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1. Introduction and review of known results

1.1 The Born-Infeld lagrangian in the context of String Theory

As a starting point we consider the low energy interaction ofabelianopen (bosonic) strings in
Minkowski spacetime, which is given by the Born-Infeld lagrangian [1]:

LBI = − 1

(2πα ′)D/2

√
det(ηµν +2πα ′Fµν) , (1.1)

as long asFµν is kept constant.D is the spacetime dimension.
Theα ′ expansion ofLBI has the following form:

LBI = (constant)− 1
4

FµνFµν +
π2

2
α
′2
(

FµνFνρFρσ Fσν − 1
4

FµνFµνFρσ Fρσ

)
+O(α ′4) .(1.2)

The first non constant term clearly is identified as the Maxwell lagrangian and theO(α ′2) term is
the first low energy correction coming from String Theory. Onlyevenpowers ofα ′ show up in this
expansion.
The general situation for the low energy effective lagrangian includes as well derivatives of theF ’s:

Leff = LBI +(derivative terms) . (1.3)

The situation for the low energy effective lagrangian in Open Superstring Theory is similar to the
one in (1.3), the only difference being the fact that fermionic degrees of freedom are also present
in the lagrangian [2]. Anyway, the bosonic part of this lagrangian has a similar structure as the one
in (1.3).
A nonabeliangeneralization of (1.3) is of interest for Type I theory. A first guess would be to
consider the trace of the lagrangian in (1.1) and (1.2), leading to

L non−ab
BI = (constant)− 1

4
tr

(
FµνFµν

)
+

π2

2
α
′2tr

(
FµνFνρFρσ Fσν − 1

4
FµνFµνFρσ Fρσ

)
+

+O(α ′4) , (1.4)

where, clearly, the first non constant term is the Yang-Mills lagrangian. From now on we will des-
consider the constant term in (1.4).
The problem arises as soon as we consider theO(α ′2) contribution in (1.4) since it is ambiguously
defined, for example, terms likeFµνFνρFρσ Fσν andFµνFνρFσνFρσ which are equivalent from
theabelianpoint of view are not so from thenonabelianpoint of view. The reason lies in the fact
that the commutator of two field strengths is not zero in the nonabelian case. So a nonabelian gen-
eralization of the Born-Infeld lagrangian, in the context of Superstring Theory is not an immediate
task to acheive.
A nonabelian calculation by means of a 4-point amplitude calculation leads to the following ex-
pression [2, 3]:

L non−ab
BI = −1

4
tr

(
FµνFµν

)
+

π2

2
α
′2tr

(
1
3

FµνFνρFρσ Fσν +
2
3

FµνFνρFσ µFρσ −

−1
6

FµνFµνFρσ Fρσ − 1
12

FµνFρσ FµνFρσ

)
+O(α ′3) . (1.5)
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It is easy to see that the abelian limit of theO(α ′2) terms in (1.5) agrees exactly with the corre-
sponding terms in (1.2).

1.2 Introducing the symmetrized trace

In [4] it was seen that the abelian and the nonabelian expressions of the Born-Infeld lagrangian
could be related, at least up toO(α ′2) terms, by introducing a symmetrized trace in the abelian
expression (1.2),

L non−ab
BI = −1

4
str

(
FµνFµν

)
+

π2

2
α
′2str

(
FµνFνρFρσ Fσν − 1

4
FµνFµνFρσ Fρσ

)
+

+O(α ′3) . (1.6)

The symmetrized trace, denoted by ’str’, is defined as an average of the trace of all possible permu-
tations of matrices. The result in (1.6) is very nice in the sense that it looks like a democratic way
of constructng the nonabelian lagrangian from the abelian one.
The complete proposal of [4] for the nonabelian Born-Infeld lagrangian is simply

L non−ab
BI = (constant) str

(√
det(ηµν +2πα ′Fµν)

)
. (1.7)

