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| will report on a work done in collaboration with E. Harikumar about dualithémcommu-
tative theories in three dimensions [1]. The generalization of the well krempivalence between
the Maxwell-Chern-Simons (MCS) theory and the self-dual (SD) modeb[RIC space-time was
investigated in [1]. The master action technique, which was used to estaldisiquivalence be-
tween these models in commutative space-time, has been adopted in [3] and f#Ese authors
have reached different conclusions regarding the equivalence MGhsetting. In [4], after elim-
inating some of the fields from the master action, the perturbative solution tcetdesfjuations
were used and it was argued that the NCMCS theory is equivalent to t&®Nadel when the
Chern-Simons (CS) term has a cubic contribution like in the non-Abelian dag8], however,
which also used the master action method, it was argued that the NCMCS tuemstyucted by
applying the inverse Seiberg-Witten (SW) map [5], is equivalent to a thebgye the cubic inter-
action of the vector field is absent in the CS term. A different approach tly she equivalence
has been adopted in [6]. Using an iterative embedding method [7] for tf&DONi@odel, a dual
equivalent theory was constructed to all orders in the NC parameterdiidignodel differs from
NCMCS theory in the coefficient of the cubic interaction of the CS term andbiteiaks gauge
invariance. In [8], the SW mapped NCMCS theory was argued to be @guivto a theory where
the effect of noncommutativity appears through a non-covariant terns t&m vanishes in the
commutative limit and the SD model is then recovered. It is then imperative, akergative ap-
proaches, to reexamine the relation between NCMCS theory and NCSD rinckelthe previous
studies are inconclusive. Also, this result has interesting implications fivirtpthe bosonization
rules for the NC massive Thirring model [3, 4].

Here we will use a procedure which was applied to get a dual descrigtibie gsigma model
[9] and was also used recently to show the equivalence between mabksii@n gauge theories in
3+ 1 dimensions [10]. We first apply the procedure to the partition functionefS¥W mapped
NCMCS theory to orde6 and derive the dual theory also to orderWe then argue that this result
can be extended to all ordersén From the dual theory constructed, we show that the equivalence
between the MCS theory and the SD model do not get generalized to thetti{g.si our way
to derive the SW map for the NCMCS theory we found that the presencenaisaive coupling
constant turns the map ambiguous. An infinite number of terms can be preseatmap but we
choose the minimal set required by the map.

1. Ambiguity in the Seiberg-Witten Map

The SW map is obtained by requiring that an ordinary gauge transformatip with param-
eterA is equivalent to a NC gauge transformation/iqnwith gauge parametér so that ordinary
gauge fields that are gauge equivalent are mapped into NC gauge fagldsdlalso equivalent. In
four dimension, where it was originally derived, the SW map for the Abeleaurgg theory to first
order in@ is given by

" 1
Ay =A— EGGBAO,(Z(?BAH — 0uAg), (1.1)

A=A+ %GGBOGAAB. (1.2)
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The NC action, when expanded to first ordeBin
A 1 A A -
g —Z/d4x F1Y (£, +209P 9, AL 05A, ), (1.3)

with f,, = d,A, — d,A,, gives rise to the SW action

Efaﬁ f2)]. (1.4)

The question we are interested in is the freedom allowed by the SW map. Duaatute we can
add to the map (1.1) any gauge invariant term built véitand derivatives of the gauge field with
the right dimension and the new map will still be a SW map. The question is then hdBithe
action will be affected. To answer this question let us note that by adding tm#ép (1.1) a term
like

SA, = 0%PT 45, (1.5)

we get a contribution to the action (1.4) like
5S— —/d“x 9P FHY 3, Ty, (1.6)

Then if this integral vanishes we will not get any new contribution to the SiémacSince in four
dimensions the gauge field has dimension one the only gauge invariant teiras wed to the SW
map havel ;3 of the formd,, f, g, dq fyg andd® f,3nqy. The first term is a gauge transformation
to orderf [11] and gives no contribution to the SW action. The second one is giopalthe first
after applying the Bianchi identity. Finally, the third term gives no contributtie action since
the integral in (1.6) vanishes. Then the SW map to ofdisressentially unique in four dimensions.
However, as we shall see, in three dimensions the situation is completelydiffer

