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1. Introduction

The General Theory of Relativity (GR) constitutes one of the major scientificachievements
of Science, and so far it has passed quite well in all experimental tests. Basically, GR establishes
a system of ten nonlinear and coupled partial differential equations that governs the dynamics of
the gravitational field represented by the symmetric tensorgαβ , α ,β = 0,1,2,3. The nonlinear
nature of the field equations is the main obstacle to obtain exact solutions of the field equations un-
less, of course, perturbative approaches are assumed so that the equations become linear, or under
the assumption of idealized symmetries. Therefore, in order to study the dynamics of the gravita-
tional field in more general situations the use of numerical techniques seems tobe the only possible
strategy to circumvent the difficulty posed by the nonlinearities of the field equations. Numerical
relativity has become a very fertile and at the same time challenging field of research as recently
covered by several interesting reviews[1], where the improvement of specific numerical techniques
adapted to relativistic problems along with the growth of computational resources figure as the
factors for the advance of numerical relativity. However, the complete understanding of impor-
tant problems in relativistic astrophysics such as non-spherical collapseand nonlinear regimes of
emission of gravitational waves is still not complete.

A promising approach in treating numerically nonlinear problems is provided bythe so-called
spectral methods[2, 3, 4]. The spectral methods adopt a distinct strategy if compared with the finite
difference scheme. For instance, considering a functionu(t,x) satisfying a given one dimensional
partial differential equation, it will be approximate as a series of the typeua(t,x) = ∑N

k=0 ak(t)ψk(t),
where the basis or trial functionsψk(x) are known analytical polynomials such as Fourier, Legen-
dre, Chebyshev, etc. In general, by increasing the truncation orderN, ua(t,x) approaches of the
exact solution of the problem. There are distinct types of spectral methodsamong which we list the
Galerkin method[5], the collocation method and the Tau-method. These methodshave an attractive
feature which is to transform any partial differential equation into a finite set of ordinary differen-
tial equations, or simply a dynamical system whose dimension is dictated by the truncation order
N. Another important robust feature is the high accuracy achieved with a small truncation order, or
equivalently using a moderate or low computational resources. The combination of such features
can be understood as the low dimensional dynamical system approach broadly applied in problems
of turbulence of fluids[6]. On the other hand, applications of this approach in specific problems of
Cosmology[7] and Gravitation[2, 3, 8, 9, 10, 11] has been done recently.

In this paper our objective is to apply the Galerkin method to the problem of critical phe-
nomena in gravitational collapse of a scalar field[12]. As a matter of fact, critical phenomena
in gravitational collapse has opened a new venue of investigation of the strong gravitational field
regime, and has been investigated intensively until now. Choptuik originally studied the spherically
symmetric collapse of massless scalar field and found a series of intriguing new features typical
of a system described in statistical physics under phase transition. The original results refer to the
collapse of initial data families of massless scalar field whose strength is characterized be some
parameterp. Essentially, there exists a critical valuep∗ such that the solution of the field equations
are divided into three classes: (i) the subcritical solutions for whichp < p∗, and the collapsing
matter eventually disperses leaving behind flat spacetime; (ii) critical solutionsthat havep = p∗
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and exhibits self-similar echoing in the neighborhood of a central singularity; and (iii) supercritical
solutions characterized byp > p∗, and the scalar field collapses to form a black hole. In particular
for marginally supercritical evolutions, the masses of the black holes obey the following scaling
law

MBH ∝ |p− p∗|γ , (1.1)

whereγ ≈ 0.37 is independent of the initial data. Several authors have recovered these properties
considering the collapse of distinct matter field and symmetries[13], but therestill are some open
questions such as the generality of critical phenomena, or the underlying physics responsible for
the amazing similarity with the usual critical phenomena described in Statistical Mechanics.