This can be considered as a prescription for writing theFn terms of the lagrangian, at any order in
α ′. Its abelian limit clearly agrees with the usual Born-Infeld lagrangian (1.1).
So, the general structure of the low energy effective lagrangian in the open string sector of Type I
theory may be written as

Leff = (constant) str

(√
det(ηµν +2πα ′Fµν)

)
+

( covariant
derivative

terms

)
+(fermions) . (1.8)

Equation (1.8) may seem to be a quite simple and a very strong result and, although it is correct, it
has a serious problem. Due to the[Dµ ,Dν ]Fαβ = −ig[Fµν ,Fαβ ] identity, theFn and theD2pFn−p

terms can be related, so the covariant derivative terms in (1.8) are as important as theFn ones.
Therefore, the separation betweenFn terms (i.e. nonabelian Born-Infeld lagrangian) and covariant
derivative ones is a purely artificial fact in the case of the nonabelian theory.
The conclusion is that the complete determination of theLeff lagrangian in (1.8) can only be
obtained by perturbative theory inα ′.
The approach that we will follow in this work is the scattering amplitude one.

2. Some details about the interactions

2.1 General formula for the string scattering amplitude

The general formula for the (open string) massless boson amplitude (at tree level) is [5]

A (M) = i (2π)10
δ (k1 +k2 + . . .+kM) · ∑

j1, j2,..., jM

′
tr(λ a j1 λ

a j2 . . .λ a jM ) A( j1, j2, . . . , jM) , (2.1)

3
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whereM is the number of bosons and the sum∑′ in the indices{ j1, j2, . . . , jM} is done overnon−
cyclic equivalent permutations of the group{1,2, . . . ,M}. The matricesλ a j are in the adjoint
representation of the Lie group.A( j1, j2, . . . , jM) is the main object of study, calledsubamplitude.
It corresponds to theM-point amplitude of open superstrings which do not carry color indices
and which are placed in the ordering{ j1, j2, . . . , jM} (modulo cyclic permutations). Using vertex
operators, the RNS formalism leads to the following integral formula forA(1,2, . . . ,M) [6], for
M ≥ 3:

A(1,2, . . . ,M) = 2
gM−2

(2α ′)7M/4+2
(xM−1−x1)(xM −x1)×

×
∫

dx2 . . .dxM−2

∫
dθ1 . . .dθM−2

M

∏
i> j

|xi −x j −θiθ j |2α ′ki ·k j ×

×
∫

dφ1 . . .dφM efM(ζ ,k,θ ,φ) , (2.2)

where

fM(ζ ,k,θ ,φ) =
M

∑
i 6= j

(θi −θ j)φi(ζi ·k j)(2α ′)11/4−1/2φiφ j(ζi ·ζ j)(2α ′)9/2

xi −x j −θiθ j
. (2.3)

Theθi ’s and theφi ’s in (2.2) and (2.3) are Grassmann variables, while thexi ’s are real variables such
thatx1 < x2 < x3 < .. . < xM. Theki ’s and theζi ’s are thei-th string momentum and polarization,
respectively.
Although not manifest, the subamplitudeA(1,2, . . . ,M) in (2.2) has the following symmetries[5]:

1. Cyclicity:

A(1,2, . . . ,M−1,M) = A(2,3, . . . ,M,1) = . . . = A(M,1, . . . ,M−2,M−1) .

2. On-shell gauge invariance:

A(1,2, . . . ,M)|
ζi=ki

= 0, for i = 1, . . . ,M .

3. World-sheet parity:

A(1,2, . . . ,M−1,M) = (−1)MA(M−1,M−2, . . . ,1,M) .

Formula (2.2), together with (2.1), containsall the information to construct the low energy efective
lagrangian, which has the form

Leff = tr

{
F2 +α

′2F4 +α
′3(F5 +D2F4)+α

′4(F6 +D2F5 +D4F4)+ . . .

