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1. Introduction

The local conformal symmetry of matter fields in curved space and proper gravity always
attracted a great interest. It is not our aim to list the main publications on the subject nor the
main lines of research related to it. So, let us start by mentioning a recent review [1] where one
can find some relevant references to start. In our article we shall concentrate on those aspects
of the conformal theory in four dimensions, which are relevant for the applications, especially to
cosmology. We shall pay special attention to the quantum theory and discussconformal anomaly
and anomaly-induced effective action of gravity. Many other issues will be left aside, some of them
may be eventually considered in the extended version of this review article.

In order to understand the reason to introduce a local conformal symmetry, let us start from a
very simple example discussed in [2]. Consider a massive scalar field in curved space-time. The
minimal action has the form

S=
1
2

∫ √−g
(

gµν∇µϕ∇νϕ +m2ϕ2 +ξRϕ2
)

, (1.1)

whereξ = 0. However, the minimal theory is inconsistent at quantum level if we introduce inter-
actions with other fields or scalar self-interaction. In principle, one has to keep the non-minimal
parameterξ arbitrary to provide the multiplicative renormalizability of the theory. At the same
time the valueξ = 1/6 is very special, for in the massless casem= 0 it corresponds to the local
conformal symmetry

gµν → g′µν = gµνe2σ(x) ϕ → ϕ ′ = ϕe−σ(x) . (1.2)

Now, let us consider the massless limit of the theory from another point of view. Basing on fun-
damental principles of quantum theory, one is expecting to meet correspondence between the field
and particle description of the matter. It is well known that, for the classical particles, the massless
limit corresponds to the vanishing trace of the energy-momentum tensor

Tµ
µ = − 2√−g

gµν
δS

δgµν
= 0. (1.3)

However, this identity can be achieved, in the field description (1.1), only for the conformal value
ξ = 1/6 of the non-minimal parameter (of course, the relation (1.3) holds only on themass shell for
the scalar field or for the corresponding particles). Therefore, only conformal theory can provide
a correct particle-field correspondence in the massless limit. One can see that the conformal value
ξ = 1/6 does provide certain advantage at this level. The next question is whether it is possible
to maintain the conformal value ofξ and, in general, local conformal symmetry, at the quantum
level, when the loop corrections are taken into account. This issue is the main subject of the present
review.

The paper is organized as follows. In the next section we shall list knownconformal theories
in n = 4 and after that consider the quantum theory, where the local conformalinvariance always
breaks down. Section 3 is devoted to the brief description of the anomaly. Wediscuss the main dif-
ference between global and local conformal symmetries at quantum level.In section 4 we present,
in more details than usual, the derivation of the anomaly-induced effective action of vacuum. In
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section 5 we come back to anomaly and describe its ambiguities in relation to the effective action.
Section 6 contains a brief description of the situation in conformal quantum gravity. Finally, in
section 7 we draw our conclusions.

2. Particular examples of conformal theories

Consider a general metric-scalar theory [3]

S=
∫

d4x
√−g

{

A(φ) (∇φ)2 +B(φ)R+C(φ)
}

, (2.1)

and perform the local conformal transformation ofgµν plus an arbitrary scalar reparametrizations
(thus, generalizing the eq. (1.2)). In order to make things simpler, we startfrom the action without
kinetic term for the scalar field [4] and transform it to (2.1)

S=
∫

d4x
√

g′
{

R′Φ+V(Φ)
}

, g′µν = gµνe2σ(φ) , Φ = Φ(φ) . (2.2)

Simple calculation leads to the relation

A(φ) = 6e2σ(φ)[Φσ1 +Φ1]σ1 , B(φ) = Φ(φ)e2σ , (2.3)

whereB1 = dB/dφ etc. One can see that the absence of the kinetic term in the action (2.2) does not
mean that this field is not dynamical. The dynamics of the scalar field is due to the interaction with
the scalar mode of the metric. For instance, the free minimal scalar field plus General Relativity
(GR) is the particular case of the action (2.1) and is conformally equivalentto (2.2).

The conformal symmetry of the action corresponds to pure GR,Φ = const. Then

A =
3B1

2B2 , C = λB2 , where B = B(φ) , C = C(φ) , B1 =
dB
dφ

. (2.4)

The well-known particular case of the theory satisfying the constraints (2.4) is (1.1) with m= 0,
ξ = 1/6 and with an additional self-interaction term. One can rewrite it in the form

S=
1
2

∫

d4x
√−g

(

−φ ∆2 φ +
λ
12

φ4
)

, where ∆2 = �−R/6. (2.5)

All models which satisfy (2.4) are linked by conformal transformation of the metric plus scalar
reparametrization [3].

Other conventional examples of conformal fields include massless spinor and vector

S1/2 =
i
2

∫

d4x
√

g
{

ψ̄ γµ ∇µψ − ∇µ ψ̄ γµψ
}

, (2.6)

S1 = − 1
4

∫

d4x
√

gFµνFµν , (2.7)

with the transformation rules

gµν → g′µν = gµν e2σ , Aµ → A′
µ = Aµ , ψ → ψ ′ = ψ e−3σ/2 , ψ̄ → ψ̄ ′ = ψ̄ e−3σ/2 . (2.8)
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Let us notice that the difference between conformal weight and dimensionfor the vector field is
due to the vector field definition in curved space-time1

Aµ = Abeb
µ , eb

µ ea
ν ηab = gµν , eb

µ ea
ν gµν = ηab. (2.9)

The importance of this observation is that it shows a direct relation between local and global con-
formal symmetries. The generalization to the non-Abelian case is straightforward.

