

wherep (p′) is the initial (final) momentum of one of the particles in the CoM.
In terms of the transfer momentum,k ≡ p′−p, it reads

dσ
dΩ

=

∣

∣

∣

∣

m
4π

∫

V(r)eik· r d2 r

∣

∣

∣

∣

2

. (2.1)

On the other hand, from quantum field theory we know that the cross section, in the CoM, for
the scattering of two identical charged scalars bosons by an electromagnetic field, can be written as

dσ
dΩ

=

∣

∣

∣

∣

1
16πE

M

∣

∣

∣

∣

2

,

whereE is the initial energy of one of the bosons andM is the Feynman amplitude for the process
at hand, which in the nonrelativistic limit(N.R.) reduces to

dσ
dΩ

=

∣

∣

∣

∣

1
16πm

MN.R.

∣

∣

∣

∣

2

. (2.2)

From Eqs. (2.1) and (2.2) we come to the conclusion that the expression that enables us to
compute the three-dimensional effective nonrelativistic potential has the form

V(r) =
1

4m2

1
(2π)2

∫

d2 k MN.R. e−ik· r , (2.3)

which clearly shows how the potential from quantum mechanics and the Feynman amplitude ob-
tained via quantum field theory are related to each other.

2.2 Bound States for Maxwell-Chern-Simons Model

In the Lorentz gauge the Maxwell-Chern-Simons electromagnetism coupled toa charged-
scalar field is described by the Lagrangian

L = −1
4

FµνFµν +
s
2

εµνρAµ∂ νAρ − 1
2λ

(∂νAν)2

+(Dµφ)∗Dµφ −m2φ ∗φ , (2.4)
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whereDµ ≡ ∂µ + iqAµ .
It follows that the nonrelativistic potential is given by

V(r) = − Q2

mπs

[

1
r2 −

sK1(sr)
r

]

L +
Q2

2πs
K0(sr), (2.5)

whereL ≡ r ∧P is the orbital angular momentum, andK is the modified Bessel function.
Let us then investigate whether or not this potential can bind a pair of identical charged-scalar

bosons. In this case, the corresponding time-independent Schrödinger equation can be written as

HlRnl = − 1
m

(

d2

dr2Rnl +
1
r

d
dr

Rnl

)

+Veff
l Rnl

= EnlRnl, (2.6)

Veff
l ≡ l2

mr2
+V(r)

=
l2

mr2
− Q2

mπs

[

1
r2 −

sK1(sr)
r

]

L +
Q2

2πs
K0(sr),

whereRnl is thenth normalizable eigenfunction of the radial HamiltonianHl whose corresponding
eigenvalue isEnl andVeff

l is thel th partial wave effective potential. Note thatVeff
l behaves asl2

mr2

at the origin and aslm

[

l − Q2s
πs

]

1
r asymptotically.

On the other hand,

d
dr

Veff
l = −2l

m

[

l − Q2

πs

]

1
r3 −

Q2sl
mπ

1
r

K0(sr)

−
[

Q22l
mπr2 +

Q2s
2π

]

K1(sr).

Assuming, without any loss of generality, thatl > 0, it is trivial to see that, ifl > Q2

πs, the potential
is strictly decreasing, which precludes the existence of bound states. Theremaining possibility is
l < Q2

πs. In this intervalVeff
l approaches+∞ at the origin and 0− for r → +∞, which is indicative

of a local minimum. Consequently, the existence of charged-scalar-boson— charged-scalar-boson
bound states is subordinated to the condition 0< l < Q2

πs.

In terms of the dimensionless parametersy≡ sr, α ≡ Q2

πs, β ≡ m
s , and Ẽnl ≡ mEnl

s2 , Eq. (2.6)
reads

[

d2

dy2 +
1
y

d
dy

]

Rnl +
[

Ẽnl −Ṽeff
l

]

Rnl = 0, (2.7)

with
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Ṽeff
l ≡− l(α − l)

y2 +
αβ
2

K0(y)−
α l
y

K1(y).