}
. (2.4)

Formula (2.4) already considers the fact that the string 3-point amplitude,A(1,2,3), agrees com-
pletely with the corresponding Yang-Mills 3-point amplitude (i.e., it has noα ′ corrections [5]).
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2.2 Case of the 4-point amplitude

An interesting (and very well known) application of formula (2.2) is the case of the 4-point
subamplitude. It leads to

A(1,2,3,4) = 8 g2
α
′2 Γ(−α ′s)Γ(−α ′t)

Γ(1−α ′s−α ′t)
K(ζ1,k1;ζ2,k2;ζ3,k3;ζ4,k4) , (2.5)

where

K(ζ1,k1;ζ2,k2;ζ3,k3;ζ4,k4) = tµ1ν1µ2ν2µ3ν3µ4ν4
(8) ζ

1
µ1

k1
ν1

ζ
2
µ2

k2
ν2

ζ
3
µ3

k3
ν3

ζ
4
µ4

k4
ν4

(2.6)

is a kinematic factor,t(8) being a known tensor [5]. The s andt variables in (2.5) are part of the
three Mandelstam variables. They may be written as [7]

s= −k1 ·k2−k3 ·k4, t = −k1 ·k4−k2 ·k3 . (2.7)

The Gamma factor in (2.5) has a completely knownα ′ expansion, which begins like

α
′2 Γ(−α ′s)Γ(−α ′t)

Γ(1−α ′s−α ′t)
=

1
st
− π2

6
α
′2 +O(α ′3) . (2.8)

Using (2.7) and the known symmetries of thet(8) tensor [5], the expression forA(1,2,3,4) in
(2.5) has all three symmetries (cyclic invariance, on-shell gauge invariance and world-sheet parity)
manifest.
The general method of finding the string corrections to the Yang-Mills lagrangian, at a givenα ′

order, consists in writing all the possible terms with unknown coefficients. Consider, for example,
theO(α ′2) corrections. Up to thatα ′ order the effective lagrangian looks like [2]

Leff = −1
4

tr

(
FµνFµν

)
+

π2

2
α
′2tr

(
c1FµνFνρFρσ Fσν +c2FµνFνρFσ µFρσ +

+c3FµνFµνFρσ Fρσ +c4FµνFρσ FµνFρσ

)
. (2.9)

This expression is the final result, after having considered also derivative terms and used the Bianchi
identity, integration by parts and the[D,D]F = [F,F ] relations. In (2.9), we have also omitted terms
which vanish on-shell (i.e., terms which containDµFµν ).
Then, the tree level 4-point amplitude is calculated using (2.9) and compared with the correspond-
ing expression in (2.5) up toO(α ′2) order. This comparison determines the unknownsc1, c2, c3

andc4, leading to the expression in (1.5) [2]).
Although this procedure can be applied to compute the correction terms (sensible to a 4-point am-
plitude) up to anyα ′ order, it gets longer and harder as theα ′ order grows.
Based on the idea of [7], in [8] was done the explicit construction of allD2nF4 (n = 0,1,2, . . .) in
the effective lagrangian, arriving to

LD2nF4 = −1
8

g2
α
′2

∫ ∫ ∫ ∫ {
4

∏
j=1

d10x j δ
(10)(x−x j)

}
×

× fsym

(
(D1 +D2)2 +(D3 +D4)2

2
,
(D1 +D4)2 +(D2 +D3)2

2

)
×

×tµ1ν1µ2ν2µ3ν3µ4ν4
(8) tr

(
Fµ1ν1(x1)Fµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4(x4)

)
, (2.10)
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where the functionf is given by

f (s, t) =
Γ(−α ′s)Γ(−α ′t)
Γ(1−α ′s−α ′t)

− 1

α ′2st
. (2.11)

(See [8] for more details about the relation between functionsfsym(s, t) and f (s, t).)