The interactions between usual vectors, scalars and fermions are always conformal if the corre-
sponding coupling constants have zero mass dimension. Hence gauge, Yukawa andφ4 interaction
terms are conformal whileφ3 is not.

The last conventional example is the conformal (Weyl) gravity, which includes only metric
field

SW =
∫

d4x
√

gC2(4) , C2(n) = R2
µναβ − 4

n−2
R2

µν +
1

(n−1)(n−2)
R2 , (2.10)

wheren is the space-time dimension. The main difference between the Weyl gravity model (2.10)
and GR is that the former does not produce the correct Newton limit. This is ofcourse natural be-
cause the coupling constant in this theory is dimensionless and therefore anadditional mechanism
is needed in order to produce a dimensional parameter such as Newton constant. The most nat-
ural option is to consider the Weyl gravity and the conformal scalar field together. In this case the
quantum effects lead to the complicated effective potential for the scalar field. This may produce
a dimensional transmutation and eventually lead to induced GR with induced values of both New-
ton and cosmological constants. A general review on the induced gravity approach can be found
in [5]. There are several possible mechanism of how this method can be applied to the initially
conformal theory [6, 7, 8]. We will not discuss this aspect of the conformal theory in what follows,
because this review is of a short kind. Instead, we shall concentrate ona more basic phenomenon
(conformal anomaly) in the next section.

The main difference between the conformal scalar, fermion and vector cases presented above
and the last example of Weyl gravity is that it is a fourth derivative theory while the matter fields
cases are all described by lower derivative theories. However one can construct also examples of
conformal higher derivative scalars and fermions (and perhaps vectors, despite this has not been
done yet) which possess the local conformal invariance.

Let us start with scalars and consider two alternative different models. The fourth derivative
scalar of the first kind has an action [9, 10]

S4 =
∫

d4x
√

g ϕ ∆4 ϕ , (2.11)

where ∆4 = �
2 +2Rµν∇µ∇ν −

2
3

R�+
1
3

R;µ ∇µ . (2.12)

The conformal transformation law for this scalar isϕ → ϕ ′. The importance of the model (2.11) is
based on its use for integrating conformal anomaly. We shall discuss this point in the next section.

The fourth derivative scalar of the second kind can be presented, upto reparametrization of
scalar χ = χ(φ), in the form [11]

∫

d4x
√−g

{

(

φ−1 ∆2 φ
)2−aφ∆2φ −bφ4 +cC2 +d E

}

, (2.13)

1I am grateful to Joan Solà, who called my attention to this point.
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where a,b,c,d are some constants. This model is a direct higher derivative generalization of the
usual conformal scalar theory (2.5) and the transformation laws for metricand scalar are of course
identical. The complete form of the parametrization-invariant higher derivative action, similar to
(2.1) with the constraints (2.3) satisfied, has been constructed in [12]. One can notice that the
above two theories represent very particular cases of the general fourth derivative metric-scalar
model formulated in [13]. This general model involves 12 arbitrary functions of the scalar (in fact
11, because one may be always included into scalar parametrization), whileboth models presented
above have no such functions.

Let us remark that both fourth derivative scalar models (2.11) and (2.13) can be generalized to
an arbitrary dimensionn 6= 2. For the case of (2.11) this task has been completed in [12] and for
the case of (2.13) the procedure is obvious due to the known prescriptionfor the usual conformal
scalar (2.5).

The next example is a third derivative spinor field. In this case, again, theconformal invariance
is provided by introducing the higher derivatives, changing the transformation law for the field and
adjusting the parameters of the higher order differential operator [14, 15]. The action of the model
is

S3 =
i
2

∫

d4x
√−g

{

ψ̄γµ
Dµψ −Dµ ψ̄ γµψ

}

, (2.14)

where the self-adjoint third order operator has the form

Dµ = ∇µ�+Rµν∇ν − 5
12

R∇µ −
1
12

(∇µR) . (2.15)

The transformation law for the spinorψ is

ψ → ψ ′ = ψ e−σ/2 , ψ̄ → ψ̄ ′ = ψ̄ e−σ/2 , σ = σ(x) .

The natural question is whether is it possible to construct more examples of conformal fields?
Obviously, those can be vectors, scalars or spinors with greater numberof derivatives (see, e.g. [16,
17] for the works in this direction.). Furthermore it can be spin-3/2 field with higher derivatives,
etc. In all cases the construction of symmetric actions can be performed in a way described in [15]
for the theory (2.14).

3. Conformal anomaly in the semiclassical theory

In this section we shall consider the anomalous violation of the local conformal symmetry in
the case of quantum matter on classical curved background. This theoryis also known as semiclas-
sical gravity, because it shares many features with quantum theory of gravity. The semiclassical
approach is very important independent whether we consider it or not as an approximation to quan-
tum gravity. The reason is that the quantum fields on curved backgrounddefinitely exist in nature
while the reality of quantum gravity is under question. It might occur, after all, that the gravity
should not be quantized and, instead, it is an interaction induced by, e.g. (super)string theory in the
low-energy limit.

