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1. Introduction

Homotopy groups play a very important role when applied in topological systems. They lead
us to a kind of solution - the so-called topological defect of the theory. In the case of abelian gauge
systems with Chern-Simons-Maxwell-Higgs terms the nontrivial homotopy group is the fundamen-
tal one. Vortices solutions are related with gauge theory by a Higgs field, orto be more precise by
a spontaneous symmetry breaking (SSB) mechanism. Besides, when the lagrangian shows SSB
and the ground state of a scalar field (vacuum value) is different of zero and the fundamental group
is nontrivial we have vortices solutions. This is the case in question. In such abelian system we
obtain self-dual vortices equations. For this purpose we first introduce, in the second section, the
principal ideas of the model. In the third section we find the self-dual equations and then solve the
system in an weak field approximation for the regimer → 0.

2. The Model

Following the work of Choonkyu Lee et al [1], we start with a lagrangian density defined in a
(2+1) dimensional flat spacetime given by

L = −1
4

FµνFµν +
1
4

µεµνρFµνAρ

+ |Dµφ |2 +
1
2
(∂µN)2 − V(φ ,N) , (2.1)

whereDµ = ∂µ − ieAµ , φ is a scalar complex field andN a neutral scalar field. Clearly, the system
is aU(1) gauge theory. The potential of model is

V(φ ,N) =
1
2
(e|φ |2 + µN−ea2)2 + e2N2|φ |2 . (2.2)

When the symmetry is broken there appears two degenerate states in the energy ground state.
However, the most important case, in the sense of topological solutions, shows up when

|φ |2min = a2−N(1+ µ/e). (2.3)

In the ground state, the system is not invariant byU(1) action, and the first homotopy group
is1

π1(U(1)/I) = Z. (2.4)

If we look for self-dual equations first we need to write down the energyfunctional related to
the lagrangian given by eq.(2.1), so

ε =
∫

d2x

(

1
2

F2
i0 +

1
2

F2
12+ |D0φ |2 + |Dφ |2 +

1
2
(∂0N)2 +

1
2
(∂iN)2 +V

)

. (2.5)

Here the first and the second terms are the electric and magnetic field contributions, respectively,
and the intermediary terms are the Higgs scalar field contribution besides, of course, the neutral
field and the potential2. The next section is dedicated to obtain the self-dual equations.

1The complete proof is in the appendix.
2Note that there’s no contribution from Chern-Simons term. In fact, this term has no dynamics and do not depend

on the metric. The energy-momentum tensor of1
4µεµνρ Fµν Aρ is zero.
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3. Bogomol’nyi’s Equations

Is well known that this kind of system [6] have the minimum of energy proportional to the
magnetic flux (Θ in our notation). So, working out equation(2.5) one finds

ε = ea2|Θ|+
∫

d2x

(

1
2

F2
i0 +

1
2

F2
12

+ |D0φ |2 + |(D1 + iD2)φ |2

± eF12|φ |2 +
1
2
(∂0N)2 +

1
2
(∂iN)2

+
1
2
(e|φ |2 + µN−ea2)2

+ e2N2|φ |2∓ea2F12

)

. (3.1)

Where we made use of a “key equation"

|Dφ |2 = |(D1± iD2)φ |2±eB|φ |2 ± ε i j ∂iJj , (3.2)

without considering the superficial term and writing down explicitly the potential. The Gauss
law is given by

−∂iF0i + µF12−eJ0 = 0, (3.3)

with

J0 = −i[φ ∗(D0φ)− (D0φ)∗φ ]. (3.4)

We want to write the equation(3.1) like a sum of squares. To do it we first note that

1
2
(Fi0±∂iN)2 =

1
2

F2
i0±Fi0∂i +N

1
2
(∂iN)2, (3.5)

1
2
[F12± (e|φ |2µN−ea2)]2 =

1
2

F2
12±F12(e|φ |2µN−ea2)

× 1
2
(e|φ |2 + µN−ea2)2 (3.6)

and

|D0φ ∓ ieφN|2 = |D0φ |2 +e2N2|φ |2∓eNJ0. (3.7)

With this equations and taking into account the constraint imposed by the Gausslaw we have

ε = ea2|Θ|+
∫

d2x

(

1
2
(Fi0±∂iN)2

+
1
2
[F12± (e2|φ |2 + µN−ea2)]2

+ |D0φ ∓ ieφN|2 + |(D1± iD2)φ |2 +
1
2
(∂0N)2

)

. (3.8)
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Now we are able to write the self-dual equations. To this purpose let’s firstset∂0N = 0 (static
configuration). We have the minimum energy for the system (ε = ea2|Θ|) when

Fi0±∂iN = 0, (3.9)

F12± (e2|φ |2 + µN−ea2) = 0, (3.10)

D0φ ∓ ieφN = 0 (3.11)

and

(D1± iD2)φ = 0. (3.12)

As we are interested in the static configurations of the fields, we can to reduce the above
equations to

eAi ∓ εi j ∂ j ln|φ | = 0, (3.13)

−∇2N+(µ2 +2e2|φ |2)N − eµ(a2−|φ |2) = 0 (3.14)

and
−∇2ln|φ |2 +2e(e|φ |2 + µN−ea2) = 0 . (3.15)

At this point we can search for solutions. We shall work in a special configuration of fields
called rotationally symmetric, given by the following ansatz

φ = g(r)exp(inθ) (3.16)

and

eAi = ±εi j r̂ j

r

(

g
′

g
−n

)

, (3.17)

wheren is a nonnegative integer and prime meansdg/dr. Our expectation is that the fields
are well defined whenr → 0 and, whenr → ∞ we expectg→ a andN → 0, since this boundary
conditions gives rise to finite energy solutions.

