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Lattice supersymmetry Joel Giedt

1. Introduction

Several motivations exist for efforts to formulate supersymmetric field theories on a lattice.
As is well known, it is difficult to formulate these theories in a way that avoids fine-tuning of
counterterms. Nevertheless, there have been many promising formulations developed of late.1 But,
given a “good” formulation, to what use should or would we put it? To answer this question, let us
look to the motivations for putting supersymmetric theories on the lattice.

2. To provide a definition of the field theory

2.1 Some general remarks

Here, one wants to say in a precise way what is meant by the rather formal expression

Z[S] =

∫

exp(−S), (2.1)

the Euclidean functional integral, or partition function for the system. At a formal level we know
that it is described by imposing an ultraviolet (UV) cutoff length scale a, and defining the integral
for each a:

Z[S;a] =
∫

D(a)
[dµ(φ ;a)]exp(−S[φ ;a]). (2.2)

This leads to an a → 0 limiting sequence that defines the physical theory. In the lattice formulation,
a is of course the lattice spacing, and a → 0 is the continuum limit.

Due to universality, there is no unique definition of Z[S;a]. That is, two definitions that differ
by irrelevant operators can be made to agree in their continuum limit. But among various pro-
posals for Z[S;a], one wants a classification of the extent to which local counterterms (CTs) need
to be adjusted to obtain the correct continuum limit. The best definitions of Z[S;a] possess the
continuum symmetries (e.g., the exact gauge symmetry of Wilson’s action), or have lattice sym-
metries that guarantee the continuum symmetries are recovered as a → 0 (e.g., the lattice chiral
symmetry of Ginsparg-Wilson fermions). In either case, the continuum symmetry results without
any adjustment of CTs. In some cases, the lattice theory explicitly breaks continuum symmetries,
and the symmetries are only obtained through a fine-tuning of CTs. It may even be that no local
CTs exist that will do the job, in which case we have an anomaly. We should study the question
of CTs both perturbatively and nonperturbatively. Our favorite answer of course would be that no
symmetry-restoring CTs are required.2

2.2 Examples without CTs

I will now enumerate several examples where no CTs are required. The point here is to fa-
miliarize the reader with the many successes, or claimed successes, that have been achieved in this
regard. Some of these are quite recent.

1For recent reviews, see [1–5].
2Of course, CTs associated with renormalization are required unless the theory is finite. But these are CTs allowed

by the continuum symmetry and will not concern us here.

2



P
o
S
(
L
A
T
2
0
0
6
)
0
0
8

Lattice supersymmetry Joel Giedt

N mB mF
16 10.60(3) 10.64(5)

32 12.80(2) 12.91(4)

64 14.47(2) 14.52(2)

128 15.63(4) 15.63(4)

256 16.19(3) 16.28(4)

Table 1: Spectrum degeneracy in Q-exact supersymmetric quantum mechanics. These results are from [6].
Note that with L = Na = fixed, increasing N corresponds to the continuum limit. The N → ∞ extrapolation
matches the (numerical) solution of the continuum Schrödinger equation.

2.2.1 Q-exact supersymmetric quantum mechanics

In this case, one has a lattice version of a supercharge Q that is nilpotent; i.e. Q2 = 0. The
lattice action is describable as a Q acting on something, “X”: S = QX , and is trivially invariant:
QS = Q2X = 0.

There is convincing Monte Carlo evidence that the lattice theory in this case has the correct
continuum limit without fine-tuning of CTs. This evidence consists of Bose-Fermi spectrum de-
generacy and supersymmetry Ward identities [6]. For example, in Table 1 one sees that the mass
gap for fermionic states is degenerate with that for bosonic states, even at finite lattice spacing.

An all orders perturbative proof of the absence of CTs in this theory was given in [7]. More-
over, a nonperturbative proof of the absence of CTs was also given in [7], using transfer matrix
methods. In either calculation, it is apparent that the Q-exact nature of the action leads to can-
cellations that avoid the appearance of CTs. These cancellations are associated with the exact
supersymmetry Ward identities that follows from QS = 0.