2.3 Case of the 5-point amplitude

At this point is where the search forhigher N-point amplitudes begins. In the case of the 5-point
subamplitude formula (2.2) becomes

A(1,2,3,4,5) = 2
g3

(2α ′)43/4
(x4−x1)(x5−x1)×

×
∫ x4

x1

dx3

∫ x3

x1

dx2

∫
dθ1dθ2dθ3

5

∏
i> j

|xi −x j −θiθ j |2α ′ki ·k j ×

×
∫

dφ1dφ2dφ3dφ4dφ5ef5(ζ ,k,θ ,φ) , (2.12)

whereθ4 = θ5 = 0.
Once the Grassmann integration has been done, and after some lengthly algebra, it can be written
as [9]

A(1,2,3,4,5) = 2 g3 (2 α
′)2

{
L3(ζ1 ·ζ2)(ζ3 ·ζ4)(ζ5 ·k2)(k1 ·k3)+

(
44 (ζ ·ζ )2(ζ ·k)(k ·k) terms

)
+K2(ζ1 ·ζ4)(ζ5 ·k2)(ζ2 ·k1)(ζ3 ·k4)+

(
99 (ζ ·ζ )(ζ ·k)3 terms

)}
.

(2.13)

(See eq. (5.29) of [9] for the complete detailed formula.)L3 andK2 are momentum dependent
factors (which also depend onα ′) given by double integrals:{

L3

K2

}
=

∫ 1

0
dx3

∫ x3

0
dx2 x2α ′α12

2 (1−x2)2α ′α24x2α ′α13
3 (1−x3)2α ′α34(x3−x2)2α ′α23

{ 1
x2x3(1−x3)

1
x2(1−x3)

}
,

(2.14)

whereαi j = ki ·k j . They can be calculated in terms of Beta and hypergeometric functions. Indepen-
dently of the method used to calculate them, the first terms of theirα ′ expansion can be obtained.
For example,

K2 =
1

(2α ′)2

{
1

α12 α34

}
− π2

6

{
α51 α12−α12 α34+α34 α45

α12 α34

}
+

+ ζ (3) (2α
′)

{
α2

12 α51−α2
34 α12+α2

45 α34+α2
51 α12−α2

12 α34+α2
34 α45−2α12 α23 α34

α12 α34

}
+

+ O((2α
′)2) . (2.15)

Formula (2.13) was used in [9] to distinguish from three non equivalent versions of theα ′3F5 terms
of (2.4) [10, 11, 12], obtaining complete agreement with the one in [12].
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In [9], formula (2.13) was written in terms of 8Ki ’s and 8Li ’s (plus cyclic permutations of the
terms in the amplitude). It was seen that some linear relations, coming from integration by parts
technique, existed between theKi ’s and between theLi ’s.
Afterwards, in [13] it was seen that further linear relations existed between thoseα ′ dependent
factors. The new relations, independent from the ones obtained in [9], were due to the partial
fraction technique. So at the end, for the 16α ′ dependent factors there were found 7 independent
integration by parts relations and 7 independent partial fraction relations. Solving this linear system
it allowed to writeall Ki ’s andLi ’s in terms of only 2 of them. This was summarized and exploited
in [14], where the final expression for the 5-point subamplitude was written as

A(1,2,3,4,5) = T ·AYM(1,2,3,4,5)+(2α
′)2K3 ·AF4(1,2,3,4,5) . (2.16)

In this formulaAYM(1,2,3,4,5) andAF4(1,2,3,4,5) are the 5-point subamplitudes coming from
the Yang-Mills and the knownF4 terms in (1.4), while T andK3 areα ′ dependent factors which
have a knownα ′ expansion which go like

T = 1+O(α ′3) , (2α
′)2K3 =

π2

6
(2α

′)2 +O(α ′3) . (2.17)

Formula (2.16), the same as formula (2.5), has the nice property that the cyclic, the on-shell gauge
invariance and the world-sheet parity symmetries are manifest(see [14] for further details). We
have also tested the factorization properties of the poles [14].

