PROCEEDINGS

OF SCIENCE

Application of zetafunction techniques to the
Compactified Gross-Neveu Model

Jorge M. C. Malbouisson *

Instituto de Fisica, Universidade Federal da Bahia, 40210-340, Salvador, BA, Brazil
E-mail: jmalboui@utba.br

Faqir C. Khanna
Theoretical Physics Institute, University of Alberta, Edmonton, AB T6G 2J1, Canada
E-mail: khanna@phys.ualberta.ca

Adolfo P. C. Malbouisson
Centro Brasileiro de Pesquisas Fisicas/MCT, 22290-180, Rio de Janeiro, RJ, Brazil
E-mail: ladolfo@cbpt.br

Ademir E. Santana
Instituto de Fisica, Universidade de Brasilia, 70910-900, Brasilia, DF, Brazil
E-mail: lasantana@if.unb.br

We consider th&l-componenD-dimensional Euclidean massive Gross-Neveu model, confined in
a (D — 1)-dimensional cubic box (edds, at finite temperaturel(). Using-function analytical
regularization, we determine the larfeeffective coupling constang) as a function o, T
and the fixed coupling constamt ), for the case® = 2,3,4. In all cases, we find thaj tends

to 0 whenL goes to 0 ofT goes to infinity, corresponding to an “asymptotic freedom" type of
behavior. For finitd. andT, distinct behaviors appear depending on the valug.oFor small

A only “asymptotic freedom" occurs. However, forgreater than a “critical” valueAf), starting
from small values oL (and low enough temperatures), a divergencgappears ak approaches

a valueL¢(A) which lies in a finite interval fod > Ac. Such behavior suggests that the system
becomes spatially confined in a box of sizgA) if A is large enough. If the temperature is
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the deconfining temperature obtained are comparable with the estimated values for hadrons.
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1. Introduction

The difficulty of handling analytically QCD has stimulated, over the last decades, the use of
phenomenological approaches and the study of effective, simplified, theories to get clues of the
behavior of hadronic systems. In the realm of effective field theories, renormalizability is not a
definitive requirement for a theoretical model to have a physical meaning. The simplest effective
model which may be conceived to describe quark interactions, is a direct four-fermion coupling
where the gluon fields are integrated out and all color degrees of freedom are ignored, in a way
similar to the Fermi treatment of the weak interaction; this corresponds to the Gross-Neveu (GN)
model [1], considered in space-time dimensiBn= 4. In fact, the Gross-Neveu model is not
renormalizable (perturbatively) for dimensions greater than2 but, forD = 3, theN-component
massive Gross-Neveu model has been constructed in the theNdimgé-[ 2.

In this report we generalize previous work on th® &ross-Neveu model with one compact-
ified spatial dimension, at zer@][and finite @] temperatures, to arbitrary dimensi@) study-
ing particularly the caseB = 2,3,4 with all spatial dimensions compactified. We consider the
GN massive model iib dimensions at finite temperature with(< D) compactified coordinates,
one of them being the imaginary time whose compactification length is the inverse temperature.
The compactification of spatial dimensions, engendered through a generalization of the Matsubara
procedure (antiperiodic boundary conditions), correspond to consider the system contained in_.a
parallelepiped “box" with bag model boundary conditions on its fabg6][ In other words, our
system is defined inside a spatial region in thermal equilibrium at some temperature. We study the
behavior of the system as a function of its size and of the temperature. The large-N GN model, in
arbitrary dimensiorD, will be regularized along the lines of the previous papers, that is, by sub-
tracting polar terms coming from Epstein-Hurwitz generalizetkfunctions. We show that the
model treated in this way has the same structure for all valuBs which allows us to conjecture
that it would have a sense, in particular for the space-time dimefsiert. This assumption is
reinforceda posterioriby the fact that the numerical results for the confining spatial dimensions
and the deconfining temperature are of the same order of magnitude of the corresponding values
for D=2andD = 3, and moreover are in the right ballpark of the experimentally measured values.

Similar ideas have been applied in different physical situations: for spontaneous symmetry
breaking in the compactifieg* model [7, 8]; for second-order phase transitions in superconducting
films, wires and grains9]; for the Casimir effect for boson4.0] and for fermions in a box11].