2.2.2 Q-exact 2d N = 2 Wess-Zumino (a.k.a. N = 2 Landau-Ginsburg) model

Here, the model is the 4d → 2d dimensional reduction of the Wess-Zumino model with a cubic
superpotential [8]. The Q-exact lattice formulation of this model was given long ago [9, 10]. An
all orders perturbative proof of the absence of CTs was given in [7]. That proof is similar to the
one for the Q,Q†-preserving spatial lattice [9]. In both cases, Q-exactness leads to supersymmetry
Ward identities, which cause the cancellations that avoid CTs. Fig. 1 shows all the diagrams that
must be studied (the lattice theory is super-renormalizable). The parts that would potentially differ
from the continuum perturbation series, according to Reisz’s theorem [11], all cancel.

On the nonperturbative front, there is various numerical evidence (spectrum degeneracy, Ward
identities, R-symmetry) that the supersymmetric limit is obtained without CTs [12–15].

2.2.3 N = 1 4d super-YM with Ginsparg-Wilson fermions

From the work of [16], we know that N = 1 4d super-YM (SYM) with Ginsparg-Wilson
fermions requires no supersymmetry-restoring CTs. This is because the chiral limit and the su-
persymmetric limit in this model are equivalent: the only gauge invariant relevant operator that
could break supersymmetry is a gaugino mass. The application of overlap fermions [17–19] to
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Figure 1: The set of all 1PI diagrams with UV degree of divergence DUV ≥ 0 in the Q-exact lattice 2d
N = 2 Wess-Zumino model. The notation for the vertices, which are modified on the lattice, is explained
in [7].

this model was sketched in [20, 21]. But leading order simulation studies, such as glueball spec-
tra, have yet to be attempted. The application of domain wall Dirac fermions [22] to this model
was proposed [21, 23], sketched [24] and briefly studied [25]. However, it deserves another push:
much more could be accomplished with the computational resources that are now available.3 In-
frared (IR) effective theories for this model have been proposed by continuum theorists, based on
various arguments [26–32]. In particular, the predicted IR spectrum of states in the presence of a
small gluino mass has a pattern of splitting [28] that would be very interesting to test in a lattice
formulation that is sensitive to topology, such as gap domain wall fermions [33].

2.2.4 Deconstruction models

Deconstruction models (a.k.a. quiver lattice, orbifold matrix model) offer another route that
avoids some or all CTs.4 These have been written down for various extended SYM and super-
QCD models in 2d, 3d and 4d [36–41]. It is easily shown, on symmetry and dimensional grounds,
that the 2d SYM examples require no supersymmetry-restoring CTs in perturbation theory. In the
case of 2d super-QCD, renormalization has yet to be explored. For the d > 2 examples, it is less
clear what really happens; explicit calculations will be required. However, if the Euclideanized d-
dimensional Poincaré group is recovered, an interesting supersymmetric theory is obtained either
way, since there is at least some supersymmetry present, even if not the full supersymmetry of
the target theory.5 A review of the deconstruction models was recently given in [1]. Perturbative

3I thank Pavlos Vranas for extensive conversations on what could be achieved presently.
4These models are inspired by earlier, phenomenological works on dimensional deconstruction [34, 35].
5Thanks are due David Kaplan for emphasizing this point during conversations.
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aspects of one of the models was studied in [42]. In [43–45], the phase of the fermion determinant
was found to be problematic in two of the models.

2.2.5 D’Adda et al. SYM
Extended SYM in 2d and 4d has been formulated in a very interesting way by D’Adda et

al. [46,47]. It is based on a modified Leibnitz rule for the supersymmetry variations sA of products
of fields:

sA[Φ(x1)P(x2, . . .)] = sA[Φ(x1)]P(x2, . . .)

+ (−)F(Φ)Φ(x1 +aA)sA[P2(x2, . . .)]. (2.3)

Note that the site index x1 of Φ has shifted as sA is pushed past it. It is in this sense that the
formulation is “slightly noncommutative.”

For the 2d (2,2)-supersymmetric case, the action can be written in four equivalent forms:

S = ∑
x

Tr ss̃s1s2Ψx,x = −∑
x

Tr s̃ss1s2Ψx,x

= ∑
x

Tr s1s2ss̃Ψx,x = −∑
x

Tr s2s1ss̃Ψx,x, (2.4)

where Ψx,x is a composite operator whose exact form we will not need here. Due to the nilpotentcy
of the supersymmetry operators sA,

s2 = s̃2 = s2
1 = s2

2 = 0, (2.5)

the action is invariant under the modified (2,2) supersymmetry. The renormalization of the model
needs more study. In particular, does the slight noncommutativity matter?