Benefits from having a closed formula for A(1,2,3,4,5):

2.3.1 5-point amplitudes involving fermions are immediate

By this we mean that there is no need to compute the 3-boson/2-fermion and the 1-boson/4-fermion
amplitudes right from the beginning, in the RNS formalism. The explanation is the following. Up
to now, the supersymmetric low energy effective lagrangian iscompletelyknown up toO(α ′2)
terms. It has the form

Leff = LSYM +α
′2L2 +O(α ′3) , (2.18)

where

LSYM = tr

(
F2 + iψ̄γDψ

)
(2.19)

is the D=10 Super Yang-Mills lagrangian and

L2 = tr

(
F4 +D(ψ̄γψ)F2 +D2(ψ̄γψ)2 +F(ψ̄γψ)4

)
(2.20)

is the orderα ′2 string correction toLSYM. L2 has been determined completely in [15].
In this sense, due to the structure of theα ′ expansion ofT and(2α ′)2K3 in (2.17), we could rewrite
eq. (2.16) in a slightly different (but equivalent) notation:

A5b(1,2,3,4,5) = T ·A5b
SYM(1,2,3,4,5)+(2α

′)2K3 ·A5b
L2

(1,2,3,4,5) , (2.21)

7
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whereA5b
SYM(1,2,3,4,5) andA5b

L2
(1,2,3,4,5) denote the 5-boson subamplitude coming fromLSYM

andL2, respectively.
Now we write down our ‘immediate’ expression for the 3-boson/2-fermion and the 1-boson/4-
fermion subamplitudes. Our ansatz, based on the structure of theα ′ expansion ofT and(2α ′)2K3

in (2.17), is the following, respectively [16]:

A3b/2 f (1,2,3,4,5) = T ·A3b/2 f
SYM (1,2,3,4,5)+(2α

′)2K3 ·A3b/2 f
L2

(1,2,3,4,5) , (2.22)

A1b/4 f (1,2,3,4,5) = T ·A1b/4 f
SYM (1,2,3,4,5)+(2α

′)2K3 ·A1b/4 f
L2

(1,2,3,4,5) . (2.23)

As an immediate test of (2.22) and (2.23) we see that, by construction they reproduce the 3-boson/2-
fermion and the 1-boson/4-fermion subamplitudes of the low energy effective lagrangian in (2.18).
On the other side, and this guarantees that (2.22) and (2.23) are correct to any order inα ′, these for-
mulas, together with (2.21), satisfy by construction the supersymmetry requirement: the summed
variation ofA5b(1,2,3,4,5), A3b/2 f (1,2,3,4,5) andA1b/4 f (1,2,3,4,5) under the supersymmetry
transformations [6],

δAa
µ =

i
2

ε̄γµψ
a , (2.24)

δψ
a = −1

4
Fa

µνγ
µν

ε , (2.25)

δψ̄
a = −1

4
ε̄γ

µνFa
µν , (2.26)

is zero, after using the on-shell and the physical state conditions, together with momentum conser-
vation.
Formula (2.23) is being used in [16] to determine theα ′3D2F(ψ̄γψ)2 terms, which are unknown
at the present moment.

2.3.2 Determination of theα ′n+3D2nF5 terms

In (2.10) it was seen that it was possible to explicitly construct all the effective lagrangian terms
which are sensible to the 4-point amplitude.
We will now see that that using the compact formula (2.16) we have been able to determine all
the α ′n+3D2nF5 terms in (2.4). For this purpose we compute first the corresponding scattering
amplitude as

AD2nF5(1,2,3,4,5) = A(1,2,3,4,5)−AYM(1,2,3,4,5)−AD2nF4(1,2,3,4,5) . (2.27)

