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1. Introduction

The representation of theD-branes as boundary states of the perturbative string is a powerful

technique in the investigation of the geometrical and physical properties of theD-branes. In par-

ticular, it has been shown recently in [1, 2, 3, 4, 5, 6] that this framework can be used to give a

microscopic description of the statistical properties of the bosonicD-branes. Since theD-branes

are constructed out of states from the Fock space of the closed bosonic string, it is natural to ap-

proach the problem within the Thermo Field Dynamics (TFD) formalism which can be formulated

in the canonical quantization [7]. The TFD was applied previously to the string theory, e. g. in

[8, 9]. More recent results were obtained in [10, 11, 12]. It deserves to emphasize two recent results

from [13] where the equivalence between the Matsubara and the TFD formalisms was proved and

[14] where the extension of the formalism to the superstringin the pp-background was done. (For

more references on the application of the TFD to strings andD-branes see [15] and the references

therein.) The aim of this paper is to report on the generalization of the method from [1] to construct

the thermalD-branes obtained from the BPSD-branes of the GS type II superstring. TheD-branes

of the GS superstring at zero temperature were obtained for the first time in [16, 17]. As the RNS

D-branes, they display the structure of coherent boundary states, and thus their are suited to the

TFD analysis.

The structure of the paper is as follows. In Section 2 we are going to review the construction

of the BPSD-branes of the type II superstring. In Section 3 we apply the TFD to the superstring

and obtain the thermal string. In Section 4 we construct the thermal boundary states of the thermal

string. The Section 5 is devoted to discussions. The presentreport reviews the results communi-

cated in [15].

2. Type II D-Branes in the Light-Cone Gauge

The main advantage of the GS formulation of the type II superstrings is that it displays the

space-time supersymmetry at both classical and quantum level. However, the quantization is simple

only in the light-cone gauge in which it coincides with the RNS quantization. The light-cone gauge

action is given by the following relation [18]

Il :c:g: =�1
2

Z
d2σ

�
T∂αXI ∂ αXI � i

π
S̄�AΓ�ρα

AB∂αSB
� ; (2.1)

whereS�Aa=S†Bb(Γ0)ba(ρ0)BA represents the conjugation of a spinor in two and eight dimensions

andA;B= 1;2. By ρα ’s we denote the complex Dirac matrices in two dimensions while Γµ ’s are

the 32�32 imaginary Dirac matrices of the spinor representation ofSO(1;9) andγ I ’s stand for the

16�16 real symmetric Dirac matrices of the spinor representation ofSO(8).
The action (2.1) has two supersymmetries. In the type IIA superstring, the supercharges that

generate the supersymmetries can be written as two inequivalent spinorsQa andQȧ from 8s and
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8c, respectively, given by the following relations

Qa = 1p
2p+ Z σ

0
dσ Sa(σ) ; Qȧ = 1

π
p

p+ Z σ

0
dσ γ I

ȧb∂XISb(σ): (2.2)

Similar relations hold for the right-moving supercharges.In the type IIB theory the two super-

charges belong to the same representation.

The BPSDp-branes are defined by imposingI = 1;2; : : : ; p+1 Neumann boundary conditions

and I = p+ 2; : : : ;8 Dirichlet boundary conditions on the superstring equations of motion and

requiring that half of the supersymmetries of the theory be preserved. For definites, let us choose

the type IIB superstring theory and define the following linear combinations of supercharges

Q�a = (Qa� iMabQ̄
b) ; Q�ȧ = (Qȧ� iMȧḃQ̄ḃ): (2.3)

By quantization, the chargesQ�a andQ�ȧ become operators that act on the Hilbert space of the

superstring. The breaking of half of supersymmetries can bewritten as constraints on the Hilbert

space [17] (∂XI �MI
J∂XJ)jBi= 0;

Q+ajBi= Q+ȧjBi= 0: (2.4)

The matricesMI
J, Mab andMȧḃ depend on the background fields and on the boundary conditions on

the bosonic fields.

As shown for the first time in [16], the type II superstring hasD-branes boundary states in the

light-cone gauge of the form [17]jBi = exp∑
n>0

�
MIJaI†

n āJ†
n � iMabS

a†
n S̄b†

n

� jB0i; (2.5)jB0i = (MIJjIijJi+ iMȧḃjȧijḃi): (2.6)

Here, we have used the Fourier expansion of the superstring fields in the normalized form. The su-

perstring states from (2.6) are obtained by acting with the bosonic and fermionic creation operators

on the degenerate massless ground state.

