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1. Introduction

Different types of topological defects [1] may have been formed duringthe phase transitions
in the early Universe. Depending on the topology of the vacuum manifold these are domain walls,
strings, monopoles and textures. Physically these topological defects appear as a consequence of
spontaneous breakdown of local or global gauge symmetries of the system. Global monopoles are
spherically symmetric topological defects created due to phase transition when a global symmetry
of a system is spontaneously broken.

The simplified global monopole has been introduced by Sokolov and Starobinsky [2]. Bar-
riola and Vilenkin [3] have determined the gravitational field produced by a global monopole in a
four-dimensional spacetime, considering a system comprising by a self-coupling iso-scalar Gold-
stone field tripletφa, whose original globalO(3) symmetry is spontaneously broken toU(1). The
matter field plays the role of an order parameter which outside the monopole’s core acquires a
non-vanishing value. The main part of the monopole’s energy is concentrated into its small core.
Coupling this system with the Einstein equations, a spherically symmetric metric tensor is found.
Neglecting the small size of the monopole’s core, this tensor can be approximately given by the
line element

ds2 = −dt2 +
dr2

α2 + r2(dθ 2 +sin2 θdφ2) , (1.1)

where the parameterα2, smaller than unity, depends on the symmetry breaking energy scale.
Similarly to a gauge cosmic string [4, 5], a global monopole exerts essentially nogravitational

interaction on the surrounding matter; however Barriola and Vilenkin noticedthat it acts as a grav-
itational lens in the same manner as a cosmic string. So, this object may have important role in the
cosmology and astrophysics.

Although topological defects have been first analysed in four-dimensional spacetime [1], they
have been considered in the context of braneworld. In this scenario thetopological defects live in a
n−dimensions submanifold embedded in aD = 4+n dimensional Universe. The domain wall case,
with a single extra dimension, has been considered in [6]. More recently thecosmic string case,
with two additional extra dimensions, has been analysed in [7, 8]. For the case with three extra
dimensions, the ’t Hooft-Polyakov magnetic monopole has been numerically analysed in [9, 10].
In Refs. [11, 12, 13, 14, 15] numerical analysis of global monopole are presented.

The calculation of the vacuum polarization effects due to four-dimensionalglobal monopole
on the scalar and fermionic fields, have been developed in [16] and [17], respectively. Here we
shall analyse this effect on a quantum massless scalar field considering that the dimension of the
spacetime is greater than four. In this way, two distinct topological spacetimeswill be considered:
a) In the first, the global monopole lives in the wholeD = 1+d dimensional Universe. In this case
the metric tensor associated with this spacetime can be given by the following line element

ds2
(a) = −dt2 +

dr2

α2 + r2dΩ2
d−1 = gMNdMdxN , (1.2)

whereM, N = 0,1,2...d, with d ≥ 3 andxM = (t, r,θ1,θ2, ...,θd−2,φ). The coordinates are defined
in the intervalst ∈ (−∞,∞), θi ∈ [0,π] for i = 1,2...d−2, φ ∈ [0,2π] andr ≥ 0. In this coordinate
system the metric tensor is explicitly defined as shown below:

g00 = −1 , g11 = 1/α2 , g22 = r2 andg j j = r2sin2 θ1sin2 θ2...sin2 θ j−2 , (1.3)
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for 3≤ j ≤ d, andgMN = 0 for M 6= N. This spacetime corresponds to a pointlike global monopole.
It is not flat: the scalar curvature is given byR= (d−1)(d−2)(1−α2)/r2, and the solid angle
associated with a hypersphere with unity radius isΩ = 2πd/2α2/Γ(d/2), so smaller than ordinary
one.
b) In the second, the global monopole lives in a three dimensional sub-manifoldof higher di-
mensional (bulk) spacetime, having its core in our Universe described bya transverse flat(p−
1)−dimensional brane. In this case the metric tensor associated with this spacetime is

ds2
(b) = ηµνdxµdxν +

dr2

α2 + r2dΩ2
2 = gMNdMdxN , (1.4)

whereηµν = diag(−1 , 1 , ... , 1) is the Minkowski metric. The curvature scalar associated with
this manifold isR= 2(1−α2)/r2, and the solid angle associated with a sphere of unity radius is
Ω = 4πα2.