It is quite remarkable that the resulting expression has no poles, as it should happen (see [14] for
further details). With the simplified expression forAD2nF5(1,2,3,4,5) we find the corresponding
lagrangian terms to be [14]:

LD2nF5 = i g3
∫ ∫ ∫ ∫ ∫ {

5

∏
j=1

d10x j δ
(10)(x−x j)

}
×

×
[ {

1
32

H(1)(−D2 ·D3,−D3 ·D4 ,−D4 ·D5) tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5
(10) +

8
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+
1
16

P(1)(−D1 ·D2,−D2 ·D3,−D3 ·D4 ,−D4 ·D5,−D5 ·D1) (η · t(8))1
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5

}
×

×tr

(
Fµ1ν1(x1)Fµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4(x4)Fµ5ν5(x5)

)
−

− U (1)(−D1 ·D2,−D2 ·D3,−D4 ·D5,−D5 ·D1)×

×
{

1
64

tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5
(10) tr

(
Fµ1ν1(x1)Fµ2ν2(x2)DαFµ3ν3(x3)DαFµ4ν4(x4)Fµ5ν5(x5)

)
+

+
1
16

tµ4ν4µ5ν5µ1ν1µ2ν2
(8) tr

(
Dµ3Fµ1ν1(x1)Dν3Fµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4(x4)Fµ5ν5(x5)

)
+

+
1
16

tµ3ν3µ4ν4µ5ν5µ1ν1
(8) tr

(
Dµ2Fµ1ν1(x1)Fµ2ν2(x2)Dν2Fµ3ν3(x3)Fµ4ν4(x4)Fµ5ν5(x5)

)
−

− 1
16

tµ1ν1µ2ν2µ3ν3µ4ν4
(8) tr

(
Dµ5Fµ1ν1(x1)Fµ2ν2(x2)Fµ3ν3(x3)Dν5Fµ4ν4(x4)Fµ5ν5(x5)

)
−

− 1
16

tµ5ν5µ1ν1µ2ν2µ3ν3
(8) tr

(
Dµ4Fµ1ν1(x1)Fµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4(x4)Dν4Fµ5ν5(x5)

) }
−

− 1
8

W(1)(−D1 ·D2,−D2 ·D3,−D3 ·D4 ,−D4 ·D5,−D5 ·D1)×

×tµ2ν2µ3ν3µ4ν4µ5ν5
(8) tr

(
Fµ1ν1(x1)Dµ1Fµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4(x4)Dν1Fµ5ν5(x5)

)
−

− 1
8

Z(1)(−D1 ·D2,−D2 ·D3,−D3 ·D4 ,−D4 ·D5,−D5 ·D1)×

×tµ2ν2µ3ν3µ4ν4µ5ν5
(8)

{
tr

(
Fµ1ν1(x1)Fµ2ν2(x2)Dµ1Fµ3ν3(x3)Dν1Fµ4ν4(x4)Fµ5ν5(x5)

)
−

− tr

(
Fµ1ν1(x1)Dµ1Fµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4(x4)Dν1Fµ5ν5(x5)

)}
+

+
1

160
∆(−D1 ·D2,−D2 ·D3,−D3 ·D4 ,−D4 ·D5,−D5 ·D1)×

×
{

tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5
(10) tr

(
DαDβ Fµ1ν1(x1)DαFµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4(x4)Dβ Fµ5ν5(x5)

)
+

+4(η · t(8))1
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5 ×

× tr

(
Fµ1ν1(x1)DαFµ2ν2(x2)DαFµ3ν3(x3)Dβ Fµ4ν4(x4)Dβ Fµ5ν5(x5)

) } ]
,

(2.28)

whereH(1), P(1), U (1), W(1), Z(1) and∆ have known expressions (and therefore knownα ′ expan-
sions) in terms of the Gamma factor,T andK3.
In (2.28) we see that, besides the knownt(8) tensor, a newt(10) tensor has arisen [14]. Formula
(2.28) has been tested to reproduce the already knownα ′3F5 terms and gives the explicit construc-
tion of all covariant derivative terms containing 5F ’s (which are sensible to the 5-point amplitude).

