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In this paper we analyse the vacuum polarization effect associated with the charged massless

scalar field, in the presence of magnetic flux at finite temperature, in the cosmic string background.

We consider a spacetime of an idealized cosmic string which presents a magnetic field confined in

a cylindrical tube of finite radius. Two different situations are taken into account in our analysis:

(i) a homogeneous field inside the tube and (ii) a magnetic field proportional to 1
�
r. In these two

cases, the axis of the infinitely long tube of radius R coincides with the cosmic string. Specifically,

we calculate the effects produced by the temperature in the renormalized vacuum expectation

value of the square of the charged massless scalar field, � φ̂ ��� x � φ̂ � x ��� . Therefore, in order to

realize these analysis, we calculate the Euclidean Green function associated with this field in this

background.
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1. Introduction

Our objective in this paper is to investigate the effect produced by the geometry of the space-
time and a magnetic flux on the vacuum polarization effects associated with a charged massless
scalar field, at finite temperature.

Apart the thermal effect, the complete analysis about the behavior of a quantum charged field
in the neighborhood of an Abelian vortice, must take into account the influence of the geometry and
the magnetic field produced by this object. In this way, two distinct cases can be analysed: i � In the
first one, the vortice is considered as being a thin linear topological defect, having a magnetic filed
running along it. This case can be treated analytically. ii � In the second case, we consider that the
string has the non-zero thickness. Analytically this problem becomes intractable. We shall adopt
here an intermediate approach. We shall use an approximated model, considering the spacetime
produced by the vortice as being of a cosmic string, however having a magnetic field confined into
an infinitely long tube of radius R around it. In this way, some improvement is introduced when
compared with the ideal case. Because the configuration of vortice magnetic field can not expressed
analytically, in attempt to describe the real situation, we shall admit specifics spacial behaviors for
the magnetic field inside the tube. The magnetic field along z direction, can be represented by�
H � r ��� H � r � ẑ. Now, assuming that the field is confined in a finite range in the radial coordinate,
we are particularly interested in the following two models:

i � H � r ��� Φ
απR2 Θ � R � r ��� homogeneous field inside, (1.1)

ii � H � r ��� Φ
2παRr

Θ � R � r ��� field proportional to 1 	 r inside. (1.2)

where R is the radius extent of the tube, Θ is the Heaviside’s function and Φ is the total flux. The
ratio of the flux to the quantum flux Φo, can be expressed by δ � Φ 	 Φ0 � N 
 γ , where N is the
integer part and 0 � γ � 1 �

The analysis of the behavior of the charged massless scalar field in the spacetime of an ide-
alized cosmic string, considering these configurations of magnetics field, has been developed by
Spinelly and Bezerra de Mello in [1, 2] at zero temperature.

Recently, some authors have investigated the effects of temperature on the vacuum polarization
effects in the cosmic string spacetime [3, 4, 5]. The standard procedure to introduce temperature
effects is by calculating the thermal Euclidean Green function. This can be done for an ultrastatic
spacetime1 by knowing of the Green function at zero temperature and applying the Schwinger-De
Witt prescription [6].

Because we already know the Euclidean Green function at zero temperature [1, 2], we shall
adopt this prescription for obtain the thermal Green function.

This paper is organized as follows: In the section 2 we shall calculate the Euclidean thermal
Green function associated with a charged massless scalar field on this system. In the section 3,
using the results obtained in the last section, we shall calculate the thermal renormalized vacuum
expectation value of the square of the charged massless scalar field,  φ̂ � � x � φ̂ � x ��� Ren � . Finally, we
leave for the section 4 our conclusions.