The first step is to consistently formulate the action on classical curved background. The
standard criteria for the action of external metric field are (see, e.g. [18]) a) locality of the vacuum
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action, b) renormalizability and c) what one can call simplicity, e.g. we assume there are no
[

m−1
]

parameters or, in other words, we include the minimal set of terms which satisfya) and b)
conditions.

The action of vacuum which satisfies these necessary conditions has the form

Svac = SEH + SHD , (3.1)

whereSEH is the Einstein-Hilbert action with cosmological term and

SHD =
∫

d4x
√−g

{

a1C
2 +a2E +a3�R+a4R2} . (3.2)

Here and below we use the following notations

E = R2
µναβ −4R2

αβ +R2 . (3.3)

is the Gauss-Bonnet term (Euler density inn = 4). We avoid using the letterG to denote this
quantity because it may be confused with the Newton constant.

In the case of conformal theory at the one-loop level it is sufficient to consider the simplified
vacuum action

Scon f. vac =
∫

d4x
√−g

{

a1C
2 +a2E +a3�R

}

. (3.4)

Let us emphasize that it is notimpossibleto add the Einstein-Hilbert action, cosmological con-
stant or the

∫ √−gR2 term here. The statement is that these terms arenot really necessaryat
the one-loop level. In fact, beyond the one-loop approximation the

∫ √−gR2 terms becomes also
necessary, this means the conformal theory is not consistent beyond one loop. In case of broken
symmetry and generated masses of the matter fields (e.g. through the Coleman-Weinberg mecha-
nism), other mentioned terms may also become necessary.

Now we are in a position to consider the conformal anomaly. We assume the theory includes
the metric gµν as a background field and also quantized matter fieldsΦ. We denote, furthermore,
kΦ the conformal weight of the field.

The Noether identity for the local conformal symmetry
[

−2gµν
δ

δgµν
+ kΦ Φ

δ
δΦ

]

S(gµν , Φ) = 0 (3.5)

producesTµ
µ = 0 on shell (1.3).

At quantum levelSvac(gµν) has to be replaced by the effective action of vacuumΓvac(gµν).
For the free fields only 1-loop order is relevant and (see [18] for the introduction and further refer-
ences)

Γdiv =
1
ε

∫

d4x
√

g
{

β1C
2 +β2E +β3�R

}

, (3.6)

where ε is the regularization parameter. For instance, it isε = µn−4/(n− 4) in dimensional
regularization. In the case of global conformal symmetry, the renormalization group method or
ζ -regularization tell us [19, 20, 18]

< Tµ
µ >=

{

β1C
2 +β2E +a′�R

}

, (3.7)
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wherea′ = β3. However, in the case of local conformal invariance there is an ambiguity inthe
parametera′ [21, 22, 23].

One can derive the anomaly in many different ways, which mainly differ by the regularization
choice [24, 25] (see, e.g. [21] for the list of results in some regularizations). Recently, we have
analyzed the source of the ambiguity in full details [23, 26] and, in particular, have shown that the
ambiguity is always related to the local terms in the anomaly-induced effective action of vacuum
(see the next section) which have different form from the terms in the classical (conformal invariant)
action. It turns out that the dimensional regularization does not enable one to control these local
terms and therefore the corresponding terms in the anomaly (which are always total derivatives)
remain arbitrary. On the other hand, in other regularizations such as point-splitting one, there is
no apparent freedom and it seems that the ambiguity is not there. The same istrue if one derives
the local term in the anomaly via the heat-kernel solution for the effective action2 [28] or makes a
massless limit in the effective action of massive fields [23]. Finally, in the covariant Pauli-Villars
regularization one can observe the same ambiguity (in a somehow reduced form) and thus confirm
the validity of the situation discovered in the dimensional regularization approach. We consider the
mentioned ambiguity in some details in section 5.

Let us consider, as an example, the derivation of anomaly through the mostexplicit method of
dimensional regularization [24]. The theory of matter includes the following set of massless fields:
N0 scalars (spin-0),N1/2 spinors (Dirac, spin-1/2) andN1 Abelian vectors (spin-1). AllN’s indicate
a number of fields (not multiplets) in curved space-time, taking conformal version for scalars. We
are interested in the vacuum effects and therefore, at one-loop order, can restrict consideration by
the free fields case. Using the well-known results (see, e.g. [21, 18]) we arrive at the expression
for divergences (3.6) with

β1 = − 1
(4π)2

( N0

120
+

N1/2

20
+

N1

10

)

,

β2 =
1

(4π)2

( N0

360
+

11N1/2

360
+

31N1

180

)

,

β3 = − 1
(4π)2

( N0

180
+

N1/2

30
− N1

10

)

. (3.8)

The renormalized one-loop effective action has the form

ΓR = S+ Γ̄+∆S, (3.9)

where Γ̄ = Γ̄div + Γ̄ f in is the naive quantum correction to the classical action and∆S is a coun-
terterm. The classical action isS= Smatter+ Svac, where Svac has the form (3.1). Indeed, only
conformal invariant part of the vacuum action must be used in (3.9).