3. Towards a closed formula for N-point (tree level) amplitudes in Open Superstring
Theory

The method of finding a basis ofα ′ dependent factors that allows to write the scattering amplitude

9
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in a short form (see eqs. (2.5) and (2.16)), by using ‘integration by parts’ and ‘partial fractions’
techniques, can be used for any N-point amplitude (N > 3) and will lead to an expression of the
form

A(1,2, . . . ,N) = F1(αi j ;α
′)K1(ζ ,k)+ . . .+Fmn(αi j ;α

′)Kmn(ζ ,k) . (3.1)

Here, theFp(αi j ;α ′)’s are theα ′ dependent factors and theKp(ζ ,k)’s are the kinematical expres-
sions. By now, the completely known cases are only theN = 4 and theN = 5 ones.
The ambitious program would consist then in:

1. Finding how many terms are there in formula (3.1): mn =?

2. Finding the specific formulas for:

• The kinematical expressionsKp(ζ ,k)’s, in such a way that the tensorst(8), t(10), . . .,
t(mn) can be determined.

• Theα ′ factorsFp(αi j ;α ′)’s and itsα ′ expansions.

This is still an open problem. In order to get an insight it would be good to consider the case of the
6-point amplitude, but before that we will make an important comment about how the symmetries
of the scattering amplitude restrict its kinematical expression.

3.1 Implementing symmetries in the scattering amplitude

In subsection2.1 it was seen that the N-point subamplitudeA(1,2, . . . ,N) satisfies cyclicity, on-
shell gauge invariance and world-sheet parity. We have verified, in the case ofN = 4 andN = 5
that, after doing all Grassmann integrations in (2.2) (like in (2.13), in the case ofN = 5) and de-
manding the 3 symmetries to be satisfied, then a set of linear relations between theα ′ factors is
found. This system of relations happens to be linearly equivalent to the one obtained when using
‘integration by parts’ and ‘partial fractions’ techniques. We have verified that this works correctly
also in the case of bosonic string amplitudes (which have an expression similar to the one in (2.2),
but with no Grassmann variables), forN = 4 andN = 5.
The deeper mean of all this is that, at least up toN = 5, the symmetries are enough to fix the kine-
matics that governs the scattering amplitude, at any order inα ′. But, unfortunately, as we will see
in the next subsection, this is no longer true already whenN = 6.

3.2 Case of the 6-point amplitude

After doing the Grassmann integration in (2.2) in the case ofN = 6 we arrive to an expression of
the following type[17]:

A(1,2,3,4,5,6) = (2 α
′)2 g4

{ (
(2α

′)I6(ζ4 ·ζ5)(ζ6 ·k2)(ζ1 ·k5)(ζ2 ·k4)(ζ3 ·k4)+

+(other(ζ ·ζ )(ζ ·k)4 terms)
)

+

10
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+
(

(1−2α
′k3 ·k4)I45(ζ1 ·ζ2)(ζ3 ·ζ4)(ζ5 ·k1)(ζ6 ·k2)+

+(other(ζ ·ζ )2(ζ ·k)2 terms)
)

+

+
(

(2α
′)I109(ζ2 ·ζ3)(ζ4 ·ζ5)(ζ6 ·ζ1)(k1 ·k2)(k3 ·k4)+

+(other(ζ ·ζ )3(k ·k)2 terms)
) }

, (3.2)

whereI6, I45 andI109 areα ′ dependent factors given by triple integrals:

{ I6
I45

I109

}
=

∫ 1

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2 x2α ′α12

2 (1−x2)2α ′α25x2α ′α13
3 (1−x3)2α ′α35x2α ′α14

4 (1−x4)2α ′α45

×(x3−x2)2α ′α23(x4−x2)2α ′α24(x4−x3)2α ′α34 ×
{ 1

(1−x4)(x4−x2)(x4−x3)
1

x2(x4−x3)2

1
x2(1−x4)(x3−x2)(x4−x3)

}
.