2. Euclidean Scalar Green Function

In order to develop the analysis of the vacuum polarization effects associated with a scalar
field, one of the most important quantity is its Green function. Here, in this section, we shall
calculate this function admitting that the matter field propagates in the whole space.

The Euclidean Green function associated with a massless scalar field can beobtained by solv-
ing the non-homogeneous second order differential equation

(�−ξR)GE(x,x′) = −δ D(x,x′) = −δ D(x−x′)√
g

, (2.1)

with

� =
1√
g

∂M[
√

ggMN∂N] . (2.2)

We have performed in the metric tensors defined by (1.2) and (1.4) a Wick rotation t = iτ on the
temporal coordinates. Moreover we have introduced in (2.1) an arbitrary curvature couplingξ .

The Euclidean Green function can also be obtained by the Schwinger-DeWitt formalism as
follows:

GE(x,x′) =
∫ ∞

0
dsK(x,x′;s) , (2.3)

where the heat kernel,K(x,x′;s), can be expressed in terms of a complete set of normalized eigen-
functions of the operator�−ξRas follows:

K(x,x′;s) = ∑
σ

Φσ (x)Φ∗
σ (x′)exp(−sσ2) , (2.4)

with σ2 being the corresponding positively defined eigenvalue. Writing

(�−ξR)Φσ (x) = −σ2Φσ (x) , (2.5)
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we obtain the complete set of normalized solutions of the above equation:
For the metric spacetime defined by (1.2), we have [18],

Φσ (x) =

√

α p
2π

1

rd/2−1
e−iωτJνl (pr)Y(l ,mj ;φ ,θ j) , (2.6)

Y(l ,mj ;φ ,θ j) being the hyperspherical harmonics of degreel [19], andJνl the Bessel function of
order

νl = α−1
√

(l +(d−2)/2)2 +(d−1)(d−2)(1−α2)(ξ −ξ ) , (2.7)

with the conformal couplingξ = d−2
4(d−1) .

For metric spacetime defined by (1.4), we have [20],

Φσ (x) =

√α pe−ikxJνl (pr)Ylm(θ , φ)

(2π)p/2
√

r
, (2.8)

with

νl = α−1
√

(l +1/2)2 +2(1−α2)(ξ −1/8) , (2.9)

kx= ηµνkµkν , andYlm(θ ,φ) the ordinary spherical harmonics.

In (2.6)σ2 = ω2 +α2p2, and in (2.8)σ2 = k2 +α2p2.

Substituting the above expressions in the definition of the heat kernel (2.4)and using (2.3), we
obtain the following Green functions:
For the spacetime defined by the metric tensor (1.2),

G(a)
E (x,x′) =

1

4πd/2+1

1

(rr ′)
d−1

2

Γ(d/2)

d−2

∞

∑
l=0

[2(l −1)+d]Qνl−1/2(coshua)C
d−2

2
l (cosγ) , (2.10)

where

coshua =
α2∆τ2 + r2 + r ′2

2rr ′
, (2.11)

andCµ
l (x) being Gegenbauer polynomial of degreel .

As to the spacetime defined by (1.4), the Green function reads

G(b)
E (x,x′) =

1

2
p+5

2 π
p+3

2

i1−p

α1−p

1

(rr ′)
p+1

2

1

(sinhub)
p−1

2

∞

∑
l=0

(2l +1)Q
p−1

2
νl−1/2(coshub)Pl (cosγ) , (2.12)

with

coshub =
∆x2α2 + r2 + r ′2

2rr ′
. (2.13)

In both Green functions(Qλ
ν ) Qν is the (associated) Legendre function, andγ the angle be-

tween the two arbitrary directions.
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3. The Computation of 〈Φ2(x)〉Ren.

