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1. Introduction

The exploration of the phase diagram of matter at ultra-high temperature or density is an area
of great interest and activity, both on the experimental and theoretical fronts. Heavy-ion colliders
such as the SPS at CERN and RHIC at Brookhaven have probed the high-temperature region,
creating and studying the properties of quark matter with very high energy density and very low
baryon number density similar to the fluid which filled the universe for the firstmicroseconds after
the big bang. Lattice gauge theory calculations have located the critical temperature and shown
that the quark gluon plasma (QGP) is still strongly coupled at temperatures in heavy ion collisions.
There has also been striking progress in performing lattice calculations in the“not too dense”
region,µ < T, In these proceedings, however, I discuss a different part of the phase diagram, the
low-temperature high-density region whereT ≪ µ. Here there are few experimental constraints,
and the sign problem has blocked lattice QCD calculations. However, as I willexplain, we have
reasons to expect interesting phase structure.

1.1 Review of color superconductivity

QCD is asymptotically free—the interaction becomes weaker as the momentum grows—so at
sufficiently high density and low temperature, there is a Fermi surface of almost free quarks. The
interactions between quarks near the Fermi surface are certainly attractive in some channels (quarks
bind together to form baryons) and it was shown by Bardeen, Cooper,and Schrieffer (BCS) [1] that
if there isanychannel in which the interaction is attractive, then there is a state of lower free energy
than a simple Fermi surface. That state arises from a complicated coherent superposition of pairs
of particles (and holes)—“Cooper pairs”.

We can understand the BCS mechanism in an intuitive way as follows. The Helmholtz free
energy isF = E−µN, whereE is the total energy of the system,µ is the chemical potential, and
N is the number of fermions. The Fermi surface is defined by a Fermi energyEF = µ, at which
the free energy is minimized, so adding or subtracting a single particle costs zero free energy. Now
switch on a weak attractive interaction. It costs no free energy to add a pair of particles (or holes),
and the attractive interaction between them then lowers the free energy of the system. Many such
pairs will therefore be created in the modes near the Fermi surface, and these pairs, being bosonic,
will form a condensate. The ground state will be a superposition of states with all numbers of pairs,
breaking the fermion number symmetry.

Since pairs of quarks cannot be color singlets, the resulting condensatewill break the local
color symmetrySU(3)color. We call this “color superconductivity” [2]. Note that the quark pairs
play the same role here as the Higgs particle does in the standard model: the color-superconducting
phase can be thought of as the Higgs phase of QCD.

2. The phases of quark matter

Quarks, unlike electrons, have color and flavor as well as spin degrees of freedom, so many
different patterns of pairing are possible. This leads us to expect a richstructure of different color
superconducting phases in quark matter at very high density.
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Figure 1: On the left, the conjectured form of the phase diagram for matter at ultra-high density and temper-
ature. On the right, the result of a calculation using an NJL model [3]. At high density the model has a rich
structure of color-superconducting phases. Note that the gapless phases (“gCFL”, “g2SC” etc) are unstable
(see text).

In the real world there are two light quark flavors, the up (u) and down (d), with masses
. 5 MeV, and a medium-weight flavor, the strange (s) quark, with mass∼ 90 MeV. (Their effective
“constituent” masses in dense matter may be much larger.) The strange quark therefore plays a
crucial role in the phases of QCD. Fig. 1 shows a conjectured phase diagram for QCD, and also a
calculated phase diagram obtained using a Nambu–Jona-Lasinio model of QCD [3]. In both cases,
along the horizontal axis the temperature is zero, and the density rises fromthe onset of nuclear
matter through the transition to quark matter. Compact stars are in this region of the phase diagram,
although it is not known whether their cores are dense enough to reach the quark matter phase.
Along the vertical axis the temperature rises, taking us through the crossover from a hadronic gas
to the quark gluon plasma. This is the regime explored by high-energy heavy-ion colliders.

At the highest densities we find the CFL phase, in which the strange quark participates sym-
metrically with the up and down quarks in Cooper pairing—this is described in more detail below.
It is not yet clear what happens at intermediate density, and in the next section I will briefly survey
the phases that have been hypothesized to occur there. The Nambu–Jona-Lasinio model is only a
semi-quantitative guide to the possible behavior of QCD, so its predictions shown in Fig. 1 should
be taken as purely illustrative.