The paper is organized as follows. In Section 2 the basic equations describing a self gravitat-
ing spherically symmetric scalar field are exhibited. The linearized field equations are presented in
Section 3 as a test for the Galekrin method, where the approximate and exactsolutions are com-
pared. Sections 4 and 5 are devoted to the application of the Galerkin method tothe full nonlinear
field equations; the dynamical system is obtained for several truncation orders along with the pre-
sentation of the numerical results. Finally, in Section 6 we conclude. Thorough the paper we
assume 8πG = c = 1.

2. The basic equations

We consider the general spherically symmetric line element written as

ds2 = −e2β V
r

du2−2e2β dudr+ r2dΩ2, (2.1)

whereβ = β (u, r),V =V(u, r) anddΩ2 = dθ 2+sinθ 2dϕ2; u is the usual retarded null coordinate.
The massless scalar fieldφ = φ(u, r) is the only source of curvature, such that the relevant field
equations are

β,r =
r
4

φ2
,r (2.2)

V,r = e2β (2.3)

rφ,ur +φ,u =
1
2r

(rVφ,r),r . (2.4)

The first two equations are constraint equations relating the metric functionsβ (u, r) andV(u, r)
with the scalar field; the third is the Klein-Gordon equation. This equation allowsto evolve the
scalar field once the initial dataφ(u0, r) specified at the initial null hypersurfaceu = u0.

As we are going to see, the boundary conditions are of fundamental importance for the im-
plementation of the Galerkin method. Accordingly, assuming the asymptotically flatspacetimes, it
must be guaranteed that

φ → 0, β → 0, V → r, (2.5)

at the spatial infinityr → ∞. In this case, the scalar field has the asymptotic expansion
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φ =
Q(u)

r
+

Q2(u)

r2 + ... (2.6)

whereQ(u) is the scalar monopole andQ2(u) is the Newman-Penrose constant for the scalar
field[14]. The boundary conditions for the metric functions at the originr = 0 are expressed as
follows

β ≃ O(r2), V ≃ r +O(r3), (2.7)

together with the assumption ofφ being finite at the origin. These are the Bondi conditions for the
regularity of the spacetime at the origin. Also, e2β = V/r = 1 at r = 0, corresponds to selectu as
the proper time atr = 0 central world line.

Another important quantity to be introduced is the mass function,m(u, r),

1−
2m(xα)

r
≡ gµν r,µ r,ν =

Ve2β

r
, (2.8)

which is interpreted as the effective gravitational mass inside the 2-sphereof radiusr, and agrees
with the Bondi and ADM masses in the asymptotic flat spacetimes.

For the sake of convenience we follow Goméz and Winicour[15] and introduce the auxiliary
field Φ(u, r) defined as

Φ ≡ rφ . (2.9)

The boundary conditions areΦ(u,0) = 0 andΦ(u,∞) = Q(u).

3. The weak field limit: linear theory

We begin studying the linearized field equations or the evolution of weak fields. In this approx-
imation Eqs. (2.2) and (2.3) yieldβ ≈ 0 andV ≈ r respectively, therefore reducing the problem
to the dynamics of the Klein-Gordon equation in Minkowski spacetime. In terms of the auxiliary
field Φ(u, r), the evolution equation has the form

2Φ,ur −Φ,rr = 0, (3.1)

whose general exact solution that satisfies the boundary condition at theorigin is

Φexact= F(u+2r)−F(u), (3.2)

whereF is an arbitrary function. The above exact solution will be used to test the Galerkin method
as described below.

The cornerstone of the Galerkin method is the choice of a set of basis functions, or trial func-
tions, for which the the fieldΦ is approximated in the following way

Φ(u, r) =
N

∑
k=0

ak(u)ψk(r), (3.3)
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whereak(u) are the unknown modal coefficients andN is the order of truncation;ψk(r), k =

0,1, ..,N are known trial functions defined in the interval 0≤ r < ∞. By an appropriate choice of
the trial functions the convergence of the decomposition (3.3) to the exactΦ is guaranteed asN is
made arbitrarily large. As demanded by the Galerkin prescription the trial functions must satisfy
the boundary conditions imposed forΦ(u, r), namely,ψk(0) = 0 andψk(∞) being finite for anyk.