Of course, Eq. (2.7) cannot be solved analytically; nevertheless, it can be solved numerically.
To accomplish this, we rewrite the radial function asRnl ≡ unl√

y. As a consequence, Eq. (2.7) takes
the form

[

d2

dy2 +
1

4y2

]

unl +
[

Ẽnl −Ṽeff
l

]

unl. (2.8)

Using the Numerov algorithm [10], we have solved Eq. (2.8) numerically forseveral values
of the parametersα ,β , and l . In Fig. 1 we present our numerical results for the potential in the
specific case ofl = 6. The corresponding ground-state energy is−1.68×10−8 MeV. The graphic
shown in Fig. 1 exhibits the generic features of the potential, although it has been composed using
particular values of the parametersα ,β , andl .

V
E

ff

6

−0.05

−0.04

−0.03

−0.02

−0.01

 0

 0.01

 0.02

 2000  4000
r

Figure 1: Attractive effective nonrelativistic potential corresponding to the eigenvaluel = 6. Here[Ve f f
6 ] =

eV, [r] = MeV−1, α = 7.6, andβ = 7000.

2.3 Bound States for the Model with Higher Derivatives

2.3.1 The Lagrangian

L = −1
4

FµνFµν +
a2

2
∂νFµν∂ αFµα − 1

2λ
(∂νAν)2

+(Dµφ)∗Dµφ −m2φ ∗φ +
s
2

εµνρAµ∂ νAρ , (2.9)

wheres> 0 is the topological mass.
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2.3.2 The Nonrelativistic Potential

V(r) = − sQ
πma4

[

a4

s2

1
r2 +

1
r ∑

j

B j

√

|x j | K1(
√

|x j | r)

]

l

+
Q

2πa4

[

∑
j

A jK0(
√

|x j | r)

]

, (2.10)

where

A1 ≡
1+a2x1

(x1−x2)(x1−x3)
,A2 ≡

1+a2x2

(x2−x1)(x2−x3)
,A3 ≡

1+a2x3

(x3−x1)(x3−x2)
,

B1 ≡
−(1+a2x1)

2

s2(x1−x2)(x1−x3)
,B2 ≡

−(1+a2x2)
2

s2(x2−x1)(x2−x3)
,B3 ≡

−(1+a2x3)
2

s2(x3−x1)(x3−x2)
,

andx1,x2, andx3 are the roots of the equation

x3 +
2x2

a2 +
x
a4 +

s2

a4 = 0. (2.11)

We are supposinga < 2
√

3
9s , which implies that Eq. (2.11) has three distinct negative real roots.

2.3.3 Bound States

Employing the dimension parametersy≡ sr, α ≡ Q2

πs, β ≡ m
s , Xj ≡ |x j |

s , b j ≡ s2

a4 B j , anda j ≡
A j

a4 , the effective nonrelativistic potential assumes the form

Ṽeff
l ≡− l(α − l)

y2 +
αβ
2 ∑

j

a jK0(Xjy)−
α l
y ∑

j

b jX
2
j K1(Xjy). (2.12)

However, only ifa≪ 1 will the well-recognized properties of QED3 be preserved. In this case
it can be shown that the existence of scalar Cooper pairs is subordinatedto the condition 0< l < α ,
where we have assumedl > 0, without any loss of generality.

In Fig. 2 we present our numerical results for the potential and the corresponding radial
eigenfunctions concerning the first three bound states in the specific case of l = 4. The associated
energies areE14 = −6.4×10−7 MeV, E24 = −1.3×10−7 MeV, E34 = −5.2×10−9 MeV. These
graphics exhibit, in a sense, the generic features of the potential, althoughthey have been composed
using particular values of the parametersα ,β , l , and a.

3. A Rough Estimate of the Number of Bound States

We derive here approximate expressions for the maximal number of boundstates related to
both higher-derivative and Maxwell-Chern-Simons models.
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Figure 2: Veff
4 with the lowest three allowed energies and the corresponding energy eigenfunctions. Here

[

Veff
4

]

= eV, [r] = MeV−1, α = 8, β = 2000, anda = 0.00952MeV−1.

