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The present work investigates the electrostatic and magnetostatic fields generated by a point-
like electrical charge at rest in an inertial frame, under the classical Abelian Born-Infeld non-
linear electrodynamic. Satisfying the standard Maxwell equations, without Anzätze and with
a few constraints, general analytical solutions were found for fields with radial (r) and polar
angle (θ) dependence, breaking the radial symmetry of the problem. Apparently, non-linearity
is responsible for the emergence of that anomalous magnetostatic field and, at a first glance, its
interpretation suggests a connection with the field generated by an intrinsic magnetic dipole. In
situations where b (an important parameter of the theory that represents the upper limit of the
field strength) is free to become infinite, Maxwell regime takes over, indicating that the magnetic
sector vanishes and the electric field assumes its usual Coulomb-type behavior. Our results could
be of interest in connection with string theory.
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1. INTRODUCTION

Many people tried to develop theories that could describe point-like charged elementary parti-
cles. The idea was to modify and generalize Maxwell’s theory to describe strong fields and to avoid
singularity at the charge. Since Coulomb’s law it was clear that the electric forces become infinite
for point-like particle representation. The Mie’s [1] theory avoids this difficulty and introduces
the concept of a maximal field strength, but breaks the Lorentz invariance and the magnetic field
contribution was absent. The model could be considered as the most successful one at the time its
publication. He considered that Maxwell’s Electrodynamics should be a linear regime of a certain
non-linear theory, for weak fields and far away from the source that could be true and the particle
could be considered point-like. But for small distances, the non-linear effects become dominant
and the extended nature of the objects must be taken into account. Born and Infeld [2] gave the
first step in towards the construction of this nonlinear Electrodynamics. Introduced in 1934, its
Lagrangian is one of the general non-derivative among others. It depends only on the two algebric
Maxwell invariants and preserves the gauge symmetry. Maybe, it is the most significant nonlinear
theory of Classical Electrodynamics. In B-I theory, the self-energy of a point-like charge is also
finite. It reduces to Maxwell Lagrangian for small field strengths and, like in Mie’s theory, allows
an upper bound value for the electric field. The advent of Dirac’s description for the electron and
the birth of QED in the forties caused the forgetfulness of B-I theory. Nowadays there is a new
interest due to connections with string theory [3, 4, 5, 6]. It turns out that some objects in this
theory, called D-branes, are described by a kind of nonlinear B-I action, but interest has also been
enhanced by its compact and elegant form. The B-I parameter, b, has a connection with the criti-
cal electric field of the string theory (Ecrit = 1/2πα ≡ b). In the present work, Born-Infeld (B-I)
non-polynomial Lagrangian has been employed to investigate the classical fields electrostatic and
magnetostatic generated by a point-like electric charge at rest in an inertial frame. As it is known
the classical Born-Infeld’s theory is built up by means of two vectors: the electric field and the
magnetic induction, both fundamental fields of the Maxwell tensor. Maxwell linear Electrodynam-
ics excludes the existence of a magnetic sector from a pure electric charge at rest. There no room
to accommodate it. But, things work different for a nonlinear theory, in particular for one like B-I
electrodynamics. What can it say about magnetic sector? Are there such stable, well-behaved and
physically acceptable solution? In other words: is it possible that an electric charge at rest produces
something more than electric field? In order to search for non-trivial solutions, the magnetic sector
has not been assumed to be zero. The main motivation is to evaluate the non-linearity effects on
possible field configurations. The problem here studied presents radial symmetry but the solution
founded breaks it. The solutions is analytical and no Anzätze was evocated.