2.1 Highest density: Color-flavor locking (CFL)

It is by now well-established that at sufficiently high densities, where the up, down and strange
quarks can be treated on an equal footing and the disruptive effects ofthe strange quark mass can
be neglected, quark matter is in the color-flavor locked (CFL) phase, in which quarks of all three
colors and all three flavors form conventional Cooper pairs with zero total momentum, and all
fermionic excitations are gapped, with the gap parameter∆0 ∼ 10−100 MeV [4, 2]. This has been
confirmed by both NJL [4, 5] and gluon-mediated interaction calculations [6]. The CFL pairing
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pattern is

〈qα
i Cγ5qβ

j 〉1PI ∝ (κ +1)δ α
i δ β

j +(κ −1)δ α
j δ β

i = εαβNεi jN +κ(· · ·)

[SU(3)color]×SU(3)L ×SU(3)R
︸ ︷︷ ︸

⊃ [U(1)Q]

×U(1)B → SU(3)C+L+R
︸ ︷︷ ︸

⊃ [U(1)Q̃]

×Z2 (2.1)

Color indicesα ,β and flavor indicesi, j run from 1 to 3, Dirac indices are suppressed, andC is the
Dirac charge-conjugation matrix. The term multiplied byκ corresponds to pairing in the(6S,6S),
which although not energetically favored breaks no additional symmetries and soκ is in general
small but not zero [4, 6, 7, 8]. The Kronecker deltas connect color indices with flavor indices, so
that the condensate is not invariant under color rotations, nor under flavor rotations, but only under
simultaneous, equal and opposite, color and flavor rotations. Since coloris only a vector symmetry,
this condensate is only invariant under vector flavor+color rotations, and breaks chiral symmetry.
The features of the CFL pattern of condensation are

− The color gauge group is completely broken. All eight gluons become massive. This ensures
that there are no infrared divergences associated with gluon propagators.

− All the quark modes are gapped. The nine quasiquarks (three colors timesthree flavors) fall
into an8⊕1 of the unbroken globalSU(3), so there are two gap parameters. The singlet has
a larger gap than the octet.

− A rotated electromagnetism (“Q̃”) survives unbroken. Its gauge boson is a combination of
the original photon and one of the gluons.

− Two global symmetries are broken, the chiral symmetry and baryon number,so there are two
gauge-invariant order parameters that distinguish the CFL phase from the QGP, and corre-
sponding Goldstone bosons which are long-wavelength disturbances ofthe order parameter.
When the light quark mass is non-zero it explicitly breaks the chiral symmetry and gives a
mass to the chiral Goldstone octet, but the CFL phase is still a superfluid, distinguished by
its spontaneous breaking of baryon number.

− The symmetries of the 3-flavor CFL phase are the same as those one might expect for 3-flavor
hypernuclear matter [5], so it is possible that there is no phase transition between them.

3. Real-world intermediate-density quark matter

3.1 Stresses on the CFL phase

The CFL phase is characterized by pairing between different flavors and different colors of
quarks. This is favored because the QCD interaction between two quarksis most attractive in the
channel that is antisymmetric in color (thē3), and pairing tends to be stronger in channels that do
not break rotational symmetry [9, 10, 11, 12, 13], so we expect the pairing to be a spin singlet,
i.e. antisymmetric in spin. Fermionic antisymmetry of the Cooper pair wavefunction then forces
the Cooper pair to be antisymmetric in flavor.

Pairing between different colors/flavors can occur easily when they allhave the same chem-
ical potentials and Fermi momenta. This is the situation at very high density, where the strange
quark mass is negligible. However, in a real compact star we must take into account the forces
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Figure 2: Illustration of the splitting apart of Fermi momenta of the various colors and flavors of quarks.
In the unpaired phase, requirements of neutrality and weak interaction equilibration cause separation of the
Fermi momenta of the various flavors. In the 2SC phase, up and down quarks of two colors pair, locking
their Fermi momenta together. In the CFL phase, all colors and flavors pair and have a common Fermi
momentum.