1An ultrastatic spacetime admits a globally defined coordinate system in which the components of the metric tensor
are time independent and the conditions g00 � 1 and g0i � 0 hold
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2. The Euclidean thermal Green function

The Green function associated with the charged massless scalar field at zero temperature, must
obey the following non-homogeneous second-order differential equation

1� � g
Dµ � � � ggµν Dν � G � x � x � � � � δ � 4 � � x � x � � � (2.1)

where Dµ � ∂µ � ieAµ , been Aµ � � 0 � 0 � A � r ��� 0 � .
In order to reproduce the configurations of magnetic fields given by (1.1) and (1.2), we must

write the third component of the vector potential by

A � Φ
2π

a � r � � (2.2)

For the two models considered, we can represent the radial function a � r � by:

a � r � � f � r � Θ � R � r � 
 Θ � r � R ��� (2.3)

with

f � r � �
�

r2 	 R2 � for model (i) and
r 	 R � for model (ii).

(2.4)

On the other hand, we assume in our approach that the spacetime produced by the vortice will
be the idealized cosmic string one, which, in cylindrical coordinate, reads

ds2 � � dt2 
 dr2 
 α2r2dθ 2 
 dz2 � (2.5)

where the parameter α is smaller than unity and codify the presence of a conical two-surface � r� θ � .
For the models 1 and 2, the solutions of the equation (2.1), for points outside the magnetic

flux, i.e., for r � R, are given by [2]:

G j
T 	 0 � x � x � ��� eiN∆θ

8π2αrr � sinhu0

ei∆θ sinh � γu0 	 α � 
 sinh � � 1 � γ � u0 	 α �
cosh � u0 	 α � � cos∆θ


 1
4π2α 
 ∞

0
dωωJ0 � ω � � ∆τ � 2 
 � ∆z � 2 ��

∞

∑
n 	�� ∞

ein∆θ D j
n � ωR � K � ν � � ωr � K � ν � � ωr � ��� j � 1 � 2 � (2.6)

where ν � � n � δ ��	 α ,

cosh uo � r2 
 r � 2 
 � ∆τ � 2 
 � ∆z � 2
2rr � (2.7)

and

D j
n � ωR � �

H �j � R � I � ν � � ωR � � H j � R � I �� ν � � ωR �
H j � R � K �� ν � � ωR � � H �j � R � K � ν � � ωR � � (2.8)

In the above equations the functions H j � r � are given by:

H1 � r � �
1
r

Mσ1 � λ1 � δ
αR2 r2 � � (2.9)
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with σ1 � � n
α � ω2R2α

2δ ��	 2 and λ1 � n 	 2α , and

H2 � r � �
1�
r

Mσ2 � λ2
� ζ r � � (2.10)

with σ2 � nδ
α � δ 2 � ω2R2α2 � � 1 � 2, λ2 � n 	 α and ζ � 2

Rα � δ 2 
 ω2R2α2 � 1 � 2. Moreover, Mσ � λ is the
Whittaker function, while I � ν � e K � ν � are the modified Bessel functions [7].

Supported by previous analysis, we can determine the thermal Green function, GT � x � x � � . Fol-
lowing the Schwinger-De Witt prescription. This function is

GT � x � x � � � ∞

∑
l 	�� ∞

G∞ � x � x � � lλβ ��� (2.11)

where λ � � 1 � 0 � 0 � 0 � is a Euclidean unitary time-like vector and β � 1 	 kBT , being kB the Boltz-
mann constant and T the absolute temperature.

In agreement with the equations (2.6) and (2.11), the thermal Green functions associated with
the massless scalar field, in the cosmic string spacetime and in the presence of magnetics field
described by models 1 and 2, are given by:

G j
T � x � x � ��� eiN∆θ

8π2αrr � ∑l 	 0

ei∆θ sinh � γul 	 α � 
 sinh � � 1 � γ � ul 	 α �
sinhul

�
cosh � ul 	 α � � cos∆θ �


 1
4π2α ∑

l 	 0 
 ∞

0
dωωJ0 � ω � � ∆τ 
 lβ � 2 
 � ∆z � 2 ��

∞

∑
n 	�� ∞

ein∆θ D j
n � ωR � K � ν � � ωr � K � ν � � ωr � ��� j � 1 � 2 � (2.12)

being

coshul �
r2 
 r � 2 
 � ∆τ 
 lβ � 2 
 � ∆z � 2

2rr � � (2.13)