Bruckmann and de Kok have studied the noncommutativity approach in supersymmetric quan-
tum mechanics [48]. They find that the existence of modified supersymmetric invariance depends
on the order in which the lattice fields are written. Since the order of the lattice fields defines the
symmetry transformation, this is just the statement that the invariance (or lack of it) depends on how
one decides to transform the fields. I do not regard this as an inconsistency of the noncommutative
approach, but rather as an illustration that in some theories there may be an ordering ambiguity that
needs to be resolved in order to have the modified supersymmetric invariance. Indeed, Bruckmann
and de Kok find that such an ordering does exist in the supersymmetric quantum mechanics model.

By contrast, the ordering in the D’Adda et al. approach is completely determined by the lattice
gauge invariance. When the action is written in the form (2.4), there is no ambiguity resulting from
the ordering of terms; Ψx,x, appearing in (2.4), is unique. The invariance of the component field
action follows identically from the properties (2.4) and (2.5), and can made explicit using the sA
transformations of fields given by D’Adda et al. All of this is easily checked by straightforward, if
somewhat tedious, algebraic manipulations.

2.2.6 Other no CT examples/claims
Other recent examples where there is evidence presented that fine-tuning of CTs is avoided

include:
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• Q-exact compact (2,2) SYM in 2d as formulated by Sugino in [49–52]. There is no fine-
tuning in perturbation theory.

• Twisted (Q-exact) geometrical (2,2) SYM in 2d, due to Catterall [53]. Monte Carlo data
seems to indicate no need for CTs [54]. Of practical importance, the phase quenched ensem-
ble in this model is a good approximation to the full ensemble, due to a sharply peaked phase
distribution as one approaches the continuum limit.

• The 4d Wess-Zumino model with Ginsparg-Wilson fermions, recently proposed and stud-
ied by Bonini and Feo [55–57]. Here, there is a nonlinear, perturbative definition of the
supercharges QA.

• The twisted (Q-exact) nonlinear 2d σ model with (2,2) supersymmetry [58]. A superfield for-
mulation was subsequently given in [7], where renormalization was discussed on symmetry
and dimensional grounds. Whereas that study showed that radiative generation of supersym-
metry violation in the continuum limit is not forbidden by lattice symmetries and dimensional
arguments, recent Monte Carlo data seems to indicate no need for supersymmetry-restoring
CTs [59, 60].

In summary, much progress has been made recently in formulating supersymmetric theories on
the lattice. In some cases, the theory has been nonperturbatively defined. Furthermore, numerical
results have been obtained in a few cases, holding out the prospect that we will obtain interesting
information by means other than the traditional, continuum methods.

3. Nonholomorphic woes

Now that we have seen that there are many promising formulations that define supersymmetric
theories on the lattice, let us return to the motivations. Continuum supersymmetry tricks usually
partly fail to determine the IR effective theory.

Schematically, the IR effective theory is described by an action of the form:
∫

d4θ K(Φ, Φ̄)+

[

∫

d2θ W (Φ)+h.c.
]

. (3.1)

Here, integration over Grassmann superspace coordinates θ , θ̄ has been used, and Φ, Φ̄ are chiral
superfields. The superpotential W is not renormalized in perturbation theory. Also, W is sometimes
completely determined, once symmetries accounted for. Generically none of these nice features
hold for the Kähler potential K.

This lack of control over nonholomorphic data, encoded in K, is distressing. This is be-
cause the so-called “supersymmetry-breaking soft-terms” largely determine superpartner spectra
and couplings for the MSSM, and these soft-terms depend on the Kähler potential K. To the extent
that nonperturbative physics is involved in breaking supersymmetry, the nonperturbative renormal-
ization of the Kähler potential is important to the prediction of soft-terms.

Lattice Monte Carlo simulations would, as a first step, give us a handle on vevs φ0 of scalars,
and the spectrum of light states. This constrains ∂V/∂φ , ∂ 2V/∂φ∂φ and ∂ 2V/∂φ∂ φ̄ evalu-
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ated at φ0. Both the Kähler potential K and superpotential W play a role in the scalar poten-
tial, V = Kk ¯̀WkW̄ ¯̀, where Kk ¯̀ is the inverse of the Kähler metric Kk ¯̀ = ∂ 2K/∂φ k∂ φ̄ ¯̀, and Wk =

∂W/∂φk, W̄ ¯̀ = (W`)
∗.