(3.3)

Formula (3.2) contains at all 237 differentα ′ dependent factorsI j .
Demanding the symmetries to be satisfied, as explained in subsection3.1, we obtain a set of linear
relations which allows us to write theα ′ dependent factors in terms of 15 of them.
On the past year an interesting preprint appeared with the calculation of the 6-point amplitude[18].
The authors of it did not find the relations between theα ′ dependent factors by means of integra-
tion by parts neither by partial fractions techniques (although they saw that some of their relations
matched with the ones that come from these techniques). They demanded another symmetry to
be satisfied by the integral expression ofA(1, . . . ,M): the superdiffeomorphism invariance on the
string world-sheet. In fact they work with an integral expression for the amplitude which is not
exactly the same as we wrote in (2.2), where we have already admittedx1, xM−1 andxM to be fixed
(and not integrated) and also where we had fixedθM−1 = θM = 0. Their important result consists
in the fact that they find a basis containing 6α ′ dependent factors (instead of the 15 dimensional
basis that we found). The test that supports their result consists in the fact that the linear system of
equations that they find contains a lot more equations than unknowns (and still it is consistent).
Although all the authors of [18] give the first terms of theα ′ expansions of the 6 factors, they do
not make any confirmaton between their expression and the 6-point amplitude that comes from
the D = 10 low energy effective lagrangian (2.4). It would have been nice if they had checked
the known terms up toO(α ′3) order (that have already been checked by S-matrix calculations and
other methods) and, moreover, they had confirmed theO(α ′4) terms obtained in [19].
Anyway, the fact of their basis being 6-dimensional, motivated us to find the linear relations be-
tween theα ′ dependent factors directly by considering the integration by parts and the partial
fractions techniques. The result of our computations agreed with their result: the basis is 6-
dimensional. So, besides finding agreement with the dimension of the basis of theI j ’s space,
we conclude that demanding cyclicity, on-shell gauge invariance and world-sheet parity in the scat-
tering amplitude, it does no longer determine the kinematics completely. In the same way, it is

11
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not guaranteed that the method proposed in [18] will be equivalent to the integration by parts and
partial fractions technique whenN > 6.
Up to this moment we have not obtained an explicit closed form forA(1,2,3,4,5,6) since the ex-
pressions for theI j ’s in terms of the ones in the basis are extremely huge.

4. Final remarks and conclusions

We finish summarizing the main points of this talk:

• There does exist a method to explicitlycompute tree level scattering amplitudes in Open
Superstring Theory, beyond 4-point calculations. The method is based on the ‘integration
by parts’ and ‘partial fraction’ techniques of Integral Calculus, for theα ′ dependent factors
that show up in the subamplitude. Any other method, which demands any kind of symme-
try present in the scattering amplitudes, should lead to equivalent linear relations for those
factors.

• The method has been successfully applied to compute all massless 5-point amplitudes in
Open Superstring Theory (5 boson, 3-boson/2-fermion and 1-boson/4-fermion).

• The N-point case is still an open problem.

• In order to look for some generalization, in the N-point case, it would be good to have a
closed formula for the 6-point amplitude which had been tested to reproduce the effective
lagrangian terms up toO(α ′4) order. There is some work in progress in this direction.

• The kind of results presented in this talk are of importance in:

1. Determining the complete low energy effective lagrangian (at least in the open super-
string sector) in Type I theory.

2. Loop amplitudes: it is quite probable that the same kinematic expressions that already
appear at tree level also show up in higher loop calculations.

3. The low energy effective lagrangian of the Type II theories, since closed string am-
plitudes can be directly obtained from the open ones (by means of the KLT relations
[20]).
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