In three dimensions the NCMCS theory is described by the Lagrangian

~ 1 . A ~ A 20 ~, =
Acmves= —@F“V *FHY %SHVAAH * (FV)‘ + §Av *A/\), a.7)
whereF,, = A, — dA, —i[A,,A)]. while the NCSD model with a compensating Stiickelberg
field has a Lagrangian given by
5 PP cun 1 : vir 2y
ANcspD= E(f“ — bll) * (f“ —b“) — E(EIJVA fH % ((3 fr— gf x f ), (1.8)

whereby, = i% 1+ d,%, % € U(1). The NCMCS theory is invariant under thi(1) gauge
transformation
Ay — U7 A xU0+i07 19,0, (1.9)

while the NC Stlickelberg-SD Lagrangian is invariant under
fAu — U1« fA“*LAJ —|—i071*0u0,
U — U 0. (1.10)

We should remark that for the pure NCCS theory the SW map has the forjnif(th& CS
coefficientu is chosen to be dimensionless so that the gauge field has dimension oneur&he p
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NCCS theory has the remarkable property that the SW action has no daependeatsoever i
[12].

In the NCMCS theory and NCSD model the situation is rather different sineebthe cou-
plings must be dimensionfull and this choice determines the gauge field dimalitsionf we
make the usual choice for the gauge field dimensionality to be onegfhenthe NCMCS theory
has dimension one and we can use the SW map (1.1) to obtain

u

1
Low= FuFHY +209P R, Fa FHY — E(9"’3FC,BF,JVF“V + ZS““AHFM- (1.11)

Ag?
The fact thatg? has dimension one means now that the SW map (1.1) has an arbitrariness since
we can add an infinite number of gauge invariant terms, all line&, iout with different powers

of derivatives off,. These arbitrary terms in the SW map have the fgﬁ&"BT“aB where the

g® factor was chosen so that, g is a dimensionless function &}, and its derivatives times an
appropriate power aj. We should then ask whether such terms contribute to the SW action (1.11).
We find that their contribution has the form

/d3x FHY (0uTvap — HG%€uvp TP ap)- (1.12)

Let us now examine the first terms in the expansioi,gfg in powers of ¥g. The leading

terms are
1 1

The first term can be removed by a gauge transformation and a rigid tiansiéile for the second
term (1.12) vanishes so both can be disregarded. The next terms bdoenth

1 1
Ea,JFGB, @%qu, (1.14)
and again the first term can be removed by a gauge transformation whikectbvedsis proportional
to the first after using the Bianchi identity. Higher order terms, howe\aar, acontribute. For
instance, to order /g® we find thate,w,BF2 gives a non trivial contribution since (1.12) does not
vanish. Its contribution to the SW action (1.11) is

—g—i@aﬁsaﬁqudvF“"—Z—IzleaﬁFaBF“"Fw. (1.15)
Notice that we get a contribution of ordefd? and the coefficient of such a contribution could be
chosen to cancel the corresponding term in (1.11).

The ambiguity found here is not of the same sort as that found by sixEeggplications of
the SW map [11]. Here it arises because the model has a dimensionfulingpapnstant. If we
require the SW map to be universal in the sense that it applies to any gaagg then such terms
are not present. We will take this point of view from now on.