For the Gross-Neveu model, discussed in the present paper, we obtain simultaneously asymptotic
freedom type of behavior and spatial confinement, for low enough temperatures. We also show
that, as the temperature is increased, a deconfining transition occurs. We calculate the values of the
confining lengths and the deconfining temperature and compare the results with the values obtained
from experiments and lattice calculations.

2. Compactified Gross-Neveu model

We consider the Wick-ordered, massidecomponent Gross-Neveu model iDadimensional
Euclidean space, described by the Lagrangian density

£ = GXP+MP: +5( FOW) ) X}
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wherem is the massy is the coupling constant is a point ofRP and they’s are the Dirac
matrices. The quantity/(x) is a spin% field havingN (flavor) components)?(x),a=1,2,...,N,
and summation over flavor and spin indices is understood. We shall take th&léingie{ N — ),
which permits considerable simplification. We use natural uhits,c = kg = 1.

The objective is to determine of the renormalized lary@effective coupling constant whedh
(< D) Euclidean coordinates, say, ..., Xq, are compactified. The compactification is engendered
via a generalized Matsubara prescription, which corresponds to consider the system with topology
Sh x ... Sl x RP—9. In other words, the coordinatgsare restricted to segments of lendth(i =
1,2,....d), with the fieldy(x) satisfying anti-periodic boundary conditions. If we choose one of the
coordinates to represent the imaginary (Euclidean) timeXggapuch scheme leads to the system
at finite temperature, witld — 1 compactified spatial dimensions; in this calsg would stand for
B =1/T, the inverse of the temperature. Otherwise, withxalleferring to spatial coordinates,
the model refers to compactifietldimensions afl = 0. For fermions, spatial compactification
corresponds to the system be constrained by bag model boundary conditions (no outgoing currents)
[5, 6], to “live" inside ad-dimensional parallelepiped “box" whose parallel faces are separated by
distanced; (i=1,2,....d) [5,16]. In any case, to describe the model witkompactified Euclidean
coordinates, the Feynman rules should be modified following the Matsubara replacements

dg 1 E" o 2m(ni + 3)

— —2 i=12...d 2.2
27T—>L| ni:ioo? L| Y I = I ( )

The largeN effective coupling constant between the fermions will be defined in terms of the
four-point function at zero external momenta. At leading orde%,irs;umming chains of one-loop
(bubble) diagrams, thfl; }-dependent four-point function has the formal expression

40 u
Mg (0;{Li},u) = , 2.3
Dd( { |} U) 1—|—NUZDd({L|}) ( )
where the{L; }-dependent Feynman one-loop diagram is given by
1 > dP-dk | mP-k?-39,v?
Zod{LiD) = 0 > /(2n)Dd — %'*1 I E (2.4)
1 i =w (k2+3L, v +nP)

in the above expressiow; = 2m(n; + %)/Li (i=1,...,d) are the Matsubara frequencies dnd
stands for a continuou® — d)-dimensional vector in momentum space.

To define a renormalized effective coupling constant, we have to handle the ultraviolet di-
vergences okpg({Li}). In order to simplify the use of regularization techniques, the following
dimensionless quantitie, = (mL)~2 (i = 1,...,d) andqgj = kj/2rmm (j =d +1,...,D), are in-
troduced. In terms of these quantities, the one-loop diagram is written as

Zpd({bi}) = Zpda(s{bi})ls>

D2
= n:mz Vb by {Z;ZUDd(S;{bi})—UDd(S— 1;{bi})}L—2, (2.5)

where ) o
Upa(p; {bi}) = 9 (2.6)

{ni}z—oo/ 2+ 39 bj(nj + )2+ (2m)-2)*
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This shows explicitly thaEpg has dimension of maSs?, which is the inverse of the mass dimen-
sion of the coupling constant.

We shall use a modified minimal subtraction scheme, employing concurrently dimensional
and analytical regularizations, where the terms to be subtracted are poles (f@ ev@nhof the
Epstein-Hurwitzzeta—functions B]. Thus, performing the integral ovey = (qg1,...,0p) in
Eq. 2.6), using well-known dimensional regularization formulas, we obtain

D-d_

. o M(pu—24) 2 d 1\? L2
Upa(p;{bi}) = r(F’)Z{ni}Z_oo [;bj <nj+2> +(2m) 2] : (2.7)

Transforming the summations over half-integers into sums over integers2.Ejgcén be written
as
oa F(l (D*d)) d

Uoa (ki {bi}) = 112 = 52— 4" [222<n,b1,...,bd>—_zizc?z(n,...,atbi,...)