∆S in (3.9) is an infinite local counterterm which is called to cancel the divergent part of Γ̄
(3.8). Indeed∆S is the only source of the noninvariance of the effective action, since naive (but
divergent) contributions of quantum matter fields are conformal. The anomalous trace is therefore

2Let us notice that the solution for the anomaly-induced effective action presented in the next section agrees with
the one obtained from the heat-lernel method, despite this is not easy to see[27].
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equal to

T =< Tµ
µ >= − 2√−g

gµν
δ ΓR

δ gµν

∣

∣

∣

∣

D=4

= − 2√−g
gµν

δ ∆S
δ gµν

∣

∣

∣

∣

D=4

. (3.10)

The calculation of this expression can be done, in a most simple way, as follows. Let us change the
parametrization of the metric to

gµν = ḡµν ·e2σ , (3.11)

whereḡµν is the fiducial metric with fixed determinant. There is a useful relation

− 2√−g
gµν

δ A[gµν ]

δ gµν
= − 1√−ḡ

e−4σ δ A[ḡµν e2σ ]

δσ

∣

∣

∣

∣

ḡµν→gµν ,σ→0
. (3.12)

At that point we need a transformation laws for the structures presented in(3.6). They can be
found, for instance, in [29], so we will not reproduce these formulas here. It is sufficient to show a
single relation between the expression depending on the original metricgµν and the transformed
one

g′µν = gµν e2σ(x) ,
∫

√

−g′C′2(n) =
∫

√

−g′e(n−4)σ C2(n) . (3.13)

All other expressions of our interest have the same factore(n−4)σ and, on the top of that, some
extra terms with derivatives ofσ(x). For all terms which are not total derivatives, these terms are
irrelevant due to the limit procedure in eq. (3.12).

In the simplest case of global conformal factorσ = λ = constwe immediately arrive at the ex-
pression (3.7) witha′ = β3. However in the local caseσ = σ(x) the situation is more complicated.
It is worth mentioning that the left hand side in (3.12) gives zero when applied to the integral of the
total derivative term

∫ √−g�R. We shall come back to discuss this term and the corresponding
ambiguity in section 5.

4. Anomaly-induced action of vacuum

One can use conformal anomaly to construct the equation for the finite partof the 1-loop
correction to the effective action (we change notations here for the sakeof convenience)

2√−g
gµν

δ Γ̄ind

δgµν
=

1
(4π)2

(

aC2 +bE+c�R
)

. (4.1)

The solution of this equation is straightforward [10] (see also generalizations for the theory with
torsion [30] and with a scalar field [31]). The simplest possibility is to parametrize metric as in
(3.13), separating the conformal factorσ(x) and rewrite the eq. (4.1) using (3.12). The solution
for the effective action is

Γ̄ = Sc[ḡµν ]+
1

(4π)2

∫

d4x
√
−ḡ{aσC̄2 +bσ(Ē− 2

3
�̄R̄)+2bσ ∆̄4σ−

− 1
12

(c+
2
3

b)[R̄−6(∇̄σ)2− (�̄σ)]2)} (4.2)

8



P
o
S
(
I
C
2
0
0
6
)
0
3
0

Local Conformal Symmetry and its Fate at Quantum Level Ilya Shapiro

whereSc[ḡµν ] = Sc[gµν ] is an unknown functional of the metric, which serves as an integration
constant for the eq. (4.1).

The solution (4.2) has the merit of being simple, but an important disadvantageis that it is not
covariant or, in other words, it is not expressed in terms of original metricgµν . In order to obtain
the non-local covariant solution and after represent it in the local formusing auxiliary fields, we
shall follow [10, 32].

First one has to establish the following relations [10] (see also [29] for details):

√−gC2 =
√
−ḡC̄2 ,

√
−ḡ∆̄4 =

√−g∆4 , (4.3)

√−g(E− 2
3
�R) =

√
−ḡ(Ē− 2

3
�̄R̄+4∆̄4σ) (4.4)

and also introduce the Green function for the operator (2.12)∆4,xG(x,y) = δ (x,y). Using these
formulas and (3.12) we find, for anyA = A(ḡµν ,σ), the relation

δ
δσ(y)

∫

d4x
√

−g(x)A (E− 2
3
�R)

∣

∣

∣

∣

gµν=ḡµν

= 4
√
−ḡ∆̄4A = 4

√−g∆4A. (4.5)

In particular, we obtain

δ
δσ(y)

∫

d4x
√

−g(x)
∫

d4y
√

−g(y) aC2(x)G(x,y)
1
4

(

E− 2
3
�R

)

y

∣

∣

∣

∣

gµν=ḡµν

=

=
∫

d4x
√

−ḡ(x) ∆̄4(x)Ḡ(x,y)aC̄2(x) = a
√−gC2(y) . (4.6)

Hence the term in the effective action, which producesTa = −aC2, is

Γa =
a
4

∫

d4x
√

−g(x)
∫

d4y
√

−g(y)C2(x)G(x,y)(E− 2
3
�R)y (4.7)

Similarly one can check that the variation (3.12) producesTb = b(E− 2
3�R) if

Γb =
b
8

∫

d4x
√

−g(x)
∫

d4y
√

−g(y)(E− 2
3
�R)xG(x,y)(E− 2

3
�R)y (4.8)

Finally, the third constituent of the induced action is the local expression

Γc = − c+ 2
3 b

12(4π)2

∫

d4x
√

−g(x)R2(x) . (4.9)

The covariant solution of eq. (4.1) is a sum of (4.7),(4.8) and (4.9).
Our next task is to rewrite the nonlocal expressions obtained above usingsome auxiliary scalar

fields. Let us notice that there are two distinct ways of doing that, leading to the slightly different
results. The first option is to introduce the auxiliary fields as a quantum objects, such that, after
Gaussian integration over them, we should come back to the non-local expression described above.
Another possibility3 is to consider auxiliary fields as purely classical objects. After using the

3Author is grateful to Roberto Balbinot for discussion concerning this point.
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classical equations of motion for these fields and replacing them back to the action we come to
the original non-local expressions. The difference between the two approaches is that, in the first
case, one has to account for the contributions of the auxiliary fields to the anomaly. As a result, the
coefficientsa,b,c in (4.1) get modified [10]. In this article we will not account for this modification
and follow the second approach.