3. Thermalization of the GS Superstring

The type II superstring can be heated by putting it in contactwith a thermal reservoir. Accord-

ing to the TFD prescription [7] each string oscillator will interact with the corresponding degree of

freedom of the reservoir and the result is the thermalized string. The particularities of superstring

theory in the TFD framework are: the degenerate massless background atT = 0 and the constraints

from the Virasoro algebra. Therefore, the TFD ansatz [7] should be modified to [12, 15]hOi= Z(βT)�1Tr
h
δ (P= 0)e�βT HO

i� hh0(βT)jOj0(βT)ii; (3.1)
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for any observableO. In the above relation the delta function implements the level matching condi-

tion in the trace over the Hilbert space of the string theory in order to pick up just the contributions

from the physical subspace. The ansatz (3.1) defines the thermal vacuumj0(βT)ii as a vector from

the tensor product of the superstring physical Hilbert space with an identical copy of it denoted by

.̃ Its explicit form is given by the following relationj0(βT)ii= e�iGj0ii ; j0ii= j0ij0̃i; (3.2)

whereG is the Bogoliubov operator of all superstring oscillator modes [7]

GB = ∞

∑
n=1

(GB
n + ḠB

n) ; GF = ∞

∑
n=1

(GF
n + ḠF

n ); (3.3)

andGB andGF denote the sums of bosonic and fermionic Bogoliubov operators, respectively,

GB
n = �iθB

n (βT) 8

∑
I=1

(aI
n ãI

n� ãI†
n aI†

n ); (3.4)

ḠB
n = �iθB

n (βT) 8

∑
I=1

(āI
n ˜̄aI

n� ˜̄aI†
n āI†

n ); (3.5)

GF
n = �iθF

n (βT) 8

∑
a=1

(Sa
n S̃a

n� S̃a†
n Sa†

n ); (3.6)

ḠB = �iθF
n (βT) 8

∑
a=1

(S̄a
n

˜̄S
a
n� ˜̄S

a†
n S̄a†

n ): (3.7)

There is no TFD prescription for the thermalization of zero mode operators from the fermionic

sectors. However,Sa
0, S̄a

0, S̃a
0 and ˜̄S

a
0 are isomorphic to the Dirac matrices. Therefore, we consider

them inert under the thermalization. Note that these operators are important for constructing the

thermal states from the thermal vacuum in analogy with zero temperature case. In contrast with

the T = 0 situation, the thermal vacuum does not have zero mass. Indeed, since the mass is an

eigenvalue of zero temperature mass operatornotfinite temperature mass operator, the Bogoliubov

operator creates massive states from the zero temperature vacuum.

An useful form for calculations of the Bogoliubov operator of a single oscillator is the linear

form. In the case of superstrings, the Bogoliubov transformations of the superstring oscillators act

linearly on the oscillator operators as follows

aI
n �! aI

n(βT) = aI
n coshθB;I

n (βT)� ãI†
n sinhθB;I

n (βT); (3.8)

aI†
n �! aI†

n (βT) = aI†
n coshθB;I

n (βT)� ãI
nsinhθB;I

n (βT); (3.9)

ãI
n �! ãI

n(βT) = ãI
n coshθB;I

n (βT)�aI†
n sinhθB;I

n (βT); (3.10)

ãI†
n �! ãI†

n (βT) = ãI†
n coshθB;I

n (βT)�aI
nsinhθB;I

n (β ); (3.11)

āI
n �! āI

n(βT) = āI
n coshθ̄B;I

n (βT)� ˜̄aI†
n sinhθ̄B;I

n (βT); (3.12)

āI†
n �! āI†

n (βT) = āI†
n coshθ̄B;I

n (βT)� ˜̄aI
nsinhθ̄B;I

n (βT); (3.13)
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˜̄aI
n �! ˜̄aI

n(βT) = ˜̄aI
ncoshθ̄B;I

n (βT)� āI†
n sinhθ̄B;I

n (βT); (3.14)

˜̄aI†
n �! ˜̄aI†

n (βT) = ãI†
n coshθ̄B;I

n (βT)� āI
nsinhθ̄B;I

n (βT); (3.15)

Sa
n �! Sa

n(βT) = Sa
n cosθF;a

n (βT)� S̃a†
n sinθF;a

n (βT); (3.16)

Sa†
n �! Sa†

n (βT) = Sa†
n cosθF;a

n (βT)� S̃a
n sinθF;a

n (βT); (3.17)

S̃a
n �! S̃a

n(βT) = S̃a
n cosθF;a

n (βT)+Sa†
n sinθF;a

n (βT); (3.18)

S̃a†
n �! S̃a†

n (βT) = S̃a†
n cosθF;a

n (βT)+ S̃a
n sinθF;a

n (βT); (3.19)