d
+ 3 ZQZ(n,...,4bi,...,4bj,...)—~-+(—1)dZQZ(n,4b1,...,4bd)],(2.8)

i<]=1
—lp= D—d
whereh=m", n=u—=- and

o) d -Nn
Zinfah)= Y !z ajnf +h* (2.9)
{ni}=—e =1
is the multiple ¢I-dimensional) Epstein-Hurwitzetafunction.
The functionZQz(n,{ai}) can be analytically extended to the whole compigplane B,
through a generalization of the procedure presented in REIs18]; for reviews of applications

of zetafunction regularization, see also Ref4]. We find (see Appendix)

2 nd/2 1 d
ZQ(V,{a;}): \/ﬂr(v |:h2(v—d)r( _5)

i<]=1nj,nj=1
m N3 n g
Lo \/i K, a|2mhy/2+-+9]],
e hly a a4 1 8
(2.10)

whereK(2) is the Bessel function of the third kind. This implies that the functigg(u; {bi})
can also be analytically extended to the comgleglane. Using the identity

N /1N N 1
,;(2> PIN=r - 2N
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and grouping similar terms appearing in the parcels of E&),(we find

2u—D 25 5
na(pi () = 2 [ (B ) w2ttty 2

with Woqg (1; {bi}) given by

d ) i (_l)Cpk—l
Woa(pi {bi}) =2+ 5 229y [—=

< C ) FDj(u;Cplbpl)"'ucpjbpj), (212)
=1 {pj}{cp =14} \k=1 Pk

where{p;} stands for the set of all combinations of the indi¢és2,...,d} with j elements and
the functiongp;(u;as,...,a;) (j =1,...,d) are defined by

o (e m\" e
i(W;a,...,a) = 2\ =4+ = K, o|2{//=++—1]. 2.13
Foj(H; a1 i) n17...,zn,-:1 a T +a,- 42 a +a,- (2.13)

The use of Eq/2.11) leads directly to an analytic extensionXyy(s; {b; }) for complex values
of s, within a vicinity ofs= 2:

D—2 2
Soa(s {bi}) = (ZH)?Z(SZF(S) {(s— 1-D)r <s— 1- 2)
+ [25  Wbg(s (b)) - (s- )22 Wba(s- 1i{b})] } . (219)

We notice that the first term in this expressionIgy(s; {bi } ), involving thel -functions, does not
depend on parametéps that is, it is independent of the compactification lendth§ = 1,...,d).

For even dimensionB > 2, this term is divergent due to the poles of fhdunctions. Since we

are using a modified minimal subtraction scheme, where terms to be subtracted are poles appearing
at the physical valus = 2, this term should be suppressed to give the renormalized single bubble
function, ZR,({bi}). For the sake of uniformity, this term is also subtracted in the case of odd
dimensions, where no poles of thefunctions are present; in a such situation, we perform a finite
renormalization. The second term, which depends on the compactification léngthd arises

from the regular part of the analytical extension of the Epstein-Hurzatafunctions, gives the
renormalized one-loop diagram

N

R (fh1) _ mP-
Zpg({bi}) = 2n

[2Whba(2;{bi}) —Wba(1;{bi})] - (2.15)

[N[v]

Notice that, replacing; by (mL)~2 in the above expression, we recover explicl§,({Li}).
Now, we proceed to analyze the behavior of the laigesupling constant in various cases.

3. Large-N renormalized coupling constant

As it is usual in four-body interacting field theories, we shall define the coupling constant in
terms of the four-point function at fixed external momenta, takiag0. The coupling constant is
then interpreted as measuring the strength of the interaction between the fermions. Thus, inserting
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sR,({bi}) into Eq. 2.3 and taking the limitN — « andu — 0, with Nu= A fixed as usual,
we find the largeN ({b; }-dependent) renormalized coupling constant,ddq< D) compactified
dimensions, as

A

T I AR, (b)) (3.1)

goa({bi},A) = lim [NFEIR(0, {bi},u)]
This is the basic result for subsequent analysis. Some general properties of the renormalized effec-
tive coupling constant can be obtained from the fact that the dependeﬁEg ofi {b; } is dictated
by the Bessel functions of the third kind appearing in 201.8).
First, notice that if alb; tend to zero, that is, ifL; — o}, thenzgd — 0 and therefore

{Lliiinoo}ng({bi}v)‘) =A. (3.2)

This is an expected result, expressing a consistency condition for our calculations: when all the
compactification lengths tend to infinity, the renormalized effective coupling constant must reduce
to the renormalized fixed coupling constant in free space at zero tempesat@®s the other hand,

if any of theb; tends towo (that is, if any compactification length goes td)), the renormalized sin-

gle bubble diagranigd diverges, implying in the vanishing of the renormalized effective coupling
constanigpq, irrespective of the value of. This suggests that the system presents an ultraviolet
asymptotic-freedom type of behavior for short distances and/or for high temperatures.