that try to split those Fermi momenta apart, imposing an energy cost on cross-species pairing.
We must require electromagnetic and color neutrality [14, 15] (possibly via mixing of oppositely-
charged phases), allow for equilibration under the weak interaction, andinclude a realistic mass for
the strange quark. These factors cause the different colors and flavors to have different chemical
potentials, and this imposes a stress on cross-species pairing such as occurs in the CFL pairing
pattern. This is illustrated in Fig. 2, which shows the Fermi momenta of the different species of
quarks. In the unpaired phase, the strange quarks have a lower Fermimomentum because they
are heavier, and to maintain electrical neutrality the number of down quarks iscorrespondingly in-
creased (electrons are also present, but play a small role in maintaining neutrality). To lowest order
in the strange quark mass, the separation between the Fermi momenta isM2

s/(4µ), so the splitting
is more pronounced at lower density. If the attraction between quarks is sufficiently strong, color
superconductivity can overcome this splitting of the Fermi momenta. In the 2SC phase [16, 17], the
up and down quarks of two of the colors undergo Cooper pairing, whichlocks their Fermi momenta
together. The pairing will only occur if the energy released by the formationof the condensate is
greater than the energy cost of moving the quark Fermi surfaces away from their “natural” posi-
tions in the unpaired phase. To lowest order inMs, 2SC pairing is favored relative to the unpaired
phase when the smearing of the Fermi surface due to Cooper pairing is greater than the splitting,
i.e. when∆2SC> M2

s/(4µ) [15] (this estimate assumes that contributions to the free energy from
the chiral condensate are the same in both phases). In the CFL phase, thepairing is extended to
all colors and flavors, which are then locked together with a common Fermi momentum, and the
criterion for pairing to occur turns out to be the same,∆CFL > M2

s/(4µ).

At ultra-high density the splitting between the Fermi momenta becomes negligible, and the
CFL phase is favored. However, as the density drops to values that mightrealistically occur in
the core of a neutron star, the value ofM2

s/(4µ) rises to tens of MeV, which is of the same order
as the expected pairing gap∆ in the 2SC and CFL phases. Thus as the density decreases we
expect the CFL pairing pattern to be distorted, and then to be replaced by some other pattern.
NJL model calculations [18, 19, 20, 3] find that if the attractive interaction isvery strong (so that
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∆CFL ∼ 100 MeV where∆CFL is what the CFL gap would be atµ ∼ 500 MeV if Ms were zero)
then the CFL phase survives all the way down to the transition to nuclear matter. If it is a little
less strong then there may be an interval of 2SC phase but in general the 2SC phase does not
offer a better compromise between pairing and Fermi surface splitting [15, 21]. A comprehensive
survey of possible BCS pairing patterns shows that all of them suffer from the stress of Fermi
surface splitting [22], so in the intermediate-density region more exotic phases are expected. In
the next few subsections we give a quick overview of the expected phases of real-world quark
matter at intermediate density. We restrict our discussion to zero temperature because the critical
temperatures for most of the phases that we discuss are expected to be oforder 10 MeV or higher,
and the core temperature of a neutron star is believed to drop below this valuewithin minutes (if
not seconds) of its creation in a supernova.

3.2 Kaon condensation: the CFL-K0 phase

Bedaque and Schäfer [23] showed that when the stress is not too large(high density), it may
simply modify the CFL pairing pattern by inducing a flavor rotation of the condensate which can
be interpreted as a condensate of “K0” mesons, i.e. the neutral anti-strange Goldstone bosons as-
sociated with the chiral symmetry breaking. This is the “CFL-K0” phase, which breaks isospin.
TheK0 condensate can easily be suppressed by instanton effects [24], but ifthese are ignored then
the kaon condensation occurs forMs & m1/3∆2/3 for light (u andd) quarks of massm. This was
demonstrated using an effective theory of the Goldstone bosons, but withsome effort can also be
seen in an NJL calculation [25, 26].

3.3 The unstable gapless phases

The NJL analysis shown in Fig. 1 predicts that at densities too low for CFL pairing there will be
gapless phases (“gCFL”,”g2SC”, etc). This can be understood by arough quantitative analysis that
involves expanding in powers ofMs/µ and∆/µ, and ignoring the fact that the effective strange
quark mass may be different in different phases [15]. Such an analysis shows that as we come
down in density we find a transition atµ ≈ 1

2M2
s/∆CFL from CFL to another phase, the gapless

CFL phase (gCFL) [27]. The underlying physics here is that whenµ < 1
2M2

s∆CFL it becomes
energetically favorable to convert agsquark near the common Fermi momentum into abd quark,
breaking the Cooper pairing over a range of momenta in that channel. The free energies of the
competing phases in an NJL model are shown in Fig. 3: The gCFL phase takes over from CFL
at M2

s/µ ≈ 2∆CFL, and remains favored beyond the valueM2
s/µ ≈ 4∆CFL at which the CFL phase

would become unfavored.
However, it turns out that the gapless phases are unstable. The instabilityof the gCFL phase

was established in Refs. [28, 29] after an analogous instability in the gapless 2SC phase had been
discovered [30, 31]. The instability manifests itself in an imaginary Meissner massMM for some of
the gluons.M2