2. CLASSICAL BORN-INFELD EQUATIONS IN MINKOVSKI SPACE-TIME

The B-I non-linear Electrodynamics action proposed in 1934 is given as follows:

S =
∫

d4xb2

[
√
−g−

√
−det

(
gµν +

fµν

b2

)]
(2.1)
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The parameter b, like the speed of light in relativity theory, is the maximum field strength
allowed by the theory and has a large estimated value (about 1015 esu). Setting its value to infinite,
leads to Maxwell’s linear Electrodynamics. This means that there is no limit to the field strength
in linear electrodynamics. g is the determinant of metric tensor gµν and fµν is the Maxwell elec-
tromagnetic tensor given by fµν = ∂µAν −∂νAµ . Enclosed in the action integral is the Born-Infeld
Lagrangian density. Open string theory loop calculations lead to this Lagrangian with b−1 = 2πα ,
where α is the inverse of the string tension. From the string theory point of view, the source has
a natural interpretation as being associated with a string ending on a three-brane. In flat space the
metric tensor gµν reduces to ηµν with (+1,-1,-1,-1) signature and the Greek indices run over 0, 1, 2
and 3. Evaluating the determinants of eq. 2.1 the Lagrangian density, in Minkovski spacetime, can
be written in terms of the two invariants, fµν f µν and fµν f̃ µν , with the f̃ µν = 1

2 εµνλρ fλρ being the
dual of f µν .

L = b2


1−

√√√√
1+

fµν f µν

2b2 −

(
fµν f̃ µν

)2

16b4


 (2.2)

The energy-momentum tensor may also be written as

Tµν =
1
R

[
f α
µ fαν +b2

(
R−1−

fσλ f σλ

2b2

)
ηµν

]
(2.3)

As well the canonical second rank tensor

pµν =−
1
2

∂L
∂ fµν

=
1
R


 fµν −

(
fµν f̃ µν

)
f̃ µν

4b2


 (2.4)

with

R =

√√√√
1+

fµν f µν

2b2 −

(
fµν f̃ µν

)2

16b4 (2.5)

Finally the Lagrangian, equation 2.2, take the definitive form below.

L = b2


1−

√√√√
1−

E2−B2

b2 −

(−→E ·−→B
)2

b4


 (2.6)
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In addition, the canonical relations from equation 2.4, give:

−→D =
∂L
∂−→E

=

−→E +

(−→E ·
−→B

b2

)
−→B

√

1− E2−B2

b2 −

(−→E ·
−→B
)2

b4

−→H =−
∂L
∂−→B

=

−→B −
(−→E ·

−→B
b2

)
−→E

√

1− E2−B2

b2 −

(−→E ·
−→B
)2

b4

(2.7)

The interaction with other charged particles is introduced by adding a term jµAµ to the La-
grangian, where jµ is the current and Aµ is the potencial vetor. The equations of motion are the
standard Maxwell equations and the non-linearity is hidden in the canonical relations above. Let’s
recall that for a static point-like charge these electrodynamics are defined by the static Maxwell
field equations.

−→∇ ·−→D = eδ (−→x )
−→∇ ×−→E =

−→0 (2.8)

−→∇ ·−→B = 0
−→∇ ×−→H =

−→0 . (2.9)

The solution for a stationary electric monopole, e, taking −→B =
−→H =

−→0 , is well-known and
identical to the Maxwell solution, singular for electric induction −→D while the fundamental field −→E
remains well-defined at all points, even at r = 0, so that the electric field singularity of the Maxwell
theory disapears. In an elegant paper, Lombardo [7] uses an Schwarzschild line element to describe
an electric monopole and eliminates the discontinuity at r = 0.

−→D =
e
r2 r̂, −→E =

e√
r4 + r4

0

r̂, (2.10)

r0 =

√
e
b
, r̂ =

−→r
r

. (2.11)

The field −→E takes the point-like charge as an effective smooth distribuition given by its diver-
gence,

ρe f f =
−→∇ ·−→E . (2.12)

What kind of fields could the theory provide for a non-zero magnetic sector? If everywhere
regular solutions do exist, then what originates those fields? In order to start to answer such ques-
tions, one must consider each component of the canonical equations at a time. One assumes that
the magnetic sector has only radial and polar components and that each component is a function of
the radial distance from the point-like charge and the polar angle:
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−→H = Hr(r,θ)r̂ +Hθ (r,θ)θ̂ −→B = Br(r,θ)r̂ +Bθ (r,θ)θ̂ (2.13)