In [13] the SW map for the NC Stiickelberg-Proca theory has been olitaineequiring that
in the unitary gauge it gives the Proca theory. Using the same criterion Wthen&o for the NC
Stiickelberg-SD model is found to be

fy = f,— %eaﬁba(zaﬁ fu— dubg),

by = b“+%9"'ﬁo7abubﬁ, (1.16)
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while the gauge parameter transforms as

a:a_%eaﬁbaaﬁa. (1.17)

Applying the map to (1.8) we obtain the SW mapped action

>
Lswsp= /d3x% [(fu —by)(FH —b*) + 6P (f, — by ) (20405 fy *baaubBJraabubB)}

_ %(/d%imf“"ﬂ — %Py | HVbg (205 12 —0“bﬁ)+§f“0af”0ﬁfﬂ -(1.18)

2. Equivalence of the MCStheory and the SD model

In order to make the procedure of deriving the dual theory in NC spaeemore transparent
and also to set up our notation, we present a brief derivation of the malNk equivalence between
the MCS theory and the SD model in commutative space-time. The MCS theamjtaesby the
Lagrangian

1 H
—4—ngqu“V+§sWA“aVAA, (2.1)
is invariant under thé&J (1) gauge transformatioA, — A, + d,a while the SD model, whose
Lagrangian is

Lucs=

,fSD:g—zfuf“—is 5 fHOY A (2.2)

2 2k HY ’

has no such an invariance since theg# term breaks the symmetry. Their equivalence has been
analyzed using a phase space path integral approach [14] and iheaa that the SD model is
equivalent to a gauge fixed version of MCS theory. Also, this equicaléras been been studied
within the generalized canonical framework of Batalin and Fradkin in [t5}ias shown that the
gauge invariant formulation obtained by the Hamiltonian embedding of SD modetigalent to
theU (1) invariant MCS theory, clarifying the equivalence between both theorigpite of fact
that they have different gauge structures. The procedure empl&yedalso sheds light into this
issue as we shall see.

The MCS theory is also invariant under a global shift of the vector figld— A, + &, apart
from theU (1) gauge invariance. We first elevate this global shift symmetry to a local gne b
gauging it by an appropriate antisymmetric gauge feJd which transforms a&,, — Gy +
duéy — 0vé,. To have the same physical content as our starting MCS theory we thetraion
this gauge field to be non-propagating. This is done by introducing a hggnaultiplierd which
imposes the dual field strength of this gauge field to be flat. The result is

1
Z = —@(Fuv — G (FHY = G*Y) + %‘Eﬂw\ PH(FVA —G") - %guv)\ PHvPA
1 1
+ 28 G“V0A¢+Zs,MJ“(F“ -G, (2.3)

where we have introduced an auxiliary fi€lgto linearize the CS term. This field hab#1) gauge
invarianceP, — P, +dy x when the multiplier field transforms & — ® 4 ux andA;, — A,,. The
last term in the Lagrangian is a sourd€ coupling to the local shift invariant combination A,
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andGyy. The MCS theory is recovered from the above Lagrangian by eliminating fredd using
its equation of motion.
To show the equivalence to the SD model we start from the partition function

z= / D®DP, DA, DG, e /4% (2.4)
Integrations oveG,,, andA, are Gaussian and can be done trivially leading to
Zoual = / DODP,e 1/ It (2.5)
After the redefinitionquP, = f, and® = A, we get the effective Lagrangian

Lott = 9—2(f — AN (fH —HN) — L afHV A 4 9—23 JH 4+ g—z(f“ —dHN)J (2.6)
eff g\ H u 8u HVA g M 4 u- .

This theory is invariant under thé(1) gauge transformatiof), — f,, + d,, a when the Stuickelberg
field transforms a#\ — A+ a. We also note that the MCS coupling constghiand the Chern-
Simons parametge have both appeared as inverse couplings when compared with (2.2)aiWe ¢
now fix the gauge invariance in (2.6), for instance by choosing the urgtaugeA = 0, to recover
the self-dual model given in (2.2). We thus conclude thattl#) invariant MCS theory is dual to
theU (1) invariant Stuckelberg formulation of self-dual model.