To solve completely the equations(3.14) and(3.15), together with the ansatz we would need
numerical analysis. However, as it was mentioned before we shall use a very convenient approx-
imation. First, let’s defineg(r) = exp(y(r)) and then pick up only the first (linear) term in the
equation(3.15) and after chose, without lost of essential generality, the vacuum field value equal
to one. Our approximation consists into analyze the system in the limit of weak fields. In practical
terms it means to considerer only linear terms in the expansion of expy(r) andN. So, gathering all
these modifications and considerations in the self-dual equations we have

∇2N− (2e2 + µ2)N−2µey= 0 (3.18)

and
∇2y−2e2y−µeN= 0. (3.19)
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A bit of simple algebra led to the following result

y(iv) +
2
r

y
′′′ −

( 1
r2 +K1

)

y
′′
+

1
r

( 1
r2 −K1

)

y
′
+K2y = 0 , (3.20)

whereK1 ≡ 4e2 + µ2 andK2 ≡ 4e4 are constants. Now the equation(3.20) can be integrated out
without computational analysis. The solution is a complicated combination of firstand second kind
modified Bessel equations given by

y(r) = C1Y0(x(r))+C2J0(x
′
(r)) + C3Y0(x

′
(r))+C4J0(x(r)), (3.21)

whereJ(0) andY(0) are the Bessel’s functions (of zero index) of first and secund kind, respectively
and

x(r) =
r
2

√

−2K1−2
√

−4K2 +K2
1 (3.22)

x
′
(r) =

r
2

√

−2K1 +2
√

−4K2 +K2
1 . (3.23)

Let’s see now what it happens whenr → 0. In this range the asymptotic behavior of Bessel’s
functions is

J0(x) ∼ 1 (3.24)

and

Y0(x) ∼
2
π

ln(x). (3.25)

So, our solution becomes

y = C1ln

[

r
2

√

−2K1−2
√

−4K2 +K2
1

]

+C3ln

[

r
2

√

−2K1 +2
√

−4K2 +K2
1

]

+ C2 +C4 , (3.26)

or in terms of scalar field

g =

(

r
2

√

−2K1−2
√

−4K2 +K2
1

)C1

×
(

r
2

√

−2K12
√

−4K2 +K2
1

)C3

× exp(C2 +C4). (3.27)

Adjusting the integration constants (C1 = C3 = 2) we have a interesting situation

g(r) = 4e4exp(C2 +C4)r
4. (3.28)

So, the scalar field increases withr4 showing up a good behavior (comparing figures 1 and 2).
Unfortunately whenr → ∞ the fieldg goes to zero with a factor 1/

√
r and it does not saturate to

the vacuum value. Then, our approximation fails in this sector.
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Figure 1: Grafic ofg(r) in the ranger → 0, showing up a desirable behavior.

4. Final Remarks

The model we considered is the simplest case with Chern-Simons and Maxwellterms together
in the lagrangian. A little more complicated model can be find in [1]. The main difference is the
presence of another scalar field. However the system worked here gives a good example of planar
vortices in abelian gauge theories. Our method of solving the Bogomol’nyi’s equations is, again,
based upon on a trick to linearize fields equations in an weak field approximation and, then, adjust
the integration constants to obtain physical solutions.

The calculation uses a special kind of configuration called rotationally symmetric. In this
case we obtain a solution given by second kind modified Bessel’s equations. In fact, it’s a direct
consequence of cylindrical symmetry of the system.

To conclude, we call the attention for the fact of that this trick reproduce all solution for a little
bit more simple model with a Chern-Simons-Higgs lagrangian given by

L =
µ
4

εµνρAµFνρ + |Dµφ |2 − V(|φ |). (4.1)

The energy functional is

ε =
∫

d2x[|(D1± iD2)φ |2∓eB|φ |2 + |D0φ |2 +V(|φ |)], (4.2)

without the surface term. Proceeding from similar way to the previous case we have

ε = a2|Θ|+
∫

d2x

(

|D0φ |2

± ie
µ

(|φ |2−a2)φ |2 + |(D1± iD2)φ |2

+ V(|φ |)− e2

µ2 |φ |
2(|φ |2−a2)2

)

, (4.3)

thus the Bogomol’nyi’s equations are

(D1± iD2)φ = 0, (4.4)
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D0φ = ∓ ie
µ

(|φ |2−a2)φ (4.5)

and

V(|φ |) =
e2

µ2 |φ |
2(|φ |2−a2)2. (4.6)

Working once again with rotationally symmetric field configuration and weak approximation
the scalar field assumes the form

g = exp

(

[ln(
r
2
)+α ]I0(r)+

r2

22

+
r4

22.42(1+
1
2
)

r6

22.42.62(1+
1
2

+
1
3
)+ · · ·

)

, (4.7)

whereα is an arbitrary constant andI0(r) is given by

I0(r) = 1+
r2

22 +
r4

22.42 +
r6

22.42.62 + · · · . (4.8)

The behavior of scalar field can be better visualized in the figure 2. Note thetopological
stability whenr → ∞ showing a good behavior.
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Figure 2: Grafic ofg(r) versusr. Note the topological stability.

5. Appendix

Here we will give a proof of the isomorphism between the circleS1 and the additive group of
integersZ (π1(S1) = Z) [8].

Proof.: To each classroom of homotopyα = [a] of closed paths inS1 we will associate the
entiren(a). The degreen(a) depends only on the classroom butα not of the closed waya that we
choose to represent it. Thus we can speak in the degreen(α) of classroomα and get an application
n : π1(S1)→ Z. Since thatn is a homomorphism bijective we have an isomorphism ofπ1(S1) onZ.
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