M is the low-momentum current-current two-point function, andM2
M/(g2∆2) (where

the strong interaction coupling isg) is the coefficient of the gradient term in the effective theory of
small fluctuations around the ground-state condensate. The fact that wefind a negative value when
the quasiparticles are gapless indicates an instability towards spontaneous breaking of translational
invariance [32, 33, 34, 35, 36]. Calculations in a simple two-species model[37] show that gapless
charged fermionic modes generically lead to imaginaryMM.
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Figure 3: Free energy of various phases of dense QCD. The CFL pairing strength is∆CFL = 25 MeV. The
curves for the CFL, 2SC, gCFL, g2SC, and LOFF1 phases are obtained from an NJL model. Note that the
gCFL phase takes over from CFL atM2

s/µ ≈ 2∆CFL, and remains favored beyond the valueM2
s/µ ≈ 4∆CFL at

which the CFL phase would become unfavored. The “LOFF1” curve is the single-plane-wave LOFF ansatz
of [38]. The “CubeX” and “2Cube45z” lines are estimates for more complicated LOFF crystal structures,
and follow from the Ginzburg-Landau calculation of Ref. [39].

The instability of the gapless phases indicates that there must be other phases of even lower
free energy, that occur in their place in the phase diagram. The nature ofthose phases remains
uncertain at present: some candidates are discussed below.

3.4 Crystalline pairing

The pairing patterns discussed so far have been translationally invariant.But in the region of
parameter space where cross-species pairing is just barely excluded by stresses that pull apart the
Fermi surfaces, one expects a position-dependent pairing known as the “LOFF” phase [40, 41, 42,
43]. This arises because one way to achieve pairing between differentflavors while accommodating
the tendency for the Fermi momenta to separate is to only pair over part of the Fermi surface, and
form pairs with non-zero momentum. The LOFF phase therefore competes withthe gCFL phase,
and may resolve that phase’s stability problems.

Recent calculations for 3-flavor quark matter (within a Ginzburg-Landauapproximation) show
that even a very simple single-plane-wave LOFF ansatz yields a state that has lower free energy
than gCFL in the region where the gCFL→unpaired transition occurs [38, 44] (see Fig. 3) and the
Meissner instability is no longer present [45].

The gap parameter and free energy for three-flavor quark matter havealso recently been eval-
uated within a Ginzburg-Landau approximation for many candidate crystal structures [39]. Fig. 3
shows the free energies of the two most favorable crystal structures, CubeX and 2Cube45z. The
robustness of these phases results in their being favored over wide ranges of density. However, it
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also implies that the Ginzburg-Landau approximation is not quantitatively reliable, so the CubeX
and 2Cube45z lines in Fig. 3 should only be taken as an indication that the LOFF state might be
preferred to gCFL over a much wider range of the stress parameterM2

s/(2µ∆) than one would infer
from the single plane wave calculation.

3.5 Meson supercurrent (“curCFL”)

Kaon condensation alone does not remove the gapless modes that occur inthe CFL phase
whenMs becomes large enough. The CFL-K0 phase also develops gapless modes and a Meissner
instability, though at a slightly larger value ofMs [46, 47]. One way that the CFL-K0 phase can re-
spond is by developing a current in the pseudo-Goldstone bosons (kaons), i.e. a spatial modulation
of theK0 condensate [48, 49]. There is no net transfer of any charge because there is a reverse flow
in the gapless fermions. The meson current lowers the free energy, butis essentially just another
instability: as yet there is no analysis that finds a new meson-supercurrent ground state, whose
free energy could be compared with that of other states such as LOFF phases. Calculation of the
meson supercurrent in the CFL phase (with no uniform backgroundK0 condensate) shows that it is
induced when gapless quark modes appear, and that it resolves the Meissner instability, but in that
case it is equivalent to a plane-wave LOFF state [50].