The next step is to substitute the decomposition (3.3) into the Klein-Gordon equation yielding
what is known as theresidual equation:

Res(u, r) = 2
N

∑
k=0

ȧk(u)ψk(r)−
N

∑
k=0

ak(u)ψ ′′
k (r). (3.4)

Here dot and prime means derivative with respect tou and r, respectively. Next we project the
residual equation into each trial functionψn(r), n = 0,1, ..,N, which is in general defined as

〈Res(u, r),ψn(r)〉 =
∫ ∞

0
Res(u, r)ψn(r)w(r)dr. (3.5)

wherew(r) is the weight function associated to the selected basis the trial functions. According
to the Galerkin method the wave equation (3.1) is reduced to a finite set of ordinary differential
equations for the modal coefficientsak(u) by imposing

〈Res(u, r),ψn(r)〉 = 0, (3.6)

for all n = 0,1, ..,N. In general these equations can be cast in the following form

ȧ j(u) = F j(a0,a1, ..,aN), j = 0,1, ..,N, (3.7)

whereF j(a0,a1, ..,aN) are linear functions of the modal coefficients.
The set of trial functionsψk(r) must satisfy the boundary conditions imposed for the field

Φ(u, r). In this vein, the following combination of rational Chebyshev functions[16], TLk(r), was
chosen

ψk(r) = TLk+1(r)+TLk(r). (3.8)

The rational Chebyshev functions are defined in the semi-infinite interval1, and the weight function
is given byw(r) = r−1/2/(1+ r). Notice that by constructionψk(0) = 0 for anyk, and the scalar
charge is now given by

Q(u) =
N

∑
k=0

2ak(u), (3.9)

providing the correct asymptotic form of the scalar field at the spatial infinityaccording to Eq.
(2.6).

We are now in conditions of confronting the exact solution for the auxiliary field Φ(u, r) with
its evolution computed using the Galerkin method. The starting point is to select theinitial profile

1The rational Chebyshev functions are obtained using the transformationx = (r −1)/(r + 1), where−1 ≤ x ≤ 1
and 0≤ r < ∞
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Φ(u0, r) = Φ0(r) that determines the initial values for the modal coefficients through the decom-
positionΦ0(r) ≡ ∑N

k=0 ak(u0)ψk(r). Two examples of the one parameter set of initial data will be
considered[15]:

(i) Φ0(r) = λ r/(1+ r), (ii) Φ0(r) = λ tanh(r),

whereλ is the initial scalar charge of the distribution. Once the initial conditions are specified the
evolution of each modal coefficient is determined from the system (3.7), and, as a consequence,
the overall dynamics ofΦ(u, r) through the decomposition (3.3) is known. In particular as a con-
sequence of the first initial data the modal coefficients are given byak(0) = 0, k = 1,2, ...,N and
a0(0) = λ/2, producing an exact fitting. In Fig. 1(a) we illustrate the evolution of the modal co-
efficientsa1,a2, ..,a5 for N = 5. Since the first initial data is taken into account their initial values
are all zero, moreover it can be noticed that at each instanta1 > a2 > .. > a5, implying in the
convergence of the Galerkin decomposition. The same aspect is verified ifN is increased.

In order to provide a quantitative measure of the error between the approximate solution cor-
responding to a given truncation orderN and the exact solution we evaluate theL2-error, or the rms
error, defined as

L2 =

√

√

√

√

∫ 1

0

[

Φexact(u,x)−
N

∑
k=0

ak(u)ψk(x)

]2

dx. (3.10)

Notice that a new radial coordinatex was introduced viar → x = r/(1+ r) to compactify the
spatial domain. By plotting the rms error at each instant for both initial data families we can
envisage that a satisfactory accuracy is achieved even if the truncation order is relatively low. Also,
the effect of increasing the truncation orderN demonstrates the rapid convergence of the Galerkin
decomposition (3.3). In Fig. 1(b) we have depicted the evolution of the error considering the
second initial data family.
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Figure 1: (a) Evolution of the modal coefficientsa1,a2, ...,a5 (upper to lower curves) for the first initial data
family with λ = 1. (b)L2-error evaluated at each instant for distinct truncation orders, where it is clear the
convergence asN is increased. In these experiments we have considered the second initial data family.
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4. The nonlinear case