The vacuum expectation value of the square of the scalar field is formally expressed by taking
the coincidence limit of the Green function as shown below:

〈Φ2(x)〉 = lim
x′→x

GE(x,x′) . (3.1)

However this procedure provides a divergent result. In order to obtain a finite and well defined
result, we must apply some renormalization procedure. Here we shall adopt the point-splitting
renormalization one. The basic idea of this procedure is to analyse the divergent contributions of
the Green function in the coincidence limit and subtract them off. In [21], Wald observed that
the singular behavior of the Green function has the same structure as given by the Hadamard one,
which on the other hand can be written in terms of the square of the geodesic distance between two
points. So, here we shall adopt the following prescription: we subtract from the Green function the
Hadamard one before applying the coincidence. In this way, the renormalized vacuum expectation
value of the field square is given by:

〈Φ2(x)〉Ren. = lim
x′→x

[

GE(x,x′)−GH(x,x′)
]

. (3.2)

Because the explicit expression of the Hadamard function depends on thedimension of the space-
time, the above calculation can only be explicitly performed by specifying the dimensions of the
spacetime. So in the next sub-sections we shall consider spacetimes with 5 and 6 dimensions.

3.1 Five Dimensional Spacetime

In order to develop the analysis for〈Φ2(x)〉, it is necessary to write explicitly the Green func-
tions takingd = 4 in (2.10) andp = 2 in (2.12); moreover, it is also necessary to adopt for the
respective Legendre functions specific representations. Here we shall adopt integral representa-
tions as follows:
For the first function, we shall use [22]:

Qνl−1/2(coshua) =
1√
2

∫ ∞

ua

dt
e−νl t

√
cosht −coshua

(3.3)

and for the second, we shall use [22]:

Q1/2
νl−1/2(coshub) = i

√

π
2

e−νl ub

√
sinhub

. (3.4)

Because the orders of the Legendre functions,νl , depend on the parameterα in a very compli-
cate form, it is not possible to proceed exactly their respective summation on the quantum numberl
in (2.10) and (2.12). The best we can do, is to develop a series expansion in powers of the parameter
η2 = 1−α2 considered much smaller than unity1. The expansions are:

νl ≈ (l +1)(1+η2/2)+
(3ξ −1/2)

l +1
η2 +O(η4) , (3.5)

1In fact, for a typical grand unified theory in four dimensions, the parameterη2 is of order 10−5
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for the case(a), and

νl ≈ (l +1/2)(1+η2/2)+
(2ξ −1/4)

2l +1
η2 +O(η4) , (3.6)

for the case(b).
Taking first the coincidence limit in the angular variables, and after some intermediates steps,

the Euclidean Green functions read:
For the case(a):

G(a)(r, r ′) =
1

16
√

2π3

1

(rr ′)3/2

∫ ∞

ua

dt
1√

cosht −coshua

cosh(t/2)

sinh3(t/2)
×

[

1− 3tη2

2sinh(t)
(1+4ξ sinh2(t/2))

]

+O(η4) . (3.7)

For the case(b):

G(b)(x,x′) =
1

64π2

1

(rr ′)3/2

(1+η2)

sinh3ub

[

1− ubη2

sinhub

(

1+4ξ sinh2(ub/2)
)

]

+O(η4) . (3.8)

The general expression to the Hadamard function for scalar fields in the spacetime of odd
dimensions has been given in [23]. For a five-dimensional spacetime the Hadamard function reads,

GH(x,x′) =
1

16
√

2π2

1

σ3/2(x,x′)

[

1+(1/6−ξ )R(x)σ(x,x′)
]

, (3.9)

being σ(x′,x) the one-half of the square of the geodesic distance between two arbitrarypoints,
andR the scalar curvature. The one-half of the radial geodesic distances for both spacetimes read
σ(x,x′) = (1/2α2)(r − r ′)2. In our approximation it can be written asσ ≈ (1/2)(r − r ′)2(1+η2+

...).
Now we are in position to calculate the renormalized vacuum expectation value of the square

of the field operator up to the first order inη2. Once more the two distinct situations have to be
analysed separately:
i) For the spacetime defined by (1.2) the scalar curvature isR = 6η2/r2. Substituting (3.7) and
(3.9) into (3.2) we get