A scheme for extracting the effective K would be: (1) Hypothesize an effective Kähler poten-
tial K, containing some minimal set of phenomenological constants. (2) Use the known effective
superpotential W . (3) Match microscopic lattice and IR effective lattice data, to fit “phenomeno-
logical” constants in K. This outline illustrates how lattice simulations have the potential to teach
us something about nonperturbative renormalization of nonholomorphic quantities.

In work that is in progress with Simon Catterall, we are attempting to determine the (2,2) 2d
twisted nonlinear σ model that is the IR effective theory for (2,2) 2d SU(2) SYM. For example, we
are comparing constrained effective potentials in the two theories, for various scalars operators.

4. Supersymmetry breaking

A third motivation is to improve our understanding of dynamical supersymmetry breaking.
Strong supersymmetry dynamics is often invoked in models of soft supersymmetry breaking for
the Minimal Supersymmetry Standard Model (MSSM). Any improvement of our understanding of
the strong dynamics of supersymmetric gauge theories would be helpful.

As an example, consider 3d N = 2 SYM. This is a model that is perhaps feasible for thorough
lattice study. The theory has a simple content (one gluon, one adjoint Majorana fermion, one
adjoint real scalar), so it will be efficient to simulate. It is a simple theory where the ground state
supersymmetry is not yet fully understood. It is obtained from the 3d reduction of 4d N = 1 SYM.

This model was studied from the continuum in [61]. It was found that there is an instanton-
generated potential for the modulus field φ . However, there is uncertainty regarding the potential
for small φ , because the theory is strongly coupled in that regime. The only known supersymmetric
vacuum is at φ → ∞. We would like to know: Is there a supersymmetric vacuum near origin in
field space?

It seems promising to use a parity-preserving overlap-Dirac formulation, similar to 3d N =

1 model of [20]. If one does this, do we avoid fine-tuning, as in the 3d N = 1 case? It is a
straightforward, open question to be explored.

5. Quantum gravity and the AdS/CFT correspondence

There is an evolving understanding of the relationship between SYM and string/M-theory. A
nonperturbative formulation of string/M-theory in general backgrounds is still lacking. But there
are recent successes for special backgrounds: D-branes [62]; M(atrix) theory [63,64]; the AdS/CFT
correspondence [65–67]; and, the PP-wave limit [68–71]. Note that I include nontrivial semiclas-
sical descriptions under what I call “nonperturbative.” It is of considerable interest to study these
nonpertubative formulations in relation to SYM on the lattice. I next survey an interesting example
of the AdS/CFT correspondence. In this example, both the gauge and gravitational theories are
known. Detailed information on the IR physics of the gauge theory, extracted from lattice studies,
would nicely supplement the many continuum results that have been obtained.
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T1,1

Figure 2: A schematic view of the conifold.

S3S3

Figure 3: The quotient of S3 ×S3 that leads to T 1,1.

AdS/CFT correspondence. Here, the nontrivial SYM vacuum dynamics takes on a gravi-
tational meaning. Everybody has heard about AdS5 × S5. A very interesting generalization is the
Klebanov-Strassler (KS) construction [72]. It is based on the Klebanov-Witten (KW) construc-
tion [73], with a gravitational theory on AdS5 × T 1,1. The KW dual gauge theory is an N = 1
superconformal field theory (SCFT), whose field content and action is known.

The conifold. Type IIB string theory, and in particular its supergravity limit, is formulated
on the 10d space:

4d Minkowski× conifold. (5.1)

The conifold is a 6d space possessing a cone-like geometry, with T 1,1 base, as illustrated in Fig. 2.
The 5d compact space T 1,1 is a quotient manifold:

T 1,1 = [SU(2)×SU(2)]/U(1). (5.2)

The “1,1” denotes the U(1) quotient generated by:

H = (σ3 ⊗1)+(1⊗σ3). (5.3)

Fig. 3 illustrates the rotation, generated by H , that identifies the points in SU(2)×SU(2) ' S3 ×S3

to form T 1,1.

Warping spacetime. A stack of Nc D3 branes is placed at the tip of the confold, where the
size of the base shrinks to zero. I.e., r2ds2

T 1,1 → 0 as r → 0. The D3 branes are gravitating, so
they backreact on the geometry, warping it. As a consequence, not too far from the branes (the
near-horizon limit), the geometry is AdS5 ×T 1,1.

8
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2/3ε

Singular Smooth =

Confinement

Figure 4: The singularity resolution in the deformed conifold. The parameter ε is used to describe the
geometric deformation, and makes an appearance in the glueball mass.