3. The Computation of � φ̂ ��� x � φ̂ � x �	� Ren 
 at Non-zero Temperature

The main objective of this paper is to investigate the effects produced by the temperature
in the renormalized vacuum expectation value of the square of the charged massless scalar field,
 φ̂ � � x � φ̂ � x ��� on this spacetime. In order to do this, we shall take the coincidence limit of the
respective Green function. However, this result is divergent. In order to obtain a finite and well
defined result, we must apply some renormalization procedure. Here we shall adopt the point-
splitting renormalization one. It has been observed that the singular behavior of the Green function
has the same structure as given by the Hadamard one, which on the other hand can be written
in terms of the square of the geodesic distance between two points. So, here we shall adopt the
following prescription: we subtract from the Green function the Hadamard one before applying the
coincidence limit as shown below:

 φ̂ � � x � φ̂ � x ��� T � Ren � � lim
x � � x

�
G j

T � x � x � � � GH � x � x � ��
�  φ̂ � � x � φ̂ � x ��� T � Reg � 
  φ̂ � � x � φ̂ � x ��� CT 	 0 
  φ̂ � � x � φ̂ � x ��� CT � (3.1)
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The first term on the right side of the above expression, represents the thermal contribution
coming from the interaction between charged massless scalar field with a magnetic flux considered
as a flux line running along the cosmic string. Fortunately this expression has been obtained by
Guimarães in [5], and is given by

 φ̂ � � x � φ̂ � x ��� T � Reg � �
1

12β

 1

16π2αr 
 ∞

0

coth � 2π
β r cosh u 	 2 �

cosh u 	 2 F � γ �α � u � 0 � � (3.2)

where

F � γ �α � u � 0 � � � 2
sin � πγ 	 α � cos � u � 1 � γ � 	 α � 
 sin � u � 1 � γ � 	 α � cos � πγ 	 α �

cosh u 	 α � cosπ 	 α �

The two last terms in (3.1) are corrections on the vacuum polarization due to finite thickness
of the radius of the magnetic tube and non-zero temperature. The term  φ̂ 2 � x ��� CT 	 0, corresponds to
correction only due to finite thickness of the radius of tube, it was given in [1, 2], and reads

 φ̂ 2 � x ��� CT 	 0 � � 12γ
α � 2γ 
 α �

�
wN

j � γ 	 αzN
j

wN
j 
 γ 	 αzN

j � � R
r
� 2γ � α

� (3.3)

where

wn
1 � � δ � n

α
� 1 � Mλ1 � λ2

� δ 	 α � 
 � 1 
 2n
α
� Mγ1 � λ1

� δ 	 α � � (3.4)

zn
1 � Mλ1 � λ2

� δ 	 α � � (3.5)

wn
2 � � δ � n

α
� 1

2
� Mλ2 � λ1

� 2δ 	 α � 
 � 1
2

 2n

α
� Mγ2 � λ2

� 2δ 	 α � � (3.6)

and
zn

2 � Mλ2 � λ1
� 2δ 	 α � � (3.7)

being γ1 � � n 
 2α ��	 2α , γ2 � � n 
 α ��	 α and ν � n � N � γ
α � The term  φ̂ � � x � φ̂ � x ��� CT is the new one,

it represents the correction on the expression above due to non-zero temperature. This term can be
expressed by

 φ̂ � � x � φ̂ � x ��� CT � 1
2π2αr2 S j � r � � (3.8)

where

S j � r � �
∞

∑
l 	 1 
 ∞

0
dvvJ0 � vξ l �

∞

∑
n 	�� ∞

D j
n � vR 	 r � K2� ν � � v � � j � 1 � 2 � (3.9)

with ξ � β 	 r.
Unfortunately we cannot provide a closed expression to S j � r � . The best we can do is to present

its behavior as function of r and T numerically. We can shown that the most important contribution
in the n sum above comes from n � N. On other hand we observe that we can change the exact
expressions of the coefficients Dj

n � vR 	 r � by the approximated one. The approximated expressions
for the coefficients, which are obtained when we take R 	 r � 1, are given by [2]