〈Φ2(x)〉Ren. =
3η2

64πr3 (ξ −3/16) . (3.10)

We can see that for the conformal coupling in five dimensional spacetime,ξ = 3/16, the renormal-
ized vacuum expectation value of the operatorΦ2(x) is zero, up to the first order inη2.
ii) For the spacetime defined by (1.4) the scalar curvature isR= 2η2/r2. Substituting (3.8) and
(3.9) into (3.2) we get a vanishing result:

〈Φ2(x)〉Ren. = 0 (3.11)

for any value of the non-minimal coupling constantξ .
Because the above vanishing result, we may want to know the vacuum expectation of the field

square in the next-to-leading order, i.e., at orderO(η4). To do that, we have to construct the Green
and Hadamard functions up to this order. Developing a long calculation [20], we finally get a
non-vanishing result:

〈Φ2(x)〉Ren. = − η4

192r3 (ξ −1/8) . (3.12)

6
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3.2 Six Dimensional Spacetime

Following the same steps, the Euclidean Green function for the spacetime defined by (1.2), in
six dimensions (d=5) reads

G(a)(r, r ′) =
3

128
√

2π3

1
(rr ′)2

∫ ∞

ua

dt
1√

cosht −coshua

cosh(t/2)

sinh4(t/2)
×

[

1− 2tη2

sinh(t)
(1+4ξ sinh2(t/2))

]

. (3.13)

As to the spacetime defined by (1.4), the Green function (p=3) reads

G(b)(x,x′) = −1−η2

24π3

1
(rr ′)2

1
sinhub

∞

∑
l=0

(2l +1)Q1
νl−1/2(coshub)Pl (cosγ) . (3.14)

In order to investigate the he vacuum polarization effect we shall use in (3.14) the integral repre-
sentation to the associated Legendre function given below [22]:

Qλ
ν−1/2(coshu) =

√

π
2

eiλπ sinhλ (u)

Γ(1/2−λ )

∫ ∞

u
dt

e−νt

(cosht −coshu)λ+1/2
. (3.15)

For this caseλ = (p−1)/2= 1. However the above representation can only be applied forRe(λ ) <

1/2. This integral representation, on the other hand, can be used for submanifold(p−1)−brane of
smaller dimension. In the calculation of vacuum polarization effects, we haveadopted the point-
splitting renormalization procedure, subtracting from the Green function theHadamard one. This
procedure provides a finite and well defined result to evaluate the renormalized vacuum expectation
value of the square of the scalar field. In what follows, we shall allow in thisrenormalization
procedure, that the dimension of the brane be an arbitrary number. In thisway we may use (3.15)
in Green function above, and also in the definition of Hadamard function. Finally, in the calculation
of the vacuum polarization effect, we shall takep→ 3 before to take the coincidence limit in the
renormalized Green function. As we shall see we shall obtain a finite and well defined result.
Adopting this procedure the Green function can be written by

G(b)(x′,x) =

√
2

32π2
√

π
α2

(rr ′)2

1
Γ(1/2−λ )

∫ ∞

u

dt

(cosht −coshu)λ+1/2
×

∞

∑
l=0

(2l +1)e−νl tPl (cosγ) . (3.16)

Takingγ = 0 (Pl (1) = 1) into the above equation it is possible to develop an approximated expres-
sion to the summation on the angular quantum numberl .

The Hadamard function in a six dimensional spacetime has the general form:

GH(x′,x) =
∆1/2(x,x′)

16π3

[

a0(x,x′)
σ2(x,x′)

+
a1(x,x′)
2σ(x,x′)

− a2(x,x′)
4

ln

(

µ2σ(x,x′)
2

)]

, (3.17)

whereµ is an arbitrary energy scale introduced in this formalism to prevent infrared singularity,
∆(x,x′) is the Van Vleck-Morette determinant and the coefficients,ak(x,x′), for k = 0, 1, 2, have
been computed by many authors2. For the radial point-splitting we haveσ(x′,x) = (r ′− r)2/2α2.