As a first step the remaining terms can be rewritten in the symmetric form

Γa,b =
∫

d4x
√

−g(x)
∫

d4y
√

−g(y)(E− 2
3
�R)xG(x,y)

[

a
4

C2− b
8
(E− 2

3
�R)

]

y

= −b
8

∫

d4xd4y
√

g(y)g(x)

[

(E− 2
3
�R)− a

b
C2

]

x
G(x,y)

[

(E− 2
3
�R)− a

b
C2

]

y

+
1
2

∫

d4xd4y
√

g(y)g(x)

(

a

2
√

b
C2

)

x
G(x,y)

(

a

2
√

b
C2

)

y
(4.10)

The last two terms are appropriate objects for rewriting them using the auxiliary fields. In this way
we arrive at the following final expression for the anomaly generated effective action of gravity.

Γ = Sc[gµν ]− 3c+2b
36(4π)2

∫

d4x
√

−g(x)R2(x)+
∫

d4x
√

−g(x)
{1

2
ϕ∆4ϕ − 1

2
ψ∆4ψ

+ ϕ

[ √
b

8π
(E− 2

3
�R) − a

8π
√

b
C2

]

+
a

8π
√

b
ψ C2

}

. (4.11)

Some remarks are in order.
1) The local covariant form (4.11) is dynamically equivalent to the non-local covariant form.

The complete definition of the Cauchy problem in the theory with the non-local action requires
defining the boundary conditions for the Green functionsG(x,y), which shows up independently
in the two terms (4.7) and (4.8). The same can be achieved, in the local version, by imposing the
boundary conditions on the two auxiliary fieldsϕ andψ .

2) The kinetic term for the auxiliary fieldϕ is positive while forσ it was negative. Forψ the
kinetic term has negative sign. The wrong sign does not lead to problems here, because both fields
are auxiliary and do not propagate independently.

3) We introduced the new structure
∫

C2
xG(x,y)C2

y into the action, despite it was not directly
produced by anomaly. This term is indeed conformal invariant and therefore its emergence may be
viewed as a simple redefinition of the conformal invariant functionalSc[gµν ]. On the other hand,
writing the non-conformal terms in the symmetric form (4.10), we have modified the four point
function in a very essential way. Therefore, introducing the mentioned conformal term we have
just restored the basic structure of the terms generated by anomaly. For thisreason, the emergence
of the second auxiliary scalar [32] is not an artificial procedure but represents a necessary element
of writing the induced action in a local form4.

4) The second scalar also proved useful for applications. In particular, the vacuum states of the
black hole (Boulware, Hartle-Hawking and Unruh) can be classified through the choice of initial
conditions for the two auxiliary fields [34]. Let us stress that this can not be accomplished by

4The effective action (reffinaction) has been introduced in the paper [32]. Qualitatively similar manner of introduc-
ing second scalar has been suggested later on in [33].
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using only one fieldϕ. Therefore the correspondence with other approaches to Hawking radiation
indicates that our considerations about the correctness of introducing the second auxiliary scalar
are correct.

5) Another important application of the anomaly-induced action is the model of anomaly-
induced inflation [2, 31], or Modified Starobinsky Model. In this case the behaviour of conformal
factor of the metric is not affected by the presence of the second auxiliaryscalar. However, for
investigating the evolution of gravitational waves specifying the initial data forboth scalars is
essential and the situation is close to the one in the black hole case.

5. Ambiguity of local/surface anomalous terms

The ambiguity of the local anomalous term
∫ √−gR2 in the effective action and the corre-

sponding term�R in the anomaly can be observed either in dimensional or in covariant Pauli-
Villars regularization [23].

Let us start from the dimensional regularization and come back to the relation(3.10). As
we have already mentioned in section 3, the counterterm

∫ √−g�R does not contribute to the
anomaly of local conformal symmetry. Hence the anomaly comes from the

∫ √−gC2(d)-type
counterterm. However, the requirements of finiteness of renormalized effective and the locality
leave us the freedom in choosing the parameterd. If we take d = n+ γ · [n−4], where γ is an
arbitrary parameter, we meeta′ ∼ γ and therefore the coefficienta is arbitrary. It is easy to see
that this arbitrariness is equivalent to adding

∫

R2-term to the classical action.
The same result can be achieved in the covariant Pauli-Villars regularization, where one has

to introduce a set of massive “regulator” fields. For example, in the case of a massless conformal
scalar ϕ we have to start from the action

Sreg =
N

∑
i=0

∫

d4x
√

g
{

(∇ϕi)
2 +(ξiR+m2

i )ϕ2
i

}

. (5.1)

The physical scalar fieldϕ ≡ ϕ0 is conformalξ = 1/6, m0 = 0 and bosonics0 = 1, while PV
regulatorsϕi are massivemi = µiM and can be bosonicsi = 1 or fermionicsi = −2.