3.6 Gluon condensation

Analysis of the magnetic instability in the two-flavor gapless color-superconducting phase
(g2SC) using a Ginzburg-Landau approach has found that the instabilitycan be cured by the ap-
pearance of a chromoelectric condensate [51, 52]. The 2SC condensate breaks the color group
down to theSU(2)rg red-green subgroup, and five of the gluons become massive vector bosons
via the Higgs mechanism. The new condensate involves some of these massivevector bosons, and
because they transform non-trivially underSU(2)rg it now breaks that gauge symmetry. Because
they are electrically charged vector particles, rotational symmetry is also broken, and the phase is
an electrical superconductor. There are some connections between thegluon condensate and the
LOFF phase: the single-plane-wave LOFF state is gauge-equivalent to ahomogeneous vector bo-
son condensate. However in general the gluon condensate has non-zero field strength, and is not
simply a gauge transformation of an inhomogeneous diquark condensate [35]. In the two-flavor
case, gluon condensation appears to be favored over single-plane-wave LOFF [53], but it has not
been compared with a LOFF crystal, and as yet the gluon condensate has not been studied in the
three-flavor case.

3.7 Secondary pairing

Since the Meissner instability is generically associated with the presence of gapless fermionic
modes, and the BCS mechanism implies that any gapless fermionic mode is unstableto Cooper
pairing in the most attractive channel, one might expect that the instability will simply be resolved
by “secondary pairing” of the gapless quasiparticles which would then acquire their own gap∆s

[54, 55]. Furthermore, the quadratically gapless mode in gCFL has a greatly increased density of
states at low energy (diverging asE−1/2), so its secondary pairing is much stronger than would
be predicted by BCS theory:∆s ∝ G2

s for coupling strengthGs, as compared with the standard
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BCS result∆ ∝ exp(−const/G) [54]. This result is confirmed by an NJL study in a two-species
model [56], but the the secondary gap was found to be still much smaller thanthe primary gap, so
it does not generically resolve the magnetic instability (in the temperature range∆s ≪ T ≪ ∆p, for
example).

3.8 Single-flavor pairing

At low enough density,Ms puts such a significant stress on the pairing pattern that no pairing
between different flavors is possible [22]. The resultant phase is often called “unpaired” quark
matter, but there remains the possibility of Cooper pairing where each flavorpairs with itself. (This
regime will only arise if∆0 is so small that very large values ofM2

s/(µ∆0) can arise withoutµ being
taken so small that nuclear matter becomes favored.) Single-flavor pairing may also arise in the
2SC phase, where the strange quarks are not involved in two-flavor pairing. Single-flavor pairing
phases have much lower critical temperatures than multi-flavor phases like theCFL or 2SC phases,
perhaps as large as a few MeV, more typically in the eV to many keV range [10, 11, 12, 13, 57], so
they are expected to play a role late in the life of a neutron star.
• Single flavor pairing in “unpaired” quark matter. In most NJL studies, matter with no cross-
species pairing at all is described as as “unpaired” quark matter. However, it is well known that
there are attractive channels for a single flavor pairing, although they are much weaker than the 2SC
and CFL channels [10, 11, 12, 13, 57]. Calculations using NJL models and single-gluon exchange
agree that the favored phase in this case is the color-spin-locked (CSL)phase [10] in which there
is pairing of all three colors of each flavor, with each pair of colors correlated with a particular
direction for the spin. This phase does not break rotational symmetry.
• Single flavor pairing in 2SC quark matter. If there is a regime in which the 2SC phase survives,
this leaves the blue quarks unpaired. In that case one might expect a “2SC+CSL” pattern, which
would again be rotationally symmetric, in which the strange quarks of all three colors self-pair in
the CSL pattern. However, the 2SC pattern breaks the color symmetry, and inorder to maintain
color neutrality, a color chemical potential is generated, which also affectsthe unpaired strange
quarks, splitting the Fermi momentum of the blue strange quarks away from that of the red and
green strange quarks (see middle panel of Fig.2). This is a small effect, but so is the CSL pairing
gap, and NJL model calculations indicate that the color chemical potential typically destroys CSL
pairing of the strange quarks [58]. The system falls back on the next best alternative, which is
spin-1 pairing of the red and green strange quarks.