2See Refs. [24] and [25].

7



P
o
S
(
I
C
2
0
0
6
)
0
2
0

Vacuum polarization effects Eugênio R. Bezerra de Mello

The expressions for the coefficientsak depend on the scalar curvature, Ricci tensor, etc. For
the metric tensor defined by (1.2), the Hadamard function, up to the first order expansion in the
parameterη2, reads:

G(a)
H (r, r ′) =

1
16π3

[

4(1−2η2)

(r − r ′)4 +
2(1−6ξ )η2

r2(r − r ′)2 − η2

r4 (ξ −1/5) ln
(

µ2(r − r ′)2/4
)

]

. (3.18)

However for the metric tensor defined by (1.4) we have:

G(b)
H (r ′, r) =

1
16π3

[

4(1−2η2)

(r − r ′)4 +
(1−6ξ )η2

3r2(r − r ′)2 −
η2

6r4 (1/5−ξ ) ln
(

µ2(r − r ′)2/4
)

]

. (3.19)

At this point we shall adopt the approach below to express the Hadamard functions in a integral
representation. We shall express the different powers of1

r ′−r in the Hadamard functions above by
the following integral representation:
For the Hadamard function defined in (3.18), we use

1
(r ′− r)d−1 =

√
2 Γ(d

2)

2d−1(rr ′)
d−1

2
√

πΓ(d−1
2 )

×
∫ ∞

u

dt√
cosht −coshu

cosh(t/2)

sinhd−1(t/2)
, (3.20)

and for the Hadamard function (3.19),

1
(r ′− r)d+1 =

(r ′− r)2(λ−1)

2d+λ− 3
2

1

(r ′r)
d+2λ−1

2

Γ(d
2)

Γ(d−1
2 +λ )Γ(1

2 −λ )
×

∫ ∞

u

dt

(cosht −coshu)
1
2+λ

cosh(t/2)

sinhd−1(t/2)
. (3.21)

Substituting the parameterd for the appropriated values in order to reproduce the correct
powers of 1

r ′−r , and expressing the logarithmic term in both functions byQ0(coshu), we obtain two
long expressions. The renormalized vacuum expectation values of field square have to be evaluated
separately, for both cases:
i) For the first case we have to substitute (3.13) and (3.18) into (3.2). Takingthe coincidence limit
we have

〈Φ2(x)〉Ren. = − η2

96π3r4

(

47
25

−10ξ
)

+
η2

8π3r4 (ξ −1/5) ln(µr) . (3.22)

ii) For the second case we have to substitute (3.16) and (3.19) into (3.2). However, as we have
mentioned before, we shall takeλ → 1 first into the renormalized Green function before to take the
coincidence limit. Doing this procedure we get:

〈Φ2(x)〉Ren. =
1

576π3

η2

r4

(

47
25

−10ξ
)

+
1

48π3

η2

r4 (ξ −1/5) ln(µr) . (3.23)

We can see that, although both results above are different, there are somesimilarities between
them:
a) For the conformal coupling in six dimension,ξ = 1/5, there is no ambiguity in the definition of
the above vacuum polarization effects, i.e., the logarithmic contributions disappear, and
b) for ξ = 47/250 the contributions proportional to 1/r4 disappear.

8
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4. Energy-Momentum Tensor

In this work we are analyzing the quantum effects associated with a masslessscalar field in
the metric spacetimes defined by (1.2) and (1.4). As we can see these metric tensors present no
dimensional parameter. Moreover we are adopting the natural system unitswhereh̄ = c = 1. As
a consequence we can conclude that any physical quantities calculated can only depend on the
radial coordinater or on the renormalization mass scaleµ. By dimensional arguments we could
expect that〈Φ2(x)〉Ren. is proportional to 1/rn−2 and〈TMN(x)〉Ren. proportional to 1/rn, beingn
the dimension of the spacetime considered. The factor of proportionality should been given in
terms of the parameterη2 and the non-minimal couplingξ . In this section we want to analyse the
renormalized vacuum expectation value (VEV) of the energy-momentum tensor. By calculations
developed previously, we have shown that, up to the first order inη2, the renormalized VEV of the
field square in the metric defined by (1.4) is zero for a five-dimensional spacetime3. Although we
cannot affirm that these vanishing result also occur in the calculation of the VEV of the energy-
momentum tensor, we shall analyse〈TMN(x)〉Ren. for the six-dimensional spacetime only.