The canonical equation 2.7 is written for each component leading to an algebric non-linear
system of equations mixing all electric and magnetic components. The subscripts r and θ mean
radial and polar components of each vector:

Er = Dr
R(

1+ B2
r

b2

) Br = Hr
R(

1− E2
r

b2

) Bθ = Hθ R (2.14)

R =

√(
1−

E2
r

b2

)(
1+

B2
r

b2

)
+

B2
θ

b2 . (2.15)

3. SOLUTION OF THE BORN-INFELD EQUATION

The first option is to evaluate the previous algebraic system of equations 2.14 for the funda-
mental fields and functions of −→D and −→H only. The field is to satisfy

−→∇ ×−→H =
−→0 and the −→B field

must be such that ∇ ·−→B , where Br and Bθ are not simple functions of the components Hr(r,θ) and
Hθ (r,θ). We must impose some approximation otherwise the problem will be impossible to be
solved. In order to seek for a solution, one admits variable separation as the first assumption on the
magnetic sector. The components of −→H and −→B field look like below:

−→H (r,θ) = hr(r)G(θ)r̂ +hθ (r)J(θ)θ̂ −→B (r,θ) = br(r)G(θ)r̂ +bθ (r)J(θ)θ̂ (3.1)

If one replaces in
−→∇ ×−→H =

−→0 → ∂ (rHθ )
∂ r −

∂ (Hr)
∂θ = 0, then we get two differential equations:

1
hr(r)

d (rHθ )

dr
=

1
J(θ)

dG(θ)

dθ
= λ , (3.2)

where λ is a constant. The second assumption establishes that the magnetostatic field components
(Brand Bθ ) must satisfy, at all points, the following constraints Br ¿ b and Bθ ¿ b. This is rea-
sonable, because , like a non-linear effect, cannot be of the same order of b everywhere. Those two
assumptions are needed to assure that variable separation remains also valid everywhere and the
system could be integrable:

Br(r,θ) =
hr(r,θ)√

1− E2

b2

= hr(r,θ)

√
1+

D2

b2 , (3.3)

Bθ (r,θ) = hθ (r,θ)

√
1−

E2

b2 =
hθ (r,θ)√

1+ D2

b2

. (3.4)
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The electric field, equation 2.10, was preserved and remains like in Born-Infeld original theory
as a consequence of the constraints imposed above. Proceeding analogously for −→B ,

−→∇ ·−→B = 0→
1
r2

∂
∂ r

(
r2Br

)
+

1
r sin(θ)

∂
∂θ

(sin(θ)Bθ ) = 0, (3.5)

one gets another pair of equations

sin(θ)G(θ)
d
dr

[
r2hr(r)

√
1+

D2

b2

]
+

rhθ (θ)√
1+ D2

b2

d
dθ

(sin(θ)J (θ)) = 0 (3.6)

To assure, once more, a complete separation of variables the terms involving the polar angle
must satisfy the following differential equation:

1
sin(θ)G(θ)

d
dθ

(sin(θ)J (θ)) = ζ . (3.7)

With the help of equation 3.2 one eliminates J (θ) on equation 3.7 above and one arrives at a
second order differential equation for G(θ).

d
dθ

[
sin(θ)

d
dθ

G(θ)

]
= λζ sin(θ)G(θ) (3.8)

One physical accepatable solution is G(θ) = cos(θ). The other has a complex term. As a
consequence, λζ =−2 and J (θ) =− sin(θ)

λ can be checked by direct substitution. The choices of
λ or ζ have no effect on the radial equation that reduces to

d
dr

[
r2hr (r)

√
1+

D2

b2

]
+

2rhθ (r)√
1+ D2

b2

= 0. (3.9)

Moreover, the components of H may be written as a simple product of functions of one vari-
able.