Interesting features should appeaZ[§, acquires negative values; in such a situation, depend-
ing on the value ofA, the renormalized effective coupling constant may diverge for finite values
of the lengthd.;. Such a possibility, and its consequences, will be explicitly investigated in the
following subsections, where we consider, particularly, the compactified model for space-time di-
mensiond = 2, 3,4 at zero temperature. The discussion of finite temperature effects is postponed
to Sec. Il

3.1 Compactified Gross-Neveu model iDb =2atT =0

Firstly, consider the case of a two-dimensional space-tiine- 2), where only the spatial
coordinate is compactified, thatds= 1, and fixL,; = L. Inserting these values @ andd into
Egs. 2.12) and 2.13), remembering thdt; = b = (mL)~2, Eq. 2.15 becomes

>3 (L) = 2E1(2mL) — Ey(mL), (3.3)

where the functiort; (X) is given by

() Ka (xn) — Ko (xn)] (3.4)

M s

E]_(X) = 7]_-[

n=1

As stated before. andA are dimensionless fdd = 2. Notice thatl has dimension of inverse of

mass and so the argument of the Bessel functions are dimensionless, as it should. We can calculate
=8, (L) numerically by truncating the series in E§.4), defining the functior; (y), at some value

n= N. For moderate and large valueswok (say,=> 0.5), N can be taken as a relatively small value;

for example, formL = 0.5 with N = 36, we obtain the correct value af;l to six decimal places.
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-0.05

Figure 1: Plot of S= 25 (L) as a function ofL.

However, due to the presence of positive and negative parcels in the summation and the fact that
the functionsKo(z) andK(z) diverge forz— 0, large values oN are required to calculat, for
small values ofmL; for mL = 0.005, we have to také&l = 4500to obtainZE*l to six decimal places.
Some features about the functi@f, (L) can be obtained from the numerical treatment of
Eq. 3.3 and can also be visualized from from Fij.where this quantity is plotted as a function
of mL. As already remarked on general grount§,(L) diverges (- +) whenL — 0 and tends
to O, through negative values, ds— «. We find thatz§1(L) vanishes for a specific value bf
which we denote byffi)n, being negative for all. > Lfﬁin; it also assumes a minimum (negative)
value for a value of. we denote by_.%x, for reasons that will be clarified later. Numerically, we
find: L ~0.78m1; L&, ~ 1.68m ! and=8Mn ~ —0.0445 This dependence &, onL, in

min —
particular the fact thaf, (L) is negative fol > Lfﬁi)n, has remarkable influence on the behavior of
the renormalized effective coupling constant.
In the present case, E@.1) becomes
(I J—— (3.5)
Q21(L, TR0 :

We first note that, independent of the valueAofg,;(L, A ) approaches 0 ds— 0; therefore, the
system presents a kind of asymptotic-freedom behavior for short distances. On the other hand,
starting from a low value oL (within the region of asymptotic freedom) and increasing the size
of the systemgy; will present a divergence at a finite value Lo(L((;Z)), if the value of the fixed
coupling constantX) is high enough. In fact, this will happen for all valuesiofbove the “critical
value")\c(z) = (—ZE{“‘”)*l ~ 22.5. We interpret this result by stating that, in the strong-coupling
regime g > )\C(z)) the system gets spatially confined in a segment of Ieh&fl(])\ ). The behavior
of the effective coupling as a function ofL is illustrated in Fig:2, for some values of the fixed
coupling constani.

