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We propose a modification of the standard Einstein theory in four dimensions, alternative to Ref.

[2], since it is based on the first order (Einstein-Cartan) approach to General Relativity, whose

gauge structure is explicit. A new topological term is introduced in the sector of coupling with

matter and a Lorentz symmetry breaking is induced through a mechanism proposed in a recent

paper [1]. An effective “planarity" may be observed in the resulting theory which resembles some

aspects of holography. We finally remark some related proposals and open questions which are

being developed and shall be discussed in forthcoming works.
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1. Introduction.

As mentioned in the abstract, this work consists partly, in the natural application to gravity
of some ideas about an effective dimensional reduction in theories with a Chern Simons term in
four dimensions, which clearly break Lorentz symmetry [1]. However, we further point out a novel
suggestion about the possibility of quantizing four-dimensional gravity via a perturbative expansion
around Chern-Simons theories in 2+1-dimensional hypersurfaces based on recent perspectives [3]
which, in a certain sense, are related to the idea of holography.

A few years ago, a modification of Maxwell’s electromagnetism in four dimensions has been
proposed which considers a kind of Chern-Simons term in the action,

∫
dx4Vα εαβ µνAβ Fµν , where

Lorentz symmetry is explicitly broken by an external vector,Vµ [6]. There is a growing literature
considering this proposal seriously, and exploring the possible origin and consequences [8, 9, 10]
of this approach.

In a recent work [1], we emphasized that broken Lorentz symmetry (abbreviated as BLS)
could be obtained from physically realistic background configurations in non-linear relativistically
invariant Electrodynamics. It was also pointed out that standard Chern-Simons terms (in 2+ 1-
dimensions [?]) areautomatically presentin a BLS action when we search for planar features (thus
turning dimensional reduction unnecessary). In fact, the BLS action is actually a CS theory in(2+
1)-dimensions embedded in(3+1)-dimensions, and by itself, it does not encode any information
on the field-dependence in the direction of the external (for instance, space-like) vectorV: if z is
its affine parameter, i.e.V = ∂

∂z, then we get a foliation of the spacetime in(2+1)-hypersurfaces
Σz parametrized byz (andV is orthogonal to each hypersurface1). Therefore, the BLS action may
be written as

SBLS=
∫ L

0
dzSCS[A(z),Σz], (1.1)

where

SCS[A(z),Σz] =
∫

Σz

LCS=
∫

Σz

A(z)∧dA(z) , (1.2)

is the Chern-Simons action for the 1-form gauge fieldA(z) on a three-dimensional manifoldΣz.
Thus, the dependence of this field on the parameterz is not determined by this theory. It only has to
satisfy usual convergence conditions. For example, if the interval(0,L) extends to(−∞,+∞), A(z)
has to be an square-integrable function (A∈ L2(ℜ)). In this sense, we can interpret the BLS action
simply as a sum of Chern-Simons theories on manifoldsΣz. Remarkably notice that this describes
an eventual situation of confinement of the electromagnetic field (photon) into a(2+1)-manifold,
which does not result from a constraint of the charged matter into a planar sample. The present
work actually constitutes an attempt of naturally extending to gravity some of these ideas.

There is an additional (actually, the main one) theoretical motivation for our construction. Re-
cently, a Chern Simons modification of gravity in four dimensions via a BLS term was introduced
by Jackiw and Pi [2] in a similar way as that for Electrodynamics. However, this approach is
based on the second order formulation of general relativity, where the most relevant aspects of the
Maxwell theory, related to the gauge structure, are hidden. In this work, we alternatively formulate

1Notice that if the space-time (or the space-time region considered in the integration) is simply connected, the
condition of existence of thisz-coordinate isequivalentto gauge invariance of the action, namelydV = 0.
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a BLS/CS deformation of standard gravity but now based on first order Cartan’s formalism (see
Appendix), which treats the Riemann Tensor as an standard gauge curvature for the spin connec-
tion which may be viewed as a gauge variable ofSO(1,3). Thus, such an approach is closer in
spirit to the Chern-Simons deformation of Electrodynamics [6].

The model we are going to build up here assumes a non-linear (butrelativistic) Geometro-
dynamics which induces a modification of this kind (BLS) on the standard Einstein theory [2][7].
Furthermore, it is argued that BLS does not need to be introducedby hand, but it can naturally ap-
pear in some realistic physical situations, according to the philosophy adopted for Electrodynamics
[1](and consequently, a CS term will be induced on a family of embedded hypersurfaces). For
example, in the presence of background gravitational fields and/or when non-uniform distributions
of matter are considered .