In order to apply the Galerkin method to the system formed by Eqs. (2.2), (2.3) and (2.4) the
same procedure as outlined in the last Section will be performed. We assume the decomposition
(3.3) for the auxiliar fieldΦ(u, r) as the fundamental piece to implement the Galerkin method,
and therefore the dynamical system for the modal coefficients. The metric functionβ (u, r) can
determined after integrating Eq. (2.2) as

β (u, r) =
1
4

∫ r

0
r

[

N

∑
k=0

ak(u)

(

ψk(r)
r

)′
]2

dr. (4.1)

This integral can be evaluated exactly for any truncation orderN resulting in an expression which
is quadratic with respect to the modal coefficients. Next, the functionV(u, r) is obtained from (2.3)
through

V(u, r) =
∫ r

0
e2β (u,r)dr. (4.2)

To integrate this expression in a closed form an additional approximation is assumed. The integrand
may be expanded as exp(2β ) = 1+ 2β + 2β 2 + .. ≃ 1+ ∑J

k=1(2β )k/k!. For instance, the linear
approximation studied previously is equivalent to exp(β ) ≈ 1, which impliesV(u, r) ≈ r. The next
approximation, exp(2β ) ≈ 1+ 2β , will be namedquasilinear, since despite being linear inβ is
quadratic in the modal coefficients. In obtaining the dynamical system for themodal coefficients
we shall take into account the effect of increasing the truncation orderN as well asJ. Using this
procedure it will be instructive to exhibit the expressions forβ (u, r) andV(u, r) near the origin, or

β (u, r) =

(

1
2

a2
0−7a0a1 + ...

)

r2 + ..., V(u, r) = r +

(

1
3

a2
0−

14
3

a0a1 + ...

)

r3 + .. (4.3)

which is in agreement with the boundary conditions (2.7).

Once a suitable expression forV(u, r) is established, we substitute it into the Klein-Gordon
equation (2.4) for the auxiliar variableΦ along with the decomposition (3.3). In this case, we
obtain the following residual equation for the nonlinear problem

Res(u, r) =
N

∑
k=0

[2ȧk(u)ψ ′
k(r)−ak(u)ψ ′′

k (r)]+

(

1−
V
r

) N

∑
k=0

ak(u)ψ ′′
k (r)−

1
r

(

V
r

)′

×

N

∑
k=0

[ak(u)(rψ ′
k(r)−ψk(r))]. (4.4)

Note that the first term on the rhs of the residual equation describes the linear wave equation (cf.
Eq. (3.4)), while the remaining terms correspond to the nonlinearities. The last step of the Galerkin
method consists in to impose that the projection of the residual equation into eachbasis function
ψn(r), n= 0,1,2, ..,N vanishes. TheseN+1 resulting relations can be solved for each ˙an resulting
in a dynamical system that has the form

7
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ȧn(u) = F
NL
n (a0,a1, ..,aN), n = 0,1, ..,N, (4.5)

whereF NL
n are nonlinear functions of the modal coefficients. Therefore, Eqs. (2.2)-(2.4) describ-

ing the evolution of a scalar field in spherically symmetric spacetimes are reduced to a nonlinear
(N + 1)−dimensional dynamical system in the phase space of the modal coefficientsak(u). To
integrate the system (4.5) we need to supply the initial conditionsak(0) evaluated from the initial
dataΦ0(r) = ∑N

k=0 ak(0)ψk(r). In what follows we have obtained dynamical systems for the quasi-
linear approach, i. e.,J = 1 and withN varying from 6 to 12; also consideringJ = 2, N was made
to vary from 3 to 7.
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a2
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0

0.1

0.2

0.3

1 2 3 4

u

–2
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Q(u)

0 1 2 3 4 5 6

u

Figure 2: Evolution of the modal coefficientsa2(u),a3(u) anda4(u) for the second initial data family for
which λ = 5.6 showing that asymptotically all modal coefficients vanish. The behavior of the scalar charge
Q(u) also indicates that the asymptotic configuration is the Minkowski spacetime.