The UV limit M → ∞ produces the vacuum Eff. Action. The calculation is based on our result
for the EA of the massive scalar. We assume that the Pauli-Villars regulatorsmay have conformal
ξi = 1/6 or non-conformal couplingsξi 6= 1/6.

The regularized effective action is

Γ̄(1)
reg = lim

Λ→∞

N

∑
i=0

siΓ̄
(1)
i (mi ,ξi ,Λ) , (5.2)

where Λ is an auxiliary momentum cut-off. It is important that we possess the explicit expression
of the O(R2) effective action of massive fields derived in [35]. The conformal anomaly is [23]

T =
1

(4π)2

[ 1
180

E− 1
120

C2 +
(

12δ − 1
180

)

�R
]

, δ =
N

∑
i=1

si

(

ξi −
1
6

)2
ln µ2

i , (5.3)

Exactly as in the dimensional regularization case, the ambiguity is equivalent tothe freedom of
adding the finite

∫ √−gR2 term and can be fixed only by imposing the renormalization condition
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for this term. The qualitative result is that the definition of the local finite part of the quantum
corrections is ambiguous, even if the corresponding term is not presentin the classical action and
is not renormalized. In order to fix the ambiguity one has to use renormalizationcondition and for
that it is necessary to introduce the non-conformal local term into the classical action. As a result
the theory is not conformal anymore. This consideration can be generalized for the case of more
general (non purely metric) backgrounds [26], where the situation is similar albeit somehow more
complicated.

6. Weyl quantum gravity

Finally, let us consider the problem of anomalous violation of local conformal symmetry in
the conformal Weyl quantum gravity. The action of the theory has the form

SW =
∫

d4x
√

g

{

1
2λ

C2− 1
ρ

E + τ�R

}

, (6.1)

The action (6.1) is conformal invariant in a sense it satisfies the conformalNoether identity

− 2√−g
gµν

δSW

δgµν
= 0. (6.2)

The conformal theory (6.1) may be an interesting model of quantum gravity [36, 37, 18], while
General Relativity may be induced at quantum level if the Weyl gravity is coupled to a conformal
scalar [6, 7, 8].

The theory (6.1) is the particular case of the general higher derivativequantum gravity which
is know to be renormalizable [38, 39]. At the same time the properties of conformal theory may
be quite different from the general one. One can formulate two main questions concerning the
properties of the conformal theory at quantum level.

1) Whether the one-loop and/or higher loop infinite renormalization of this theory is conformal
invariant. In other words, whether the conformal theory is multiplicatively renormalizable.

2) Whether the anomalous violation of local conformal symmetry occurs in the finite part of
the effective action. If so, we need to know whether the correspondingambiguities, similar to the
ones discussed in the previous section, take place here.

The derivation of the one-loop divergences in the conformal theory has been performed in
[36, 40, 41]. The result obtained in [41] with the method including rigid automatic control of the
calculations fits with the previous ones and has the form

Γ(1)
div = −1

ε

∫

d4x
√−g

{

87
20

E− 199
30

C2
}

. (6.3)

In n = 4, the dependence on the Gauss-Bonnet term is absent, as it was anticipated earlier [36, 40].
At the same time this dependence is essential for the renormalization group near four dimensions,
producing a number of new nontrivial fixed points, some of them UV stable and some IR stable.
There is no real need to calculate the remaining

∫

�R-type counterterm, because it is gauge fixing
dependent [36, 32]. According to (6.3), there is no need for the

∫

d4x
√−gR2-type counterterm

and, correspondingly, no need to use the so-called special conformalregularization [42, 36]. At
one loop the theory is multiplicatively renormalizable in the usual sense.
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The derivation of anomaly may proceed in exactly the same way as in the semiclassical theory.
In particular, the anomaly associated to the divergences (6.3) is well defined and the corresponding
non-local terms in the induced action can be obtained in a unique way. At the same time, the local
∫ √−gR2-term is plagued by double ambiguity: due to the gauge dependence of the corresponding
�R-type divergence and because of the renormalization-scheme dependence. Finally, the only
way to arrive at the well defined quantum corrections is to violate the conformal symmetry at the
classical level already. In case this violation is weak, the quantum corrections will respect the
corresponding hierarchy.

7. Conclusions

We have reviewed some important aspects of local conformal symmetry and inparticular its
violation at the quantum level by anomaly. There is a variety of theories with local conformal
symmetry inn = 4. Along with the conventional scalar, spinor and vector cases, there are different
higher derivative conformal models with higher derivatives.

In the semiclassical theory local conformal symmetry is violated by the trace anomaly. There
are both local and non-local terms in the effective action behind the anomaly, but the local terms are
plagued by ambiguities, indicating certain inconsistency in the quantum corrections. For conformal
quantum gravity similar ambiguities produce total inconsistency of the theory beyond the one loop
level, because at higher loops the emergence of the non-symmetric counterterms looks unavoidable.
So, we can conclude that, in general, conformal invariant theories are not consistent at quantum
level. In fact, the local conformal symmetry may be only approximate, despite itis a very useful
tool for calculating quantum corrections.