From the definition oﬂc(z), we find that, forA = )\C(z), the divergence afi;1(L,A) is reached
asL approaches the value that ma(2 minimal, which we denoted by%x. On the other

hand, sincegp1(L,A — o) = % (L), L¢7(A) tends toLfﬁi)n, the zero ofs%;, asA — c. In other
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Figure 2: Plots of the relative effective coupling constaBt—= gp1(L,A)/A, as a function ofmL for some
values ofA: 12.0 (dashed line)17.0 (dotted-dashed line0.0 (dotted line) anc®2.5 (full line). The dotted

vertical lines, passing byﬁﬁﬁn ~0.78m™1 andL%xz 1.68m™1, are plotted as a visual guide.

words, the confining Iengthg)()\) pertains to the interva(L(Z) L,(ﬁ%x}. For a given value o,

min’
the confining Iengtth;z) (A) can be found numerically by determining the smallest solution of the

equation1+ AZR (L) = 0. These results are presented in Bgwhere we pIotmLEz) (A)as a
function ofl = )\//\éz).

Figure 3: Plot of the confining length (in units ah~!), as a function of = /\/)\C(z); the horizontal dashed
lines correspond to the limiting vaIue«a;Lr(fi)n ~0.78 andmLﬁ;Xg 1.68.

3.2 Compactified3-D Gross-Neveu model afl =0

We start by considering tt&D model at zero temperature, with two compactified dimensions.
We should then takB = 3 andd = 2 in formulas 2.12:2.15), with L; andL, being the compactifi-
cation lengths associated with the two spatial coordinatasdx,, measured in units ai* (v/by
and/b,, respectively). Using tha(i% (2) = /mexp(—2)/v/2zand summing geometric series, we
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find the following expression for the renormalized bubble diagram

(L1, L) 1

— i —L1 i —L2
- = 2H[Lllog(lJre )+L2Iog(1+e )

i 1 n 1

on|iren v

1

+o [Ga(L1,L2) —2G2(L1,2L2) —2G2(2L1,L2) +4G2(2L,2L2)], (3.6)

where the functiorts;(x,y) is defined by

(oo}

1
Ga(x,y) = n;_1exp<— \/ X2n2 +y2I2) [1 -

X2n2 + 2|2 (3.7)

Notice that the numerical computationS,(L1, L,) is greatly facilitated by the fact that the double
series defining the functioB,(y, z) is rapidly convergent.

We remark, initially, that by taking one of the compactifications lengths going to infinity in the
expressiond.6), all terms depending on it vanish and we regain the renormalized bubble diagram
for the case where only one spatial dimension is compactified i8-thenodel; thus, particularly,
all the results of Ref/J] follow. We see explicitly that if both_; andL, tend simultaneously to
00, 2332 goes to zero andsy — A, confirming the general statement made above. Also, if elther
or L, tends to0, 252 — +o0o implying that the system gets asymptotically free, with the effective
coupling constant vanishing in this limit. However, instead of work in more general grounds, we
shall restrict our analysis to the case where the system is confined within a squarelgfigjze
considering-; = L, = L and without loosing the generality our results may have.

The quantity=5,(L,L)/m behaves, as a function bf(measured in units afi-1), in the same
way as it appears in Fig. We find that it vanishes for a specific vaIuequLEf’i)n, being negative
forall L > Lgfi)n; it also assumes an absolute minimum (negative) value for a valuedehoted
by L. Numerically, we find:Lfﬁ’i)n ~1.30m 1, L, ~2.10m ! andz5"n ~ —0.0099m. This
behavior ofs%,(L,L) has deep implications on the renormalized effective coupling constant.

In fact, in the present case, E@®.1) reduces tagsa(L,A) = A /[1+ A Z§,(L)] and we find
that, forA > AY = (—xBmin~1 ~ 101m~1, the denominator vanishes for a finite valuelof
Lf;3) (A), leading to a divergence in the renormalized effective coupling constant. The behavior of
the effective coupling as a function &f for increasing values of the fixed coupling constant
can be illustrated showing the same pattern as that ofZHigr the preceding case. We find that
the divergence occurs a@ (A) € &Lﬁﬁi)n, L,(%x} . Again, we interpret such a result by considering
the system spatially confined in the sense that, starting lwimall (in the region of asymptotic
freedom), the size of the square can not go alhé%/\) sincegzy(L,A) — o asL — LY (A). The
confining Iength_@ (A) is given by the smallest root of the equatibs A Z§,(L) = 0; its behavior
as a function of the relative effective coupling constant,)\/)\c(3), follows the same trend as in

that in Fig.3 but with the limiting valuest_ﬁ)n ~1.30m L andLiZ, ~ 2.10m1,

3.3 D =4 case at zero temperature

Let us now consider the 4-dimensional Gross-Neveu model where all three spatial coordinates
have been compactified. Replacinghqul1 by L~2 (again, measured in units of 1) in Egs. @.12-
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2.15), which corresponds to consider the system confined within a cubic box, we obtain