Killing spinors. One advantage of the conifold construction is that Type IIB SUGRA on
AdS5 × T 1,1 only preserves eight Killing spinors, whereas Type IIB on AdS5 × S5 preserves 32
Killing spinors.6 In the dual gauge theory, we get an N = 1 superconformal field theory rather
than N = 4 superconformal field theory.

The singularity at the tip and its resolution. An N = 1 SCFT is a much more promising
start, being closer to the real world.7 There is a singularity at the tip of the conifold, r = 0. In the
dual gauge theory, this is reflected by the absence of an IR cutoff. Klebanov-Strassler resolve the
singularity with the deformed conifold, depicted schematically in Fig. 4. They show that this is
equivalent to confinement in the IR of the dual gauge theory, due to running of gauge couplings
once conformal symmetry (dual to the scaling isometry of AdS) is broken.

On the gravity side of the duality, the deformation of the conifold breaks half the Killing
spinors. On the gauge theory side, this breaks the fermionic conformal charges, reducing to an
N = 1 supersymmetric gauge theory that is not conformally invariant. Now we are “very close”
to the real world; i.e., warped, supersymmetric extensions to the Standard Model.8

D7 probes and the equivalence to adding quark flavors. Introduction of N f D7 probe
branes allows for a weakly coupled U(N f ) gauge theory in the dual gauge theory, due to volume
suppression associated with reduction to 4d:

g2
f ∼ (volume)−1. (5.4)

The embedding for the D7 branes can generate bare masses for “quarks” of dual gauge theory. The
low energy partons are really bound states, very much like in technicolor.9 Here, the U(Nc) gauge
theory associated with the D3 branes plays the role of the technicolor-like group.

Noncompact → compact Calabi-Yau. Recently, studies of the low energy effective 4d and
5d theories derived from the probe D7 branes have been conducted [75–78]. In the latter work [78],
we also imagined a regulator in the UV, following [79]. This occurs by capping off the conifold
with a compact Calabi-Yau manifold far from the tip, as in Fig. 5.

6The number of Killing spinors determines the amount of supersymmetry in the supergravity theory.
7N = 1 is necessary in order to have chiral representations.
8For a review of phenomenological models of this type, see [74].
9Unlike technicolor models, masses for the quarks associated with probe D7 branes are allowed, because the spec-

9
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Figure 5: A combination of a Klebanov-Strassler throat and a Calabi-Yau “boundary”. This can be thought
of as a refinement of Randall-Sundrum 1 type models.

"Brane"
    IR    UV

"Brane"

Figure 6: A schematic picture of the background geometry in the Randall-Sundrum 1 model [80]. The
figure is meant to indicate that, at the IR brane, distances are dilated by the warp factor of AdS.

Randall-Sundrum 1 interpretation. The Calabi-Yau and the KS tip are, respectively, to be
thought of as refinements of the UV and IR branes of, say, Randall-Sundrum 1 type models, shown
schmatically in Fig. 6. The refined picture, which has already been mentioned above, is shown
in Fig. 5. There is a potential—though challenging—interplay between warped extra dimension
models, AdS/CFT, and lattice SYM. A detailed study of the IR physics of the dual gauge theory
would have implications for the gravitational picture. Thus, the goal is to be able to simulate the
gauge theory on the lattice.

6. AdS3/CFT2 and deconstructed (4,4) super-QCD

There are many more generalizations of AdS/CFT. In particular, AdS3/CFT2 may be ac-
cessible through lattice studies. The duality in the 2d (4,4)-supersymmetric QCD (the D1-D5
brane intersection theory) is currently under study using a deconstruction lattice supersymmetry

trum is vector-like.
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approach [41]. The (4,4) lattice with matter is a generalization of the recent (2,2) super-QCD con-
structions of Kaplan (see talk, this proceedings) and Endres [40]. The (4,4) lattice theory has two
exact supercharges and only site, ordinary link, and diagonal link fields.

7. Conclusions

Although it is challenging to write down supersymmetric lattice field theories that have a
“good” quantum continuum limit, some examples do exist. A wealth of exciting applications
await. The most interesting are those related to supersymmetry breaking, quantum gravity and
the AdS/CFT correspondence. Certain nonpertubative features, such as spectra, can be studied
on the lattice with results that are of broad and current interest. For practical reasons, and due
to the existence of very promising formulations, the 2d lattice models could be the most fruitful
numerically, in the short term.
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