Finally, we point out here an interesting novel possibility (which is, perhaps, our main observa-
tion), associated with the behavior of the theory in a sort of strong coupling limit, which resembles
holography, since the free Fock space could be built from three dimensional theories of gravity, and
the full Geometrodynamics would be recovered perturbatively about these states.

The idea of treating general relativistic theories with a perturbative expansion around a topo-
logical theory has been recently put forward in the quantum gravity literature [3] (and its viability
was later investigated in the context of conventional Yang–Mills theory on flat spacetime [4]). This
idea is based on the fact that GR can be written as a modified topological BF theory. So, the
proposal of [3] is to construct quantum gravity through a perturbative expansion around the exact
topological BF theory. So we wish to give a step further in this direction by suggesting that this
topological theory could be an ordinary 2+ 1-dimensional Chern-Simons theory. Thus, in prin-
ciple, by considering CS modified General Relativity and a proper BLS background, we could
recover the bulk quantum gravity perturbatively. In such a sense, we could recognize a sort of
“holographic" structure in this perturbation scheme.

Below, we shall briefly comment the lines along which such ideas could be implemented in
practice.

2. Chern-Simons modified gravity and discussion

We use both the abstract index notation2 (see Appendix for more details), and forms notation
(by omiting abstract sub-indices) whenever it is convenient. So, greek indicesµ,ν , ... 3 denote the
element of a tetrad (vierbein) basis(ea)µ , and consequently components of any tensor in this basis.

Let us propose a Chern Simons modification of General Relativity (GR) in the first order
formalism (see Apendix):

S[e,w,φ ] =
1

2κ2

∫
M

dx4(
eµ ∧eν ∧ ∗Rµν + τ R∧R

)
+Smatter[φ ] (2.1)

where the two formR= dwµ

ν + wµ

α ∧wα
ν is defined as theSO(1,3)-field strength for the gauge

field wµ

a ν . The scalarτ is, in principle, a pointwise function of the geometry observables, as the

2Abstract index notation is a mathematical notation for tensors and spinors, which uses indices to indicate their
type. Thus the index isn’t related to any basis or coordinate sytem.

3Which are rised and lowered with the Minkowski metricηµν .
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curvature tensor, and of some "extra" (matter) field, denoted byφ . So, the embedding variable is
considered itself as a dynamical variable rather than a fixed external quantity.

Notice then that Lorentz symmetry is preserved in a fundamental sense. If one assumes that
a more fundamental unified theory of matter and gravity is non-linear, a saddle point expansion
about background solutions typically shall give origin to a BLS term (and even spontaneous BLS
terms) with a fixedτ of this form. This may be easily argued for sufficiently generic non linear
(toy) theories, in similar ways than that for Electrodynamics (see Ref. [1]).

The first term corresponds to the usual Einstein-Hilbert action in the first order representation
(Einstein-Cartan), the second one is the Chern-Simons modification, where we have assumed that
the coefficientτ may depend on the curvature components and/or other (matter) fields. In such a
sense, this term should be viewed as an interaction term. This may be expressed as

SBLS=−2
∫

M
dx4(dτ ∧LCS) (2.2)

where
Ka ≡ (∗LCS)a ≡ ε

abcdwµ

b ν
Rν

cd µ (2.3)

is the Chern Simons current density whose divergence is the topological number called the grav-
itational Pontryagin density,P≡ 1

2
∗RR≡ 1

2(εabcdRν
ab µ

Rµ

cd ν
). Notice remarkably that the matter

fields are coupled to the geometry through the topological term.
For simplicity, let us restrict ourselves to the case whenτ does not depend on the geometric

variablesea
µ ,wµ

a ν ; so, varying this action with respect toeµ
a , we have:

ea
µRµν

ab = κ
2T ′ν

b = κ
2 eν a T ′

ab (2.4)

where one has definedT ′
ab := Tab+ gab(Tcdgcd)/2, Tab being the energy momentum tensor, and

the constantκ is related to the gravitation constant,G, by κ2 = 8πG. Varying now this action with
respect towµ

a ν

d∧eµ +wµ

ν ∧eν = Θµ (2.5)

which are the usual Einstein Cartan equations for the geometry but with an effective torsion which
depends on the external field in the form:

Θµ = 2κ
2 ∗(dτ ∧Rµν ∧eν) (2.6)

If we solve first for the spin coefficientswµ

a ν in terms ofeν
a and∇aτ in Eq. (2.5) and replace into

(2.4), we recover the modified Einstein equation for the tetradeν
a (or, equivalently, for the metric

gab) obtained in the Jackiw-Pi approach [2].