Acknowledgments.
Author is very grateful to his collaborators on the subject, especially to M. Asorey, E. Gorbar,

G. de Berredo-Peixoto and J. Solà for numerous discussions and commonworks. I am also thankful
to the organizers of the Meeting for invitation to give this talk and for support.The work has been
partially supported by the PRONEX project and research grants from FAPEMIG (MG, Brazil) and
CNPq (Brazil) and by the fellowships from CNPq and ICTP (Italy). The text of this Proceedings
has been completed during my visit to Theory Division of CERN and I would liketo thank them
for support and hospitality.

References

[1] V. Faraoni, E. Gunzig and P. Nardone,Conformal transformations in classical gravitational theories
and in cosmology,Fund. Cosmic Phys.20 (1999) 121 [gr-qc/9811047].

[2] J.C.Fabris, A.M.Pelinson and I.L.Shapiro,On the gravitational waves on the background of
anomaly-induced inflation,Nucl. Phys.B597 (2001) 539 [hep-th/0009197].

[3] I.L. Shapiro and H. Takata,One-loop renormalization of the four-dimensional theory for quantum
dilaton gravity,Phys. Rev.D52 (1995) 2162 [hep-th 9502111];Conformal transformation in gravity,
Phys. Lett.B361 (1995) 31 [hep-th/9504162].

13



P
o
S
(
I
C
2
0
0
6
)
0
3
0

Local Conformal Symmetry and its Fate at Quantum Level Ilya Shapiro

[4] J. O’Hanlon,Intermediate-range gravity - a generally covariant model,Phys. Rev. Lett.29 (1972)
137.

[5] S.L. Adler,Einstein gravity as a symmetry breaking effect in quantum field theory,Rev. Mod. Phys.
54 (1982) 729.

[6] I. L. Buchbinder,Mechanism For Induction Of Einstein Gravitation,Sov. J. Phys.31 (1986) 77.

[7] I.L. Shapiro,Hilbert-Einstein Action from Induced Gravity coupled withScalar Field,Mod. Phys.
Lett. 9A (1994) 1985 [hep-th/9403077].

[8] I.L. Shapiro and G. Cognola,Interaction of Low - Energy Induced Gravity with Quantized Matter and
Phase Transition Induced by Curvature,Phys. Rev.D51 (1995) 2775 [hep-th/9406027];Back reaction
of vacuum and the renormalization group flow from the conformal fixed point,Class. Quant. Grav.15
(1998) 3411 [hep-th/9804119].

[9] S. Paneitz,A Quartic Conformally Covariant Differential Operator forArbitrary Pseudo-Riemannian
Manifolds,MIT preprint, 1983.

[10] R.J. Riegert,A Nonlocal Action For The Trace Anomaly.Phys. Lett.B134 (1984) 56;

E.S. Fradkin and A.A. Tseytlin,Conformal Anomaly In Weyl Theory And Anomaly Free
Superconformal Theories,Phys. Lett.B134 (1984) 187.

[11] I. Antoniadis, J. Iliopoulos and T. N. Tomaras,On The Stability Of Background Solutions In
Conformal Gravity,Nucl. Phys.B261 (1985) 157.

[12] J. A. de Barros and I.L. Shapiro,Renormalization group study of the higher derivative conformal
scalar model,Phys. Lett.B412 (1997) 242 [hep-th/9706123].

[13] E. Elizalde, A.G. Zhecksenaev, S.D. Odintsov and I.L. Shapiro,One-loop renormalization and
asymptotic behavior of a higher-derivative scalar theory in curved spacetime,Phys. Lett.B328
(1994) 297 [hep-th/9402154].

[14] E.S. Fradkin and A.A. Tseytlin,Conformal Supergravity,Phys. Repts.119 (1985) 233.

[15] G. de Berredo-Peixoto and I.L. Shapiro,The higher derivative fermionic operator and trace anomaly,
Phys. Lett.B514 (2001) 377 [hep-th/0101158].

[16] J. Erdmenger,Conformally covariant differential operators: Properties and applications,Class.
Quant. Grav.14 (1997) 2061 [hep-th/9704108];Conformally covariant differential operators:
Symmetric tensor fields.J. Erdmenger and H. Osborn, Class. Quant. Grav.15 (1998) 273
[gr-qc/9708040].

[17] T.P. Branson,Conformaly covariant equations on differential forms,Comm. Part. Diff. Eq.7 (1982)
393;An anomaly associated with 4-dimensional quantum gravity,Commun. Math. Phys.178 (1996)
301.

[18] I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro,Effective Action in Quantum Gravity, IOP Publishing,
Bristol, 1992.

[19] I.L. Buchbinder,Renormalization-group equations in curved space-time,Theor. Math. Phys.61
(1984) 393.

[20] S.W. Hawking,Zeta Function Regularization Of Path Integrals In Curved Space-Time,Comm. Math.
Phys.55 (1977) 133.

[21] N.D. Birrell, P.C.W. Davies,Quantum fields in curved space, Cambridge Univ. Press, Cambridge,
1982.

14



P
o
S
(
I
C
2
0
0
6
)
0
3
0

Local Conformal Symmetry and its Fate at Quantum Level Ilya Shapiro

[22] M.J. Duff, Twenty years of the Weyl anomaly,Class. Quant. Grav.11 (1994) 1387 [hep-th/9308075].