The renormalized vacuum expectation value of the energy-momentum tensorshould obey the
conservation condition

∇M〈TM
N (x)〉Ren. = 0 , (4.1)

and provides the correct trace anomaly. For a six-dimensional spacetime itreads [23]:

〈TM
M (x)〉Ren. =

1
64π3a3(x) . (4.2)

Taking into account all above informations, we can conclude that the general structure for the
renormalized vacuum expectation value of the energy-momentum is:

〈TN
M (x)〉Ren. =

1
64π3r6

[

AN
M(η2,ξ )+BN

M(η2,ξ ) ln(µr)
]

, (4.3)

with AN
M obeying specific restriction conditions that will be examined later. Because the cutoff

factorµ is completely arbitrary, there is an ambiguity in the definition of this renormalized vacuum
expectation value. Moreover the change in this quantity under the change of the renormalization
scale is given in terms of the tensorBν

µ as shown below:

〈TN
M (x)〉Ren.(µ)−〈TN

M (x)〉Ren.(µ ′) =
1

64π3r6BN
M(η2,ξ ) ln(µ/µ ′) . (4.4)

The difference between them is given in terms of the effective action whichdepends on the loga-
rithmic terms whose final expression, in arbitrary even dimension, is [23]:

〈TMN(x)〉Ren.(µ)−〈TMN(x)〉Ren.(µ ′) =
1

(4π)n/2

1√
g

δ
δgMN

∫

dnx
√

gan/2(x) ln(µ/µ ′) . (4.5)

In our six dimensional case we need the factora3(x). The explicit expression for this factor can be
found in the paper by Gilkey [26] and in a more systematic form in the paper byJack and Parker
[27], for a scalar second order differential operatorD2 + X, DM being the covariant derivative

3For the spacetime defined by (1.2) we have seen that this vacuum expectation value does not vanish.
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including gauge field andX an arbitrary scalar function. This expression involves 46 terms and
we shall not repeat it here in a complete form. The reason is because ourcalculation has been
developed up to the first order in the parameterη2 and only the quadratic terms in Riemann and
Ricci tensors, and in the scalar curvature are relevant for us4. This reduces to 12 the number of
terms which will be considered. Discarding the gauge fields and takingX = −ξRwe get:

a3(x) =
1
6

(

1
6
−ξ

)(

1
5
−ξ

)

R�R+
ξ 2

12
R;MR;M +

ξ
90

RMNR;MN − ξ
36

R;MR;M

− 1
7!

[

28R�R+17R;MR;M −2RMN;PRMN;P−4RMN;PRMP;N +

9RMNPS;GRMNPS;G−8RMN�RMN +24RMNRMP;N
P +

12RMNPS�RMNPS]+O(R3) . (4.6)

This expression is of sixth order derivative on the metric tensor. Our next step is to take the func-
tional derivative ofa3(x). Using the expressions for the functional derivative of the Riemann and
Ricci tensor, together with the scalar curvature, we obtain after a long calculation the following
expression for the tensorBN

M:

BN
M(η2,ξ ) =

r6

6

[

−δ N
M�

2R

(

ξ 2− ξ
3

+
23
840

)

+
1

140
�

2RN
M+

∇N∇M�R

(

ξ 2− ξ
3

+
1
42

)]

+O(R2) . (4.7)

Developing all the terms which appear in the above equation we obtain after some calculations:
i) For the metric spacetime defined by (1.2):

BN
M(η2,ξ ) =

η2

75
diag ( 2,2,−1,−1,−1,−1 )+

16η2(ξ −1/5)(ξ −2/15) diag ( 1,−4,2,2,2,2 ) . (4.8)

ii) For the metric spacetime defined by (1.4):