We may already point out the main behavior we are interested:

The gradient of the external fieldτ dictates the coupling of the geometric degrees of freedom
with the Chern-Simons 3-form LagrangianLCS = Rµν ∧wµν ≡ R∧w. In fact, this may be ex-
pressed as∇aτ ≡ g2Va ( ⇒ g2 = |dτ|) whereV is a unit vector in the gradient direction. In the
limit g→ 0 the standard torsion-free Einstein theory is recovered and, on the other hand, when
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g→ ∞, the CS term governs the dynamics of the geometry! In fact, notice that ifg is considered
nearly constant and we rescale the spin connection and define the new gauge variableAµν ≡ gwµν

and the field strengthFµν ≡ dAµν +g−1Aµα ∧Aβνηαβ , the action (2.1) may be written as:

SGrav[e,A,φ ] =
∫

M
dx4

(
g−1eµ ∧eν ∧ ∗Fµν −

1
2

V ∧A∧F

)
, (2.7)

where we have used the equivalence of the second term of (2.1) with the Chern-Simons form. Thus,
we can see in this expression that, in this case, the first term is a first order perturbation ing−1 while
the second one, a Chern-Simons action, is considered the free kinetic term (zeroth order).

In this case, by a similar argument as that for Electrodynamics (shown in the Introduction),
the theory becomes a 2+ 1-dimensional topological theory, which is precisely equivalent to 3d-
gravity, is exactly soluble and its quantization is well understood [5] 4. In fact, on each level-
(hyper)surface of the fieldτ(φ(x))), we have a Chern Simons action for the connectionwµν in the
groupSO(1,3), which contains the Lorentz-Poincaré groupISO(1,2) if the dreibeinEµ̂ (µ̂, ν̂ =
0,1,2) , the gauge field associated with translations on those hypersurfaces, is identified withwµ̂,3

and the spin connectionwµ̂ ν̂ is the gauge field associated whithSO(1,2).
Let us remark here an important open question which has to be investigated: could this

strong/weak behavior be interpreted as duality? If the answer is “yes" we might claim anholo-
graphicstructure in the most obvious and direct sense.

The third term of (2.1) encodes the dynamics of the fieldφ but we do not give here any explicit
Lagrangian. However we can notice that in general, the gravitational Pontryagin density constitutes
asourcefor the equation of motion ofφ , i.e:

1
τ ′(φ)

δSmatter[φ ]
δφ

= N (2.8)

where we have assumed thatτ is only a pointwise funtion ofφ .

In particular, if we consider the simplest case, whereτ ≡ φ , andSmatter[φ ] is a Klein-Gordon
field on a curved spacetime:

(∇a∇a−m2)φ = N . (2.9)

Since we should be particularly interested in applying these ideas to the context of solutions
such as black holes, let us discuss some aspects of static spherically symmetric solutions of this
problem. It is clear that, by virtue of the Hamilton equations, static solutions correspond to solu-
tions which are local extrema of the Hamiltonian density and generically, local minima5. So, if
we consider spherical symmetry and assimptotic boundary conditions of flatness of the spacetime,
and vanishing of the fieldφ (whenr → ∞), then the solution of (2.9) is unique and the topological
nature of thecharge Nguarantees that this local minimum isstable.

Let for instance focus on solutions of (2.9) with N = 0. To solve this equation, at least as-
simptotically, we make the following ansatz: the operator∇a∇a coincides with the Klein Gordon
operator on a Schwarzchild spacetime. Then, we expandφ in spherical harmonics and write this

4In such a theory of gravity there are no local degrees of freedom and all solutions are conformally flat.
5A convenient choice of a potential term may be added toSmatter[φ ] in order to ensure this.
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wave equation for each mode in the formr−1 f (r, t)Ylm(θ ,β ); but the solution we are interested
(with l = 0 and independent oft) satisfies:

− ∂ 2φ

∂ r2
∗

+ (1− 2M/r)(2M/r3 + m2)φ = 0 (2.10)

where the coordinater∗ ≡ r +2M ln(r/2M − 1) has been defined. The second term of this equation
may be seen as an effective potential.M is the mass of the black hole which is independent of
m since the energy-momentum tensor in Eq. (2.4), may have other contribution apart fromφ
(which contributes to the torsion), and it shall be supposed to be large enough (i.eM >> m) to
precisely ensure consistency with equation (2.10). So, straightforwardly we get that, forr∗ → ∞
(i.e r →∞), the radial derivative isnegligiblewhich means, by virtue of equation (2.5), that the BLS
contribution is also negligible. Consequently, we have standard Einstein-Cartan equations, which
finally yield the Schwarzchild solution, which proves the consistency with our inicial ansatz. This
is an example of how a spherically symmetricsoliton-likesolution may be found in this context,
that can be taken as a suitable vacuum for building up a probably more convenient quantization
scheme.