Tha(L) = mP[BH1(2L) — 3H1(L) +6Ha(L, L)
—24H;(L,2L) +24H,(2L,2L) — 4Hg(L, L, L)
4 24H3(L,L,2L) — 48H3(L, 2L, 2L) + 32H3(2L,2L,2L)] . (3.8)

where the functionsl;, j = 1,2,3, are defined by

1 [e3)

K1(xn)
Hi(x) = 2712”; [Ko(xn)— (1xn) ] , (3.9)
1 2 K1(4/X2n2 +y212)
Hz(X,y) = ﬁngl [Ko (\/X2n2+y2|2> _ (\/m) , (3.10)
1 2 K1(+1/X2n2 4 y2|2
Hi(x,y,2) = 2—7_[2n~|Z:1 [Ko (\/X2n2—|—y2|2+22|’2> — (\/i§n2+y2|2_)‘/_22?-2) (3.11)

The quantity=f%(L)/m? has the same behavior as its counterpart®fer 2 andD = 3. We
find numerically thatR,(L) vanishes fol. = L) ~ 1.68m1, being negative fot. > L " and
assumes the minimum valug"" ~ —0.002275, whenL = LW ~237m L,

As in the other cases discussed in detail before, the renormalized effective coupling constant;
Qa(L,A) = A/[1+AZR(L)], diverges at a finite value af, LS (1), if A > A{Y = —(Rpin)—1 ~

4395m 2, meaning that the system gets confined in a cubic box of Eéf@@\) S (L(4) Lﬁfgx}.

min’
The plot of LY (A), as a function of = )\//\c(4>, shows the similar features as that of F3ybut
4)

with the limiting valued., # ~ 1.68m™* andL'), ~ 2.37m1.

4. Effect of temperature on the compactified Gross-Neveu model

We now discuss the effect of raising the temperature on the renormalized effective coupling
constant for the Gross-Neveu model with all spatial dimensions compactified. Finite temperature
is introduced through the compactification of the time coordinate, with the compactification length
given byLp = 3 = 1/T. Although in an Euclidean theory time and space coordinates are treated
on the same footing, the interpretation of their compactifications are rather distinct. On general
grounds, we expect that the dependencERpandgp on 3 should follow similar patterns as that
for the dependence with. In fact, asB — O (that is, T — ), R — o implying thatgp — O,
independently of the value of the fixed coupling constanthus, we have asymptotic-freedom
behavior for very high temperatures. Therefore, we expect that, starting from the compactified
model afT =0with A > /\C(D), raising the temperature will lead to the suppression of the divergence
of gp and the consequent deconfinement of the system. In this section, we discuss this deconfining
transition and determine the deconfining temperature for the cafes-& 3, 4.

41D=2

We now consider the effect of finite temperature on2He compactified model. For that, we
take the second Euclidean coordinate (the imaginary tigjegompactified in a length, = 8 =

10
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1/T, T being the temperature. In this case, thend 3-dependent bubble diagram, obtained from
Egs. 2.132.15 with by = L=2 andb, = B2 (L and8 measured in units ah™1), can be written
as

25,(L,B) = 2E1(2L) — Ea(L) + 2E4(2B) — Ex(B)

where the functiom‘:l(x) is given by Eq.8.4) and the functiorix(x,y) is defined by
2(X,y) = = Z {( x2n2+y2I2) K1 (x/x2n2+y2|2) —Ko (\/x2n2+y2I2)} ) 4.2)

Firstly, observe that ifi — o, all terms depending off vanishes and?z(Ljﬁ) reduces to
the expression for zero temperatuiél(L). On the other hand, independently of the value pf
if B — 0, ZX,(L,B) — o and the system becomes asymptotically free; therefore, we expect that
raising the temperature tends to suppress the divergengefa¥oring the disappearance of the
mentioned spatial confinement. Such a reasoning implies that, for a given value bﬁz), there
exists a temperaturé'd(z) (A), at which the divergence ig disappears and the system becomes
spatially unconfined. We can determﬂ“bé2> (1) by analyzing the behavior @, (L, 3,A) asT is
increased.