From the partition functions (2.4) and (2.5) we derive the mapping betweem pioint corre-
lators for these theories. For the 2-point function, we get

(8P () €apoF () = 6* (T = 0N (0 (fa —0aN)(Y) + PGuadx—-Y),  (27)

leading the identification (up to non-propagating contact terms) betweermatiye gnvariant com-
binations
guaF" « @P(fu— duN). (2.8)

This equivalence between SD model and MCS theory has been extendellitie interaction
with matter [7]. It has been shown that the SD model minimally coupled to chatgeaimical
fermionic and bosonic matter fields is equivalent to a MCS theory non-minimallyled to matter.
In the weak coupling limit, it was shown in [16] that the non-Abelian MCS thé®gquivalent to
non-Abelian SD model and recently it was shown that, perturbatively, thizzgence exists in all
regimes of the coupling constant [17].

After re-expressing the NCMCS theory (1.7) in terms\gfand 098 using the SW map (1.1)
we apply the above procedure to construct the corresponding daaytiénen by comparing this
dual theory with SW mapped NC Stlckelberg-SD model, we study the statusioétuivalence.
We take up this in the next section.

3. Selberg-Witten mapped M axwell-Chern-Simonstheory and duality
By applying the SW map (1.1) to the NCMCS Lagrangian (1.7) we get to éder
1 1
XSW == —@ F“VFHV—FZGGBFQNFBVFHV — éeaBFaﬁFqu“v

n %e,m PHEVA _ %s,m PHYVPA, (3.1)
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where an auxiliary field®, was introduced to linearize the CS term. We have also used the fact
that the NCCS term gets mapped to the usual commutative CS term by the SW rhapfi&2
rewriting the above Lagrangian using auxiliary fieBls, andC,, as

1
Lsw = —4—92CHVBHV— %Euv)\ P“dVP’\ —"_%SIJVA P“FV)\
1 1
A FWF“"+29“BCO,“CBVF“"—EQO‘BCGBCWF“"—BWF“" , (3.2)

we can now gauge the shift invariancef field as in the commutative case. Due to the introduc-
tion of B, andCy,, we see thaG,,, will appear quadratically and this will simplify the calculation
considerably. So, we introduce a gauge f@ld, to promote the global shift invariance Af, to a
local one. We then get
1 H H A Ay L p
Low = —4—gzcuvB“V — 5 4Eu PHOVPA + 28 P =G — 26, G0t @
1

1
- 4—92 |:(FIJV - GIJV) + (ZQGBCGIJCBV - EQGBCGBC“V) - BIJV (F[JV - G,UV)' (33)

Starting with the partition function
Z= / DP,D®DC,,, DBy, DA, DG, e/ %5, (3.4)

we can integrate oveB,,, A, andBy, to get the partition function corresponding to the effective
Lagrangian

1 1
geff = _%Euv)\ PIJ&VP)\ - 4_92C;JVCIJV + ngvACuv(I«lPA — d)‘ CD)

1
4
We have neglected higher order termsfiin performing the Gaussian integrals. It is easy to see
that in the commutative limit we get (2.2) wh@h, is eliminated by using its field equation and
setting® = 0.
In the NC cas€,,, can be eliminated perturbatively th We then get

1
CHY [2e“ﬁca,,cﬁv —~ ﬁeaﬁcaﬁcw . (3.5)

2 4
Fasat = (T = QuN)(F4 = OUA) + 3 0% (14— P A)(FH — O (T — )
1
— @sw;\f“d"f’\, (3.6)

where we have identifiefP, = f, and® = A. As in the commutative case the strong coupling
limit of the original theory gets mapped into the weak coupling limit of the dual. lagydo see
that in the limit of vanishing the above Lagrangian (in the unitary gauge whiere 0) correctly
reproduces the SD Lagrangian (2.2).

It is interesting to note that the explicit form of the ordeterm in theC,,, field equation is not
need at all to find the above Lagrangian. This happens because theieecancellations and it is
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easy to be convinced that to obtain the dual Lagrangiamttoorder in@ we need the perturbative
solution forCy, only to order(n—1).

We can couple a source tergyy FHvJA to the Lagrangian (3.1) and this leads to the map
between the 2-point functions

(EwaF " (X) €appFPP(y)) = g (fu(x) T(y)) +0PGuad(x—y)
+%fl<@,fva+2§vafu 60 TP 5 +205 FB o) + 0*(Bufa + 6 fu+ B3 fp0ua),  (3.7)

wheree_u = Euua 6V} and ﬂ, = fy —du/\. Inthe limit & — O we recover the map obtained in (2.7).