3.9 Mixed Phases

Another way for a system to deal with a stress on its pairing pattern is phase separation. In the
context of quark matter this corresponds to relaxing the requirement of local charge neutrality, and
requiring neutrality only over long distances, so we allow a mixture of a positively charged and a
negatively charged phase, with a common pressure and a common value of the electron chemical
potentialµe that is not equal to the neutrality value for either phase. Such a mixture of nuclear and
CFL quark matter was studied in Ref. [59]. In quark matter it has been found that as long as we
require local color neutrality such mixed phases are not the favored response to the stress imposed
by the strange quark mass [27, 60]. Phases involving color charge separation have been studied
[61] but it seems likely that the energy cost of the color-electric fields will disfavor them.
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4. Quark matter on the lattice

For neutron star phenomenology, including color superconductivity in quark matter, the rele-
vant part of the phase diagram is the high-density low-temperature region. Although there has been
great progress in mitigating the effects of the sign problem in the complementaryregion of low
chemical potential and high temperature [62, 63, 64], the sign problem remains a severe obstacle to
lattice calculations atµ ≫ T. It should be noted, however, that the sign problem is more a technical
problem than a fundamental one. There is no “no-go” theorem stating thatwe can never expect to
perform lattice QCD calculations atµ ≫ T. In certain theories the sign problem has been com-
pletely solved, for example the 3-state Potts model [65] and theO(3) model [66], and work is in
progress to extend these methods to QCD [67]. It is therefore useful to think about how we would
study color superconductivity using lattice QCD if we could perform lattice QCD calculations in
the high-density low-temperature region of the phase diagram.

In lattice calculations we have the freedom to vary parameters that are fixedin the real world,
such as the number of quark flavors and their masses. Also, issues of electrical charge neutrality
and equilibration under the weak interactions do not arise, so lattice QCD would be able to turn
off the stresses that were discussed in section 3.1. One significant constraint, however, is the size
of the lattice. The size in the Euclidean time direction corresponds to the temperature, and current
calculations are limited to sizes less than 5 fm, corresponding toT > 40 MeV. A 20 fm lattice,
which is very large by current standards, corresponds toT = 10 MeV. Of course, a breakthrough
that allows us to work atµ ≫ T may also allow us to work in very large volumes, but the more
conservative assumption is that it will remain difficult to study phases with critical temperatures
lower than about 10 MeV. Superfluidity in nuclear matter, with a critical temperature around 1
MeV, will be therefore be completely inaccessible, and we will have to search for phases with
higher critical temperatures. Fortunately, many color superconducting phases are expected to have
appropriately high critical temperatures.

4.1 Quark Matter with Nf massless flavors

In table 1 we give the expected global symmetries of various phases of QCDwith Nf = 2,3,4.
We do not includeNf = 1 because single-flavor color superconducting phases are predictedto have
critical temperatures of order 1 MeV or less [10, 11, 12, 13], so they are not likely to be seen on
lattices of a reasonable size. It is noticeable from table 1 that color superconducting phases are
not easy to identify. In two-flavor quark matter, the 2SC color superconductor leaves all the global
symmetries unbroken, so there is no order parameter that distinguishes it from unpaired quark
matter or quark gluon plasma [16]. In three-flavor quark matter, the CFL color superconductor
breaks the global symmetries in exactly the same way as hadronic matter, including complete
breaking of the chiral symmetry and superfluidity (since all quarks are massless the baryons are
all degenerate, and so the baryon octet can self-pair in a pattern that preserves the flavor symmetry
[68, 5]). In the four-flavor theory, however, Schäfer [6] finds an interesting “partially chirally
broken” (PχSB) phase, which has different symmetries from any of the other expected phases.
Since the staggered fermion formalism naturally yields four continuum flavors, this might be a
good place to begin the search for color superconductivity on the lattice.
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Nf phase global symmetry group description

2 unbroken (QGP): SU(2)L ⊗SU(2)R⊗U(1)B

vacuum: → SU(2)V ⊗U(1)B chiral symmetry broken (χSB)
hadronic: → SU(2)V χSB and superfluid

2SC: → SU(2)L ⊗SU(2)R⊗U(1)B̃ same as QGP

3 unbroken (QGP): SU(3)L ⊗SU(3)R⊗U(1)B

vacuum: → SU(3)V ⊗U(1)B χSB
hadronic: → SU(3)V χSB and superfluid

CFL: → SU(3)L+R+c⊗Z2 same as hadronic

4 unbroken (QGP): SU(4)L ⊗SU(4)R⊗U(1)B

vacuum: → SU(4)V ⊗U(1)B χSB
hadronic: → SU(4)V χSB and superfluid
PχSB: → SU(2)V ⊗SU(2)V ⊗SU(2)A unique [6]

Table 1: Symmetry breaking patterns for various phases of QCD with 2,3, and 4 quark flavors. For eachNf

the last entry is the expected form of color superconductivity at the highest densities.