The numerical experiments were performed using the initial data families givenby (3.10). In
both cases the basic features of the dynamics depend on the parameterλ which is associated to the
initial strength of the scalar field, and not to a particular form ofΦ0(r). For the sake of simplicity in
most of the numerical experiments the initial conditions for the modal coefficients will correspond
to the first initial data family. Also, our numerical experiments have indicated that the structure of
all solutions in phase space seems to be independent of particular choicesof N andJ ≥ 1.

The dynamics in the phase space of modal coefficients is described as follows. Basically we
have found two main classes of solutions that form twobasins of attraction in phase space. The first
class corresponds to sufficiently small values ofλ for which the origin of phase space is a stable
critical point, or simply an attractor. Hence, asymptoticallyak(u) → 0 implying that exp(2β ) → 1,
V → r and the scalar field approach to zero; or equivalently the Minkowski solution is attained.
According to previous studies on gravitational collapse of scalar fields, this set of solutions is
known assubcritical. In Fig. 2 we have illustrated such a class of solution depicting the evolution of
some modal coefficients and the scalar chargeQ(u) = limr→∞ ∑ ak(u)ψk(r) belonging to a Galerkin
decomposition ofΦ(u, r) with N = 9 and corresponding to the second initial data family. Notice
that although some modal coefficients exhibit an initial stage of growth, they eventually tend to
zero and, consequently the same outcome is observed for the scalar chargeQ(u).
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Figure 3: Evolution ofa0(u) (left panel) and the scalar fieldφ(u, r = 0) (right panel). We have chosenN = 9
andλ = 7.3 for the first initial data family.

On the other hand, for sufficiently large values ofλ the generated orbit starts to explore regions
of phase space not close to the origin, and asymptotically tends to the infinity region in phase space
characterized by∑N

k=0a2
k = ∞. This can be understood as an indication that the scalar field has

enough strength to hold the collapse until the formation of a black hole, since iteventually happens
that at some point for which 2m/r = 1−Ve−2β /r → 1 which signalizes the formation of an apparent
horizon, and therefore a black hole. These solutions are known as supercritical and the black hole
formation constitutes the second basin of attraction present in the phase space. The behavior of the
first modal coefficienta0(u) and the scalar fieldφ(u, r) = ∑ak(u)ψk(r)/r evaluated at the origin
are shown in Fig. 3. Note the oscillatory regime before the orbit escapes to the infinity region in
phase space suggesting the presence of a periodic structure intermediatebetween both basins of
attraction.

Probably the most interesting aspect of the dynamics provided by the Galerkin method is the
existence of a boundary that separates both subcritical and supercritical classes of solution. This
boundary corresponds to a periodic orbit, or alimit cycle, in the modal phase space and obtained
by fine tuning the parameterλ that, as we have seen, controls the initial strength of the scalar field.
The more preciseλ is adjusted to approach the actual critical valueλ∗, the longer is the time in
which the modal coefficients oscillate periodically. Eventually, one of the two above described
outcomes will be reached since the limit cycle is unstable. It is also worth mentioning that the
same limit cycle is attained if the second initial data family is taken into account, suggesting that
this structure is unique in phase space. In Fig. 4(b) the evolution the modal coefficienta6(u) versus
time corresponding to an orbit for whichλ = 6.7675813202945 is presented. Fig. 4(b) shows the
approach of this orbit to the limit cycle by projecting it a 3-dimensional subvariety of phase space
spanned by (a3,a7,a4). The effect of all modal coefficients acting together during the periodiccan
be seen by evolving the scalar field evaluated at the origin,φ(u,0) = limr→0 Φ(u, r)/r and shown
in Fig. (c). In this case the period is∆u≈ 0.05.