Here we note that all th@ dependence of the SW mapped NCMCS theory comes from the
Maxwell term alone as the NCCS term gets mapped to usual commutative CS terre. it9s
possible to express the SW mapped Maxwell action to all ordefsnterms of the commutative
field strengthF,, and 6 alone [18](an exact closed form for the SW mapped Maxwell action is
given in [19]), it is easy to convince from (3.1) and (3.3) that the pdace adopted here can be
used to construct the dual theory to all order€insing a perturbative solution for ti@&,, field
equation.

One important point to note is that the theory described by the Lagrangi@); {&ich is
equivalent to the SW mapped NCMCS theorynidthe same as the SW mapped action for NCSD
model (1.18). This clearly shows that the SW mapped theories are notbamii

4. Conclusion

In this paper we have constructed and studied the dual description ofGNECS theory and
investigated the status of the equivalence between this theory and SD moddiavé/elerived
the dual theory starting from the SW mapped NCMCS Lagrangian which engiv terms of
commutative fields and the NC parameter. The equivalence was obtainedletd¢hof partition
functions and it allowed us to get the mapping between the n-point corretdioosh theories. We
have shown that the dual theory does not coincide with the SW mapped Mkegiérg-SD theory.
However, in the commutative limit, we recover the well known equivalencedmrithem. We have
also shown that the the two-point correlators map reduces to the one olitatheccommutative
case in this limit. We have argued that this result can be extended to all and@rdue to the
structure of the SW mapped NCMCS Lagrangian. We have also verifiedwbatafter accounting
for the ambiguous terms in the SW map, the dual theory and SW mapped NC IB&igk8D
model are not equivalent.

Hence, we have shown that the equivalence between the MCS theothe®D model in
commutative space-time does not survive in the NC case. In this respeatews agreement
with the results obtained earlier in [3] and [6] where it was argued thaetN€stheories are not
equivalent. But unlike the NCCS term used in [3], we have used the sthhtfaU (1) invariant
CS term with a cubic interaction as in [6] and [4]. The non-equivalent&den the NCSD model
and NCMCS theory shown here will come as an obstacle in generalizing Somization of the
commutative Thirring model to NC space-time as was pointed out in [3, 6].



Duality in NC MCS Theory Victor O. Rivelles

ACKNOWLEDGMENTS:
The work of VOR was partially supported by CNPq, FAPESP and PRONt#éucontract CNPq
66.2002/1998-99. This paper was done in collaboration with E. Harikumar

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

[11]

[12]

E. Harikumar and V. O. Rivelles, “Noncommutative MaxWw€hern-Simons theory in three
dimensions and its dual,” Phys. Lett.@5, 156 (2005) [arXiv:hep-th/0506078].

S. Deser, R. Jackiw and S. Templeton, “Three-dimensibtessive Gauge Theories”, Phys. Rev. Lett.
48 (1982) 975; Ibid, “Topologically Massive Guage Theorieshn. Phys.140 (1982) 372; S. Deser
and R. Jackiw, “’Selfduality of Topologically Massive Gaugheories”, Phys. LetB139 (1984) 371.

S. Ghosh, “Gauge Invariance and Duality in the Nonconative Plane”, Phys. LetB558 (2003)
245, hep-th/0210107; ibid, “Bosonization in the Noncomative Plane”, Phys. LetB563 (2003)
112, hep-th/0303022.

M. B. Cantcheff, P. Minces, “Duality in Noncommutativefologically Massive Gauge Field Theory
Revisited”, Eur. Phys. X34 (2004) 393, hep-th/0306206.

N. Seiberg, E. Witten, “String Theory and Noncommutatseometry”, JHER9, 032 (1999),
hep-th/9908142.

T. Mariz, R. Menezes, J. R. S. Nascimento, R. F. Ribei @nWotzasek, “Issues of duality on
non-commutative manifolds: then-equivalencéetween self-dual and topologically massive
models”, Phys. Re\D70 (2004) 085018, hep-th/0306265.