S̄a
n �! S̄a

n(βT) = S̄a
n cosθ̄F;a

n (βT)� ˜̄S
a†
n sinθ̄F;a

n (βT); (3.20)

S̄a†
n �! S̄a†

n (βT) = S̄a†
n cosθ̄F;a

n (βT)� ˜̄S
a
n sinθ̄F;a

n (βT); (3.21)
˜̄S

a
n �! ˜̄S

a
n(βT) = S̃a

n cosθ̄F;a
n (βT)+ S̄a†

n sinθ̄F;a
n (βT); (3.22)

˜̄S
a†
n �! ˜̄S

a†
n (βT) = ˜̄S

a†
n cosθ̄F;a

n (βT)+ ˜̄S
a
n sinθ̄F;a

n (βT): (3.23)

Here,θB;I
n (βT) andθF;a

n (βT) are factors that depend on the temperature throughβT = (kBT)�1 and

on then-th oscillator frequencyωn. Therefore, these factors will differ only for different oscillators

n, but oncen is given, they are the same in all spacetime directionsI = 1; : : : ;8 and for all spinor

componentsa= 1; : : : ;8, respectively. Thus, theI anda indices can be dropped. Also, since the

left-moving and right-moving oscillators of the samen should be identical by symmetry between

the left-moving and right-moving modes of the closed superstring, theθn-factors should be the

same in both left-moving and right-moving sectors and ¯ can be dropped, too. The form ofθ ’s is

given by the following relations [7]

θB
n (βT) = arccosh(1�e�βTωB

n )� 1
2 ; θF

n (βT) = arccos(1+e�βTωF
n )� 1

2 ; (3.24)

whereωB
n andωF

n are the frequencies ofn-th bosonic and fermionic oscillators, respectively.

4. Thermal D-brane States

The similarity transformations generated by the Bogoliubov operator can be applied to the

operators that define theD-brane boundary conditions (2.4) and the following boundary conditions

at T 6= 0 are obtained (∂XI (βT)�MI
J∂XJ(βT))jB(βT)ii= 0; (4.1)

Q+a(βT)jB(βT)ii= Q+ȧ(βT)jB(βT)ii= 0; (4.2)(∂ X̃I (βT)�MI
J∂ X̃J(βT))jB(βT)ii= 0; (4.3)

Q̃�a(βT)jB(βT)ii= Q̃�ȧ(βT)jB(βT)ii= 0: (4.4)

The above equations can be solved by noting thatT = 0 boundary states can be factorized in

two factors belonging to the superstring and the tilde-superstring Hilbert spaces, respectively (for

details see [15].) The thermalizedD-brane states have the following formjB(βT)ii= eΣ(βT )+Σ̃(βT)jB0(βT)ii; (4.5)
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where we have introduced the following notations

Σ(βT) = ∑
n>0

(MIJaI†
n (βT)āJ†

n (βT)� iMabS
a†
n (βT)S̄b†

n (βT)); (4.6)

Σ̃(βT) = ∑
n>0

(M̃IJãI†
n (βT) ˜̄aJ†

n (βT)+ iM̃abS̃
a†
n (βT) ˜̄Sb†

n (βT)); (4.7)jB0(βT)ii = (MIJjIJ(βT)ii+ iMȧḃjȧḃ(βT)ii)(MIJ jĨ J̃(βT)ii� iMȧḃj ˜̇a˜̇b(βT)ii): (4.8)

The statesjIJ(βT)ii are obtained by acting withaI†
1 (βT)āJ†

1 (βT) on the thermal vacuumj0(βT)ii,
in analogy with zero temperature.

5. Discussions

In the present communication we have reviewed the construction of the thermal boundary

states from the BPSD-branes of the type II superstring in GS formulation by thermalization in the

TFD framework. The boundary relations at finite temperature(4.1), (4.2), (4.3) and (4.4) can be

obtained from the thermalized action of the total string, i.e. the difference between the action

of the superstring and the tilde-superstring. However, by thermalization most of the superstring

symmetries are broken. In particular, as argued in [15] theε-supersymmetry is broken while theη-

supersymmetry is preseved. This pattern is preserved on thefull thermal Hilbert space. Therefore,

the thermal boundary state (4.5) is not supersymmetric.

The formalism presented here could be used to compute the entropy of the thermal string in

the presence of theD-brane, which was obtained in [19] by the Matsubara method. Also, it could

be used to study the thermal string in curved backgrounds, too, at least in some approximation in

which there is a canonical quantization of the theory. We hope to report on this topic soon [20].
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