A strong numerical indication that the limit cycle is not an artefact of the process of truncation
is shown in Figs. 5, where (a) the limit cycle is projected in the plane(aN−1,aN) for several
values ofN and (b) the corresponding values ofλ∗ is plotted in function of the truncation orderN.

9
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As a matter of fact, these results suggest that the Galerkin method converges providing a reliable
approach to the exact limit cycle as far as the truncation order is increased.

5. Is the boundary fractal?

Based on the above results the phase space contains two basins of attraction, namely, the
subcritical and the supercritical basins for which the solutions tend, respectively, to the Minkowski
spacetime and to form a black hole. The boundary between both basins is thecritical solution
represented by a limit cycle in phase space, and an interesting issue would be the determination
if the basin boundary is fractal or not. In order to accomplish such a task we have applied a box
counting method[17] with the uncertainty code defined by black hole/dispersion corresponding
to the supercritical and subcritical basins, respectively. Briefly, the method consists in first, to
choose a suitable setD of initial conditions close to the basin boundary. Second, let us consider a
given initial conditionP(ak(0)) belonging toD , and perturb it by a very small radiusε producing
two other initial conditions schematically denoted byP±(ak(0)± ε). If the outcomes ofP and
P± are distinct, thenP is considered an uncertain initial condition ofD ; on the other hand if the
outcomes are the sameP is a certain initial condition. Third, we plot the fractionf of uncertain
initial conditions versus the radiusε, for which the relationf ∝ εα is satisfied, withα being the
uncertainty exponent. It can be shown that ifα = 1, then the basin boundary is smooth or not
fractal; on the other hand for 0< α < 1, the fractal dimensiond of the basin boundary is given
by d = D−α , whereD is the dimension of the phase space. In Fig. 6 the log-log plot off (ε) is
depicted for the caseN = 9 andJ = 1, where we have consideredε and for each small radius a set
of 15,000 initial conditions was taken into account. The best fit of the linear region corresponds to
α ≈ 0.86 indicating that the boundary is fractal.

6. Further perspectives

In this paper we have studied the spherical collapse of massless scalar field using the Galerkin
method. The set of nonlinear partial differential equations (2.2), (2.3) and (2.4) was transformed
into a finite set of ordinary differential equations or simply a dynamical system. We have discussed
briefly the issue of accuracy by considering the linear problem, whose known exact solution pro-
vided the necessary test for the method. As an attractive feature of the method a relatively low
truncation order of the Galerkin decomposition is able to attain a reasonable accuracy.

The next step consisted in considering the nonlinear problem described by the Einstein-Klein-
Gordon equations. The resulting dynamical system dictates, no matter is the truncation order,
the presence of three well defined classes of solutions determined by the initial strength of the
scalar field. In fact this is in agreement with the previous analytical and numerical works. Using
a dynamical system terminology the phase space is constituted by two basins ofattraction: the
subcritical basin for which the end configuration is the Minkowski spacetime, and the supercritical
basin that indicated the formation of a black hole. The boundary between these two basins of
attraction is the critical solution represented by a limit cycle in phase space.

Finally, as a consequence of this overall scenario the natural question of whether or not the
boundary between both basins of attraction is fractal deserves more thoroughly investigation. As
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we have shown there is a strong indication that the boundary is fractal. Therefore, an interesting
investigation would be naturally to increase the truncation order and improve the additional ap-
proximation (see for instance [18]), and to seek a relation between the fractal dimension and the
critical exponent that appears in the scaling law of black hole formation (cf. (1.1)).
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Figure 4: (a) Behavior ofa6(u) for λ ≈ λ∗. (b) Orbit approaching the limit cycle projected in the submani-
fold (a3,a4,a7) of phase space. (c) The scalar field at the originφ(u,0) for the (almost) critical solution.
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Figure 5: Projection of the limit cycle in the planeaN−1,aN for the several truncation orders. The approach
of the exact limit cycle is accomplished by increasing the truncation order. In the graph at right the critical
values ofλ are plotted versus the truncation order indicating the convergence of the results.
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Figure 6: Log-log plot of the scaling lawf = f0εα for N = 9 andJ = 1.

14