Recall that there is no reason for taking this type of linear action forφ and other theories
with interesting properties could be considered in order to obtain the desired behavior. From the
point of view of this “holographic" quantization discussed above, the most interesting possibilities
that we want to consider are those actions forφ such that the radial derivative decreases withr
with appropriate rapidity in order to have a well defined perturbative framework (i.e in order to
have properties such as adiabaticity). Notice that in this case (with spherical symmmetry) thetwo-
dimensionalsurfaces where the Chern-Simons theories live are spheresS2

r . So, asr is smaller, the
CS theory is more important in the general dynamics. In a forthcoming work, we are going to
analyze these theories and solutions and explore this possibility of quantization in more detail.

Finally, another open question to be analyzed elsewhere is if theN-vacua are related, at least
assimptotically (via the Chern-Simons modification), to deformations of the Schwarzchild solution,
such as Kerr or Reissner-Nordstrom metrics.

3. Apendix: The Abstract index Notation and Einstein-Cartan formalism

In this work, we shall use the abstract index notation [11]; namely, a tensor of type(n,m) shall
be denoted byTa1.....an

b1.....bm
, where the latin index stand for the numbers and types of variables on which

the tensor acts and not as the components themselves on a certain basis. Then, this is an object
having a basis-independent meaning. In contrast, greek letters label the components, for example
Tµν

α denotes a basis component of the tensorTab
c . We start off with the Cartan’s formalism of GR.

We introduce [11] an orthonormal basis of smooth vector fields(eµ)a, satisfying

(eµ)a(eν)a = ηµν , (3.1)

whereηµν = diag(−1,1,1,1). In general,(eµ)a is referred to asvielbein. The metric tensor is
expressed as

gab = (eµ)a(eν)bηµν . (3.2)

6
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>From now on, component indicesµ,ν , .. will be raised and lowered using the flat metricηµν and
the the abstract ones,a,b,c... with space-time metricgab.

Now we define theRicci rotation coefficients, or spin-connection,

(wµν)a = (eµ)b∇a(eν)b , (3.3)

wherewaµν is antisymmetric what, together with (3.1), is equivalent to the compatibility condition

∇agbc = 0 . (3.4)

From (3.3), we have

∇a eµ

b =−wµν
a eν b , (3.5)

whose antisymmetric part is (by adopting the convention of anti- symmetrization:(...)[ab] =((...)ab−
(...)ba)/2),

∇[a eµ

b] =−wµν

[a eα

b]ηνα . (3.6)

In the original Einstein formulation of GR, the connection is assumed to be torsion-free. This
is expressed by:

∂[a eµ

b] =−wµν

[aeα

b]ηνα . (3.7)

The components of the Riemman’s tensor in this orthonormal basis are given as follows

R µν

ab := 2∂[awµν

b] +2wµρ

[awσν

b]ηρσ . (3.8)

Equations (3.7) and (3.8) are thestructure equationsof GR in Cartan’s framework.

Einstein’s equation in this framework reads

e a
µ R µν

ab = κ
2 eν a T ′

ab, (3.9)

where one has definedT ′
ab := Tab+ gab(Tcdgcd)/2, Tab being the energy momentum tensor, and

the constantκ is related to the gravitation constant,G, by κ2 = 8πG.

Equations (3.5) and (3.9) are a system of coupled first-order non-linear equations for the vari-
ables(e,w) which determine6 the dynamics of GR. Metric and covariant derivative result finally
defined in terms of these variables as seen from (3.2) and (3.5).

This yields the so-called “Einstein-Cartan formalism"; we obtain, thereby, a first order Einstein-
Hilbert action which can be expressed as

S=
1

2κ2

∫
dxD e R µν

ab e a
µ e b

ν , (3.10)

wheree= (−detg)1/2 = det(eµ
a). If we wish to consider a non-vanishing cosmological constant,

Λ, R µν

ab must be replaced by

R µν

ab +Λe[µ
aeν ]

b. (3.11)

6Together with the antisymmetry condition forwa.
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