M. A. Anacleto, A. llha, J. R. S. Nascimento, R. F. Ribe#nod C. Wotzasek, “Dual equivalence
between Self-Dual and Maxwell-Chern-Simons models calfdalynamical U(1) charged matter”,
Phys. LettB504 (2001) 268, hep-th/0104152; M. Gomes, L. C. Malacarne andl Silva, “On the
equivalence of the self-dual and Maxwell-Chern-Simons ef®doupled to Fermions”, Phys. Lett.
B439 (1998) 137, hep-th/9711184.

M. S. Guimarées, J. L. Noronha, D. C. Rodrigues and C. A&®k, “On duality of the
noncommutative extension of the Maxwell-Chern-Simons eligéhys. Lett.B605 (2005) 419,
hep-th/0410156.

T. H. Buscher,“"Symmetry Of The String Background Fielguations”, Phys. Let8194 (1987) 59;
ibid “Path Integral Derivation Of Quantum Duality In Nondiar Sigma Models”, Phys. Le®201,
(1988) 466; U. Lindstrém and M. Rocek, Scalar Tensor DuaitgN = 1,N = 2 Nonlinear Sigma
Models”, Nucl. PhysB222 (1983) 285; N. Hitchin, A. Karlhede, U. Lindstrém and M. Rice
“Hyper Kahler Metrics and Supersymmetry”, Commun. Mathy$h08 (1987) 535.

E. Harikumar and M. Sivakumar, “Duality and Massive @aunvarinat Theories”, Phys. Rdv.57
(1998) 3794, hep-th/9604181.

T. Asakawa and I. Kishimoto, “Comments on Gauge Eqeimak in Noncommutative Geometry”,
JHEP9911 (1999) 024, hep-th/9909139.

N. Grandi and G.A. Silva, “Chern-Simons Action in Nomemutative Space”, Phys. LeB507
(2001) 345, hep-th/0010113.



Duality in NC MCS Theory Victor O. Rivelles

[13] R. Amorim, N. R. F. Braga and C. N. Ferreira, “Nonequéral Seiberg-Witten maps for
noncommutative massive U(N) gauge theory”, Phys. IBG81 (2004) 181, hep-th/0312089.

[14] R. Banerjee, H. J. Rothe and K. D. Rothe, “On the Equivedeof the Maxwell-Chern-Simons Theory
and a Self-Dual Model”, Phys. Re®52 (1995) 3750, hep-th/9504067.

[15] R. Banerjee, H. J. Rothe and K. D. Rothe, “Hamiltoniani&aiding of Self-Dual Model and
Equivalence with Maxwell-Chern-Simons Theory”, Phys. H2%5 (1997) 6339, hep-th/9611077.

[16] N. Bralic, E. Fradkin, V. Manias and F. A. Schaposnik, “Bosonizatibiihree Dimensional
Non-Abelian Fermion Field Theories”, Nucl. Phy446 (1995) 144, hep-th/9502066.

[17] M. B. Cantcheff, “Parent Action Approach for the Duglltetween Non-Abelian Self-Dual and
Yang-Mills-Chern-Simons Models”, Phys. LeB528 (2002) 283, hep-th/0110211.

[18] O.J. Ganor, G. Rajesh and S. Sethi, “Duality and Non-@atative Gauge Theory”, Phys. R&62
(2000) 125008, hep-th/0005046; O. F. Dayi, “Noncommuéakitaxwell-Chern-Simons theory,
duality and a new noncommutative Chern-Simons theod/4n3”, Phys. Lett.B560 (2003) 239,
hep-th/0302074.

[19] R. Banerjee and H. S. Yan, “Exact Seiberg-Witten Maplukced Gravity and Topological Invariants
in Noncommutative Field Theories”, Nucl. Phy&708 (2005) 434, hep-th/0404064.

10