0.02¢

-0.02¢

Figure 4: Inverse of the effective coupling consteggzl, with A = 30fixed, as a function oL (in units of
m~1), for some values o8 (in units ofm~1): 2.4, 1.15and1.0 (dashed, full and dotted lines, respectively).

In Fig. /4, we plotg,; L(L,B,A) as a function oL, for some values of and a fixed value of
A > /\C( ). We find that, in this example with = 30, the minimum value og22 vanishes foi3 =
Béz) ~ 1.15m™! and is positive fo3 > Béz), no divergence ofjy,> existing at temperatures above
(ﬁéz))‘l. Thus, the deconfining temperature is givenT[§§) = (Béz))—l ~0.87m, for A = 30. The
dependence of the deconfining temperatur@ @ presented in Figb.

42D=3

We now investigate the effect of the temperature in the compac8fiedsross-Neveu model
by considering the coordinatg (the imaginary time) compactified in a lengbh= 1/T. Taking,
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Figure 5: Deconfining temperatur@d(z)()\) (in units of m), as a function of = /\/)\éz); the horizontal
dashed lines correspond to the limiting vaIlTév.%)h ~ 0.65m andTn(QXz 1.29m.

again,b; = by, = L~? and fixingbs = =2 in Egs. 2.132.15), theL-B dependent bubble diagram,
is given by

SRLB) 12 1y, L B
%T = 2n[LIog(lee L)+E|OQ(1+9 )]

1 2 1
"o [1+C—:L Ty }
+7—1T[Gz(L,L) +2Gy(L,B) —4Gy(L,2L) —4G;(L,2B)
—4Gy(2L,B) +4G,(2L,2L) +8Gy(2L,23)]

2 [2Gs(L, L, B) ~ 4Gs(L,L,28) - 8Gs(2L. L B)
+8Gs(2L,2L, B) + 16G3(2L, L, 2B) — 16Gs(2L, 2L, 28)] , (4.3)

whereGy(x,y) is given by Eq./8.7) and the functiorGs(x, Y, z) is defined by

S 1
G3(X,y,2) = exp( —v/xX2n2+vy224+22r2) |1— ‘ 4.4
en n,|.,Z:1 p< Vi )[ VN2 4212 4 2212 (4-4)

Note that, making3 — o, Eq. 4.3) reduces t&5,(L), obtained from3.6) with Ly = L, = L.

As before, the increase of the temperature destroys the spatial confinement that exists for
Ac(3) atT = 0. We can determine the deconfining temperature by searching for the v ofor
which the minimum of the inverse of the effective renormalized coupling cong@ﬂL,B,)\) =
(1+AZ55(L,B))/A, vanishes. For example, taking the specific casa ef 110m~1, we find
Bf) ~ 1.65m~! which corresponds to the deconfining temperaﬁfé ~ 0.61m; this result can
be illustrated in a figure with the same pattern as that appearing i4 Fogthe D = 2 case. The
plot of Td(3) (A), as a function of = A //\c(3), has the same aspect as that in Biguith the limiting
valuesT?) ~0.54mandT> ~0.87m

dmin — dmax —
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43D=4

To look at the effect of finite temperature and determine the deconfining temperature for the
fully compactified model irD = 4, we need to compactify the imaginary time besides the spatial
coordinates. Wittb, = 372, measuring the lengths in units wf, we find from Eqgs.2.12:2.15
that

SRa(L,B) = mP[BHy(2L) — 3Hy(L) +2H1(2B) — Hi(B) + 6Ha(L, L) + 6Ha(L, B)
—24H,(L,2L) — 12Hp(L, 2B) — 12H,(2L, B) +24H(2L,2L) + 24H,(2L, 23)
—4H3(L,L,L) — 12H3(L,L, B) 4+ 24H3(L,L,2L) + 48H3(L,2L, B)
+24H3(L, L, 2B) — 48Hz(L,2L,2L) — 48H3(2L, 2L, B) — 96H3(L, 2L, 2B8)
+32H3(2L,2L,2L) + 96H3(2L, 2L, 28) 4 8Ha(L, L, L, B)

—48Hq(L,L, 2L, B) — 16H4(L,L,L,2B) +192H4(L, 2L, 2L, B)
+96H4(L,L,2L,203) — 64H4(2L,2L,2L, B)
—192H4(L,2L,2L,2B) +128H4(2L,2L,2L,2B)] . (4.5)

where the functionsly, H, andHs are given by Eqsi3.S/3.11), andHa(x,y,z,w) is defined by