D j
n � vR 	 r � � � 2

Γ ��� ν � 
 1 � Γ ��� ν � � � wn
i ��� ν � zn

i

wn
i 
�� ν � zn

i

� � vR
2r
� 2 � ν �

� (3.10)
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Consequently the sums S j � r � becomes

S j � r � � � 2
Γ � γ 	 α 
 1 � Γ � γ 	 α � � wn

i � γ 	 αzn
i

wn
i 
 γ 	 αzn

i

� � R
2r
� 2γ � α �

∞

∑
l 	 1 
 ∞

0
dvv1 � 2γ � α J0 � vξ l � K2� γ � α � � v ��� (3.11)

Even considering the approximated expression to the coefficient Dj
n � vR 	 r � , we can not obtain

an analytical expression for the sum SJ � r � . However, through a numerical analysis we can deter-
mine dependence of this sums depend with the temperature. Considering R 	 r � 10 � 3, γ � 0 � 2 and
α � 0 � 99, we have that the behaviors of the sums S j � r � , for high temperature, are given by figure
bellow.

Figure 1: Dependence of the sum S j with ξ � β
�
r, for the models 1 and 2.

In this case the dependence of S j with ξ is

S j � r � �
a j

ξ b � a j � r
β
� b

� j � 1 � 2 � (3.12)

For the first model we found:

a1 � 0 � 02465
�

0 � 0003 � (3.13)

while for the second model we found

a2 � 0 � 02231
�

0 � 0003 � (3.14)

For both models the value for the exponent b are equal and reads:

b � 0 � 99255
�

0 � 00325 � (3.15)
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In the high-temperature regime � β � 0 � , the expression (3.2) becomes [5]

 φ̂ � � x � φ̂ � x ��� T � Reg � � 1
12β 2 


M � γ �
β r

� (3.16)

where the constant M � γ � is defined by

M � γ � � 1
16π2α 
 ∞

0

F � γ �α � u � 0 �
cosh � u 	 2 � �

Hence, the expression for renormalized vacuum expectation value of the square of the charged
massless scalar field, in the high-temperature limit, is given by

 φ̂ � � x � φ̂ � x ��� T � Ren � � 1
12β 2 


M � γ �
β r


 a j

2π2α
1

r2 � bβ b � (3.17)

Considering γ � 0 � 2 and α � 0 � 99, we have that M � γ � � � 0 � 0129973.

4. Concluding remarks

In this paper we have analysed the thermal effects on the renormalized vacuum expectation
value of a charged massless scalar field,  φ̂ � � x � φ̂ � x ��� , in the cosmic string spacetime considering
the presence of a magnetic flux of finite radius. Two specific configurations of magnetic flux have
been considered. For both we can express the vacuum polarization as

 φ̂ � � x � φ̂ � x ��� T � Ren � �  φ̂ � � x � φ̂ � x ��� T � Reg � 
  φ̂ � � x � φ̂ � x ��� CT 	 0 
  φ̂ � � x � φ̂ � x ��� CT � (4.1)

where the first term on the right hand side represents the thermal contribution coming from the
idealized magnetic flux running along the cosmic string. This contribution has been exactly cal-
culated by Guimarães in [5]. The second term is the zero temperature contribution on the vacuum
polarization due to the non vanishing radius of the magnetic flux tube. This contribution has been
analysed in [2]. The third contribution is the new one. It comes from the combination of the non
vanishing radius of the magnetic flux tube and non zero temperature. It goes to zero for R � 0
and for T � 0. Unfortunately this new contribution cannot be expressed in terms of any analytical
function. So, for both configuration of magnetic flux, we observed numerically that in the high
temperature regime, the thermal contributions due to them present a dependence on the parameter
ξ � β 	 r approximately given by 1 	 ξ . This means that these contributions are subdominant in the
high temperature regime.
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