[23] M. Asorey, E.V. Gorbar and I.L. Shapiro,Universality and Ambiguities of the Conformal Anomaly.
Class. Quant. Grav.21 (2003) 163 [hep-th/0307187].

[24] M.J. Duff, Observations On Conformal Anomalies,Nucl. Phys.B125 (1977) 334;

S. Deser, M.J. Duff and C. Isham,Nonlocal Conformal Anomalies,Nucl. Phys.B111 (1976) 45.

[25] S.M. Christensen,Vacuum Expectation Value Of The Stress Tensor In An Arbitrary Curved
Background: The Covariant Point Separation Method,Phys. Rev.D14 (1976) 2490;Regularization,
Renormalization, And Covariant Geodesic Point Separation, D17 (1978) 948.

[26] M. Asorey, G. de Berredo-Peixoto and I.L. Shapiro,Renormalization Ambiguities and Conformal
Anomaly in Metric-Scalar Backgrounds, hep-th/0609138.

[27] S. Deser and A. Schwimmer,Geometric Classification of Conformal Anomalies in Arbitrary
Dimensions,Phys. Lett.309B (1993) 279 [hep-th/9302047]

S. Deser,Closed form effective conformal anomaly actions in D≥ 4, Phys. Lett.479B (2000) 315
[hep-th/9911129].

[28] A.O. Barvinsky, Yu.V. Gusev, G.A. Vilkovisky and V.V. Zhitnikov, The One loop effective action and
trace anomaly in four-dimensions,Nucl.Phys.B439 (1995) 561 [hep-th/9404187].

[29] D. F. Carneiro, E. A. Freitas, B. Gonçalves, A. G. de Limaand I. L. Shapiro,On Useful Conformal
Tranformations In General Relativity,Grav. and Cosm.40 (2004) 305 [gr-qc/0412113].

[30] I.L. Buchbinder, S.D. Odintsov and I.L. Shapiro,Nonsingular cosmological model with torsion
induced by vacuum quantum effects,Phys. Lett.B162 (1985) 92;

J.A. Helayel-Neto, A. Penna-Firme and I. L. Shapiro,Conformal symmetry, anomaly and effective
action for metric-scalar gravity with torsion,Phys. Lett.B479 (2000) 411 [gr-qc/9907081].

[31] I.L. Shapiro, J. Solà,Massive fields temper anomaly-induced inflation,Phys. Lett.B530 (2002) 10
[hep-ph/0104182];

A.M. Pelinson, I.L. Shapiro, F.I. Takakura,On the stability of the anomaly-induced inflation,Nucl.
Phys.B648 (2003) 417 [hep-ph/0208184].

[32] I. L. Shapiro and A. G. Jacksenaev,Gauge dependence in higher derivative quantum gravity and the
conformal anomaly problem,Phys. Lett.B324 (1994) 284.

[33] P. O. Mazur and E. Mottola,Weyl cohomology and the effective action for conformal anomalies, Phys.
Rev.D64 (2001) 104022.

[34] R. Balbinot, A. Fabbri and I.L. Shapiro,Anomaly induced effective actions and Hawking radiation,
Phys. Rev. Lett. 83 (1999) 1494 [hep-th/9904074];Vacuum polarization in Schwarzschild space-time
by anomaly induced effective actions and Hawking radiation, Nucl. Phys.B559 (1999) 301
[hep-th/9904162].

[35] E.V. Gorbar, I.L. Shapiro,Renormalization Group and Decoupling in Curved Space.JHEP02 (2003)
021 [hep-ph/0210388];Renormalization Group and Decoupling in Curved Space: II. The Standard
Model and Beyond.JHEP06 (2003) 004 [hep-ph/0303124].

[36] E.S. Fradkin and A.A. Tseytlin,Higher Derivative Quantum Gravity: One Loop Counterterms And
Asymptotic Freedom, Nucl. Phys.B201 (1982) 469.

[37] I.L. Buchbinder and I.L. Shapiro,On the influence of the gravitational interaction on the behavior of
the effective constants of Yukawa and scalar coupling,Sov. J. Nucl. Phys.44 (1986) 1033.

15



P
o
S
(
I
C
2
0
0
6
)
0
3
0

Local Conformal Symmetry and its Fate at Quantum Level Ilya Shapiro

[38] K.S. Stelle,Renormalization Of Higher Derivative Quantum Gravity, Phys. Rev.D16 (1977) 953.

[39] B.L. Voronov and I.V. Tyutin,On renormalization of R2 gravitation,Yad. Fiz. (Sov. Journ. Nucl.
Phys.)39 (1984) 998.

[40] I. Antoniadis, P.O. Mazur and E. Mottola,Conformal symmetry and central charges in
four-dimensions,Nucl. Phys.B388 (1992) 627 [hep-th/9205015].

[41] G. de Berredo-Peixoto and I.L. Shapiro,Conformal Quantum Gravity with the Gauss-Bonnet term,
Phys. Rev.D70 (2004) 044024 [hep-th/0307030].

[42] F. Englert, C. Truffin and R. Gastmans,Conformal Invariance In Quantum Gravity,Nucl.Phys.B117
(1976) 407;

E.S. Fradkin and G.A. Vilkovisky,Conformal Off Mass Shell Extension And Elimination Of
Conformal Anomalies In Quantum Gravity,Phys. Lett.B73 (1978) 209.

16