Hθ (r,θ) = hθ (r)sin(θ) and Hr (r,θ) = hr (r)cos(θ) (3.10)

The simple angular dependence in the solution allows variable separation and the first equation
gives the relation between hr (r) and hθ (r):

6
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hr (r) =−
d
dr

[rhθ (r)] . (3.11)

Finally, an expression can be obtained for hθ (r) when the function hr (r) is substituted in the
previous equation. This is our main diferential equation and the solution will yield the fields we
are trying to get:

d
dr

[√
r4 + r4

0
dΨ(r)

dr

]
−

2r2Ψ(r)√
r4 + r4

0

= 0. (3.12)

Ψ(r) = rhθ (r) (3.13)

The general analytical solution for Ψ(r) is given in terms of associated Legendre functions of
first kind, P(µ,ν ,z), Legendre functions of second kind, Q(µ,ν ,z). When the first two parameter
is integer, one has a polynomial.

Ψ(r) = C1P


1

4
,
1
4
,

√
r4 + r4

0

r2
0


√r +C2Q


1

4
,
1
4
,

√
r4 + r4

0

r2
0


√r (3.14)

The second function in the general solution leads to an imaginary term and the constant C2 is
set to zero. Choosing appropriate boundary conditions, so that C1 is equal to one we arrive to the
following solution.

Ψ(r) = P


1

4
,
1
4
,

√
r4 + r4

0

r2
0


√r (3.15)

We have now the tools to write down the fundamental magnetic field components and the
complete magnetic induction:

bθ (r) =
hθ (r)r2
√

r4 + r4
0

=
rΨ(r)√
r4 + r4

0

, (3.16)

br(r) =
hr (r)

√
r4 + r4

0

r2 =−
d lnΨ(r)

dr

√
r4 + r4

0

r2 , (3.17)

∣∣∣−→B (r,θ)
∣∣∣=
√

(br(r)cos(θ))2 +(br(r)sin(θ))2. (3.18)
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Fig 1 depicts the behavior of magnetic field strength as a function of the distance from the
charge in units of r0. Both are regular at the origin and fall down quickly with the distance. Far
away from the charge it is possible to show that the behavior is r−3 times the angular dependence
for thye magnetic field and is similar to the field produced by a classical magnetic dipole.

Figure 1: Magnetic field as a function of distance of the charge (ro units).

No energy flow out but the Poyting vector has a circulating dipole current in ϕ̂ direction around
the polar axis. Fig 2 ilustrates the bahavior of this current as a function of the distance from the
charge.

Figure 2: Magnetic dipole stationary current as function of distance of the charge (ro units).
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4. DISCUSSIONS AND CONCLUDING REMARKS

In this work, a new solution to the classical Abelian Born-Infeld Electrodynamics is presented
and it has been shown to predict the existence of a real and well-behaved magnetostatic field asso-
ciated with an electric point-like charge at rest in an inertial frame. It is certainly a non-linear effect
that is simply ruled out by Maxwell‘s Electrodynamics. Up to now, B-I non-linear Electrodynamics
has not been experimentally confirmed, but, if it can describe the nature, it may be possible to find
a place that accommodate such anomalous magnetic field. The B-I theory predicts and assures this
field for a standstill electric charge. There is no mathematical or physical contradiction. The present
result does not imply that those fields indeed are real objects. The present work does not require
additional assumptions as well the introduction of a new term in the B-I Lagrangian. The attempt
to describe the electron properties by using only the structure of the field was the main motivation
of Born and Infeld to develop this theory. The nature of the fields that come out rather than resem-
bling Dirac‘s or t’Hooft‘s magnetic monopoles, reminds us a magnet seen through a macroscopic
point of view that exhibits however a more complex structure at a microscopic level. The breaking
of the radial symmetry contributed to the existence of the magnetostatic mathematical solutions.
We must also keep in mind that for distances for which quantum effects prevail over the classical
description. The Compton wavelength λ = h

mc of the electron is about 2.42631058×10−12 m and
we are beyond the limit of the classical validity.
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