3.1 Bargmann’s Bound in Two Dimensions

It was shown by Bargmann [11, 12] that for a central potential the number of bound states in
two dimensions is given by

N0(V) =
∞

∑
0

2nl (V), (3.1)

where

nl (V) ≤ 1
2l

∫ ∞

0
V−(r)rdr.

HereV−(r) = sup(V(r),0). However, as far as our potentials are concerned, the analytical com-
putation ofV−(r) is rather involved. But, sinceV−(r) = sup(V(r),0) ≥ −|V(r)|, we get that
N0(−|V|) ≥ N0(V). Since we only want to make a rough estimate of the total number of bound
states we replace the sum in Eq. (3.1) by an integral. Noting that forl = 0 the bound is divergent
reflecting the fact that a negative potential always has a bound state in twodimensions, we arrive
at the expression

N(lmax) ≤
∣

∣

∣

∣

∫ lmax

l=1

∫ ∞

0

V(r)r
l

drdl

∣

∣

∣

∣

, (3.2)

wherelmax is the maximal angular momentum. This inequality, unlike Bargmann’s one, is espe-
cially suitable for our purposes.

3.2 Finding lmax

3.2.1 The Model with Higher Derivatives

In order to findlmax for this model, we have to solve the inequality

7
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lmax

(

lmax

m
− Q

πms

)

ln(r)|∞r0

+
sQlmax

πma4 ∑
j

B jK0(
√

|x j | r)|∞r0

− Q
2πa4 ∑

j

A j
√

|x j |
rK1(

√

|x j | r)|∞r0
< 0. (3.3)

The radial variable was limited to the intervalr0 < r < ∞ to avoid the usual infrared divergences.
From (3.3) we obtain the constraints

lmax =
Q
πs

, (3.4)

Q
πm∑

j

B j ln(
√

|x j |) < −1
2 ∑

j

A j

|x j |
. (3.5)

3.2.2 The Maxwell-Chern-Simons Model

In this case the constraint onlmax is the same as in3.2.1. We have also a constraint onm;
however, since we want to compare3.2.1with 3.2.2, we shall use here the constraint on the mass
found in3.2.1.

3.3 An Estimate of the Number of Bound States

3.3.1 The Model with Higher Derivatives

N(lmax) ≤ F ,

where

F ≈
∣

∣

∣

∣

∣

(

1− Q
πs

)

[

Q
πsm

ln

(

rmax

r0

)

− sQ
πma4 ∑

j

B j ln(
√

|x j |)
]

+
Q

2πa4 ln

(

Q
2πs

)

∑
j

A j

|x j |

∣

∣

∣

∣

∣

.

3.3.2 The Maxwell-Chern-Simons Model

N̄(lmax) ≤ G ,

where,

G≈
∣

∣

∣

Q
2πs2 ln

(

Q
πs

)

− Q
πms

(

Q
πs−1

)

ln(srmax)
∣

∣

∣
.

Note that in both3.3.1and3.3.2we have assumed thatr ≤ rmax in order to avoid that lnr
blows up at infinity.
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4. Concluding Remarks

If we choose, for instance,Qs = 38MeV−1, we promptly obtainlmax≈ 12. On the other hand,
takinga = 0.02MeV−1, we see thatm≈ 0.18MeV, satisfies the constraint (3.5). Forr (in MeV)
varying in the range 1×10−23 < r < 8×10−6, we getNmax≈ 4N̄max.

At first sight, it seems that the models with higher-derivatives will have a total number of bound
states greater than that of the Chern-Simons model. However, this is a misleading conclusion.
Indeed, if we fixrmax, say, equal to 5×10−3MeV (10Ansgtrom), and varyr0 keeping the values
of Q

s , lmax, and m, equal to those of the example above, as it is shown in Fig. 3, we see that if
0< r0 < 0.1, higher derivatives win the game; now, ifr0 = 0.1, the game ends in a tie, and , finally,
if r0 > 0.1, higher derivatives lose the Cup.

Figure 3: Nmax/N̄max versusr0. Here[r0] = Ansgtrom, andrmax = 10Ansgtrom.

In conclusion, we may say that our rough calculations seem to indicate that itis possible to
find an intervalI ⊆ [r0, rmax] where higher derivatives win the Cup.
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