BN
M(η2,ξ ) = − η2

175
diag ( 1,1,1,1,−2,−2 )−

8η2(ξ −1/5)(ξ −2/15) diag ( 1,1,1,−2/3,4/3,4/3 ) . (4.9)

We can see that by takingξ = 1/5 the trace of both terms vanish.
After conclude the analysis above for the tensorBN

M, let us present below the restriction con-
ditions obeyed by the components of the tensorAN

M, for the spacetimes defined by (1.2) and (1.4)
separately:
By applying the conservation condition, (4.1), and the correct trace anomaly expression, (4.2), we
can write, for the conform couplingξ = 1/5, the following results for spacetime defined by the
metric tensor (1.2):

A1
1 = A0

0−T ++B1
1

A2
2 = A3

3 = A4
4 = A5

5 =
T
2
− A0

0

2
− B1

1

4
, (4.10)

4The term proportional to�2R in a3(x) is also not relevant because it can be written as a total derivative.
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with

T = r6a3(x) = r618
7!

�
2R+O(R2) = −12η2

35
+O(η4) . (4.11)

As to the spacetime defined by (1.4), we observe that the geometry of its brane section has a
Minkowski-type structure, consequently we expect thatA0

0 = A1
1 = A2

2. Admitting this fact we
can write5:

A3
3 = A0

0 +
B3

3

3
−T , (4.12)

A4
4 = A5

5 = −2A0
0−

B3
3

6
+

2T
3

, (4.13)

with

T = r6a3(x) = r618
7!

�
2R+O(η4) =

6η2

35
+O(η4) . (4.14)

We conclude this section by saying that the complete evaluation of〈TN
M (x)〉Ren., for both space-

times, requires the knowledge of at least one component of the tensorAN
M, for exampleA0

0. However
we shall not attempt to develop this straightforward and long calculation here.

5. Concluding Remarks

In this paper we have investigated the vacuum polarization effects associated with a massless
scalar field induced by the presence of a global monopole in spacetimes of dimensions higher than
four. Two different geometric spacetimes have been considered:

• In the first, the global monopole lives in whole space.

• In the second, the monopole lives in a three-dimensional submanifold of higher-dimensional
(bulk) spacetime.

Our main objective in this paper was to investigate how different geometries associated with
the same topological object can provide different results at quantum level. In order to answer
that question two specific calculations have been developed: the renormalized vacuum expectation
values of the field square,〈Φ2(x)〉Ren., and the energy-momentum tensor〈TN

M (x)〉Ren..
As to 〈Φ2(x)〉Ren., we develop this calculation for spacetimes of five, respectively six dimen-

sions. We have found that, up to the first order in the parameterη2 = 1−α2, assumed to be
smaller than unity, this quantity presents different results for each geometryconsidered. In the five
dimensional case, the vacuum average gets, in principle, a non-vanishing result for the spacetime
defined by (1.2), and a vanishing result for the spacetime defined by (1.4). For the six dimensional
one, although being different the values found for〈Φ2(x)〉Ren., they present some similarities as
mentioned in section 3.

The renormalized vacuum expectation value of the energy-momentum tensor, has been an-
alyzed for a six dimensional spacetime under dimensional grounds only. Wehave shown that it

5By (4.9), we can see thatB0
0 = B1

1 = B2
2 for any value of curvature couplingξ .
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behaves as 1/r6, wherer is the distance from the monopole’s core, and presents an additional
contribution proportional to ln(µr)/r6, beingµ is an arbitrary mass scale introduced by the renor-
malization prescription. This term is associated with the coefficienta3(x), which, according to [28],
comes from the purely geometric (divergent) Lagrangian that should renormalize the modified clas-
sical Einstein one. When this extra term is inserted into the gravitational action,the left-hand side
of the field equation is modified by the presence of order six terms proportional to:

c1gAB�
2R+c2�

2RAB+c3∇A∇B�R+O(R2) . (5.1)
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