4.2 Probing phases and symmetry breaking on the lattice

There are various tools for to distinguishing different phases of high-density QCD on the
lattice.

• Measuring local order parameters. Technically, spontaneous symmetry breaking occurs only
in infinite volume systems, where the chance of making transitions between the different possible
vacua is zero. More practically, we expect to see spontaneous symmetry breaking when the limit
of large volume is taken first,beforethe limit of taking external currents to zero in the functional
integral:

〈φ〉 = lim
J→0

lim
V→∞

δ
δJ

∫

Dφ exp(−S[φ ]+Jφ) . (4.1)

This delicate procedure has been implemented in simpler theories such as the Gross-Neveu model
[69]. The order parameter for superfluidity (breaking ofU(1)B) will be a color and flavor singlet
dibaryon. The order parameter for chiral symmetry breaking could be theconventional color and
flavor singlet chiral condensate, but it is expected that this is suppressed relative to a four-fermion
operatorψ̄ψ̄ψψ with the same quantum numbers [6].

• Measuring gaps in the fermion spectrum. One of the characteristic consequences of Cooper pair-
ing is the generation of gaps in the fermion spectrum. In color superconducting phases, therefore,
we expect to find that the fermionic excitations are classified by representations of the unbroken
symmetry group, and that some of them are gapped. In QCD the fundamentalfermions are quarks,
but gauge invariance dictates that quark “quasiparticles” are still created by baryon creation op-
erators, so the procedure for finding the gaps is the same as that for measuring baryon masses in
zero-density QCD. Again, this pairing signature has been seen in the Gross-Neveu model [70], and
in the same paper evidence was also found of particle-hole mixing in the fermionspectrum, which
is another characteristic of Cooper pairing.

• Measuring low masses of Goldstone bosons. The breaking of a continuous global symmetry, as

11
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well as giving a non-zero value to some order parameter, creates massless bosonic modes in the
spectrum of the theory, known as Goldstone bosons. For chiral symmetrybreaking these are the
pions. The procedure for measuring the masses is the same as that for measuring meson masses in
zero-density QCD.

5. Conclusion

As I have described, the project of delineating a plausible phase diagramfor real-world high-
density quark matter is still not complete. I have discussed some ideas for the “non-CFL” region
of Fig. 1, but there are others such as deformation of the Fermi surfaces (discussed so far only in
non-beta-equilibrated nuclear matter [71]) or a Bose-Einstein condensate (BEC) of spatially-bound
diquarks [72]. It is very interesting to note that the situation we find in quarkmatter, a system with
pairing that must respond to a stress that separates the chemical potentials of the pairing species, is a
very generic one, arising also in condensed matter systems and cold atom systems [73, 74]. Recent
work on BCS/BEC crossover in asymmetric dilute Fermi gases [75, 76, 77, 78, 79, 80] shows that
between the BCS-paired region and the unpaired region in the phase diagram one should expect
a translationally-broken region. In QCD this could correspond to ap-wave meson condensate, a
gluon condensate, or a LOFF state. What is particularly exciting is that the technology of cold atom
traps has advanced to the point where fermion superfluidity can now be seen in conditions where
many of the important parameters can be manipulated, and it may soon be possible to investigate
the response of the pairing to external stress under controlled experimental conditions.

My discussion of lattice approaches to color superconductivity was hypothetical, awaiting a
breakthrough that would allow us to evaluate the functional integral at highdensity and low tem-
perature. Current efforts in this direction include the development of a D-theory formulation that
would allow the application of cluster algorithms [67], and also approaches using strong coupling
and Hamiltonian methods. In particular, the effective strong-coupling Hamiltonian in the largeNc

limit has been written as an antiferromagnet with next-to-nearest neighbor couplings, and indica-
tions have been found of chiral condensation, but not as yet of quark Cooper pair condensation
[81, 82, 83, 84].

At the moment, then, the study of dense quark matter has yielded a diverse landscape of
possible phases and phenomenologies across which theorists roam quite freely. Of course there
is much interesting work to be done in exploring this territory. But it is also to be hoped that in
the future, with increasingly precise observations of neutron star behavior and perhaps even a leap
forward in our ability to perform QCD calculations at the relevant densities,we will start to close
in on the real geography of the phase diagram of QCD.
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