1 00
Ha(x,y,Z W) = > |Z 1[KO (\/x2n2+y2I2+22r2+W252)
nl,rs=

Ky <\/x2n2—|—y2I2—|—22r2—|—W232>
Ry 2 L W

(4.6)

As before, we can determine the deconfining temperature by searching for the vgl{e) of
for which the minimum of the inverse of the effective renormalized coupling congfgiit,, 8,1 ) =
(L+AZR(L,B))/A, vanishes. For example, taking the specific casd ef 620m~2, we find
Bé“) ~ 1.707m~* which corresponds to the deconfining temperaf[&(tsé ~ 0.59m. However, in
the case oD = 4, the lowest value on(:gm — 0; this means that, fok = A.” the system is confined
atT(4:) 0, but it becomes unconfined at any finitethe upper bound of the deconfining temperature
isT; . ~0.7m.

dmax —

5. Concluding remarks

We have analyzed thid-component D-dimensional massive Gross-Neveu model with com-
pactified spatial dimensions, both at zero and finite temperatures. TheNaetieetive coupling
constang, for T = 0, shows a kind of asymptotic freedom behavior, vanishing when the comapc-
tification length tends to zero, irrespective to the value of the fixed coupling constaint the
strong coupling regime, where the fixed coupling constant is greater than some critical value, start-
ing from small compactification lengths and increasing the size of the system, a divergence of
the renormalized effective coupling constant appears at a given ldng#), signalizing that the
system gets spatial confined. When the temperature is raised, a deconfining transition occurs at a
temperaturdy(A ), as the minimum of the inverse of the renormalized effective coupling constant

13
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reaches zero. These general aspects of the model hold for arbitrary valiessagxplicitly shown
forD=2,3,4.

It should be emphasized that these results are intrinsic of the model, do not emerging from
any adjustment. The limit values b§(A) andTy(A) depend only on the fermion mass. Thus, to
get an estimate of these values we have to fix the parammet®€o do so, we consider the Gross-
Neveu model as an effective theory for the strong interaction (in which the gluon propagators have
been shrank, similarly to the Fermi treatment of the week force) andntathebe the constituent
quark massm~ 350MeV~ 1.75fm™* [15]. With such a choice, for the model with = 3 and
both spatial coordinates compactified, we flhd@d4fm < L.(A) < 1.20fm and, correspondingly,
305MeV> T4(A) > 189 MeV. These values should be compared with the experimentally measured
proton charge diameters(1.74fm) [16] and the estimated deconfining temperatuse200 MeV)
for hadronic matter17]. A detailed analysis of such a comparison, for arbitrary dimension and in
particular forD = 4, will be presented elsewhere.

Appendix: Analytical continuation of the multivariable zetafunction

Here, we summarize the steps to obtain Eul10). First, rewrite Eqg.2.9) in terms of sums
over positive integers,

¥ (n;a1, ..., g +2212 anf +h?)~

+22 (an? +ayné+h?) ="+
i<jZ:1ni,%:1 I .
+2¢ S (ani+---+agng+h?) 7"

ng,...,ng=1

Using the identity,

1 1
—=—_—_ [ dttTle™
& T T(n) Jo ©

we get,

Zgz(n'al ad) = l/wdt tn_le_hzt 142 g T]_(t ai)+
F(m) o 2,
d
+28 Y Tolta,a) +-+29Tu(t,ae,...a0) |
i,]=1
where,

T1<t7al) = Z eiajniZtv
ni=1

Tj(t,al,...,aj) = Tj_l(t,al,...,aj_l)Tl(t,aj) ,]=2,...,d.

Considering the property of functioris,

Ti(t, &) = —;—i—\/:[ +S(— )},

14
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where o
S(x) = Z efnzx’
n=1
we find,
d . d
o) = T L [arnpig ud
d P P S
2 Dyg V... o —
2 i<Jz:18(""it)S(""J't)Jr . iuS(a"t)]'

Now, inserting in this expression the explicit form of the functgx) and using the following
representation for Bessel functions of the third kiKd,

2(a/b)#K,(2v/ab) = /'“dxxf—le—<a/x>—bx,
0

we obtain Eq.2.10).
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