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Recent progress in finite temperature lattice QCD Urs M. Heller

1. Introduction

In the past few years our understanding of QCD at finite temperaturadvasiced consider-
ably, due to improvements in the lattice discretizations (use of improved actionspvements
in the simulation algorithms, and increases in computational resources. A sKetar present
understanding of the QCD phase diagram inrtihg — ms plane is shown in Fid] 1.
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Figure 1. Sketch of the QCD phase diagram in thgy — ms plane.

In this talk | review recent progress in the determination of the QCD phageadiiaat finite
temperature and zero baryon density, in investigations of the nature oftistiton or crossover
from the hadronic phase at low temperatures to the quark-gluon plasnf) (@@se at high tem-
peratures and in the determination of the equation of state (EOS). For eadémt reviews see
Refs. [1], while a summary of other properties of the high-temperatureeabagiven in the talk by
T. Hatsudal[[2].

2. Simulation choices and improvements

As in any numerical simulation, for finite temperature studies one must makéseshaf
the action and parameters to be simulated. The most important choice, fanidghdermion
simulations, is the choice of fermion action, each of which has advantagedrawbacks. To
weigh those we recall that the finite temperature transition or crossoveavéndfor small quark
masses, by the restoration of chiral symmetry in the high temperature phase.

(i) Wilson-type fermions, including clover fermions, have the advantagehies are local (in fact
“ultralocal”) for any number of fermions, while the fermion determinant isifpesfor even num-
bers of fermions. Their big disadvantage is that the chiral symmetry is explicitiken and the
chiral limit therefore not protected. This makes the study of chiral symmestpration cumber-
some and difficult. It becomes really meaningful only in the continuum limit.

(ii) Staggered fermions have the advantage that they have a (remnaat)sgiimmetry. The chiral
limit is thus protected. In addition, they are comparatively cheap to simulatem@iredisadvan-



Recent progress in finite temperature lattice QCD Urs M. Heller

tage of staggered fermions is the need to use the “fourth root trick” wheeddkired number of
fermions of a given mass is not a multiple of four.

(iii) Overlap and domain wall fermions (at least for sufficiently large fifth disienLs) have the
advantage of good chiral symmetry and the protection of the chiral limit, artiofy local for
any number of fermions (at least for sufficiently small lattice spaaind-urthermore, for overlap
fermions, the fermion determinant is positive for any number of fermignsTi3é disadvantage of
these chiral fermion discretizations is that they are expensive to simuldategprbblem is acerbated
by the fact that one might need lattices with> 8 to have lattice spacings small enough in the
transition/crossover region for the fermion action to be sufficiently locgudging this drawback,
one should keep in mind that, for the computation of the EOS, for example, #iagsof the
costs of a simulation is worse, by a factera™#, than for typical zero temperature simulations,
because the observable, obtained from the difference of a finite agmd éemperature simulation,
decreases, in lattice units, a5 while the error decreases much slower.
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Figure 2: The pressure for free fermions with

. _ . . .
various fermion discretizations versi, from Flgure2 3 The pion m";‘SS spllttlng,(n"(n -
Ref. [{1. m2)/TZ as function ofm2/T2 at the lattice spac-

ing corresponding to the finite temperature transi-
tion/crossover point, from Refﬂ[G].

Most of the recent dynamical fermion thermodynamics simulations have usedviatpver-
sions of staggered fermions. The improvement aims to reduce taste symnestkynigr by using
some version of “smeared” or “fattened” gauge links in the nearest beidiopping term. This
is done for all three versions currently under investigation, p4 (BieleRBLC-Bielefeld) [#], asg-
tad (MILC) [B] and stout-link (Wuppertal-Budapesf] [6]. The first twisaaim to improve the
dispersion relation, which implies improved behavior of thermodynamic quaniitiése high
temperature limiti(e., for free fermions) by including three-hop terms: straight, the Naik term, for
asqgtad, and “knight moves” for p4. For free fermions, and hence ihigfetemperature limit, the
link fattening becomes inoperative. Thus stout-link fermions act like stdrstaggered fermions,
and asqtad fermions like Naik fermions. The two forms of improvement are dkestiin Figs[]2
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and[B.

The other major advance, in the last couple of years, has come from irittaigjc side.
Because of the fractional power of the fermion determinant, neededddpthith-root trick, the
usual, exact HMC algorithn]8] can not be used. Instead, the ineyacithR algorithm [P], with
stepsize errors of’(£2), was employed. This obstacle was recently overcome with the invention
of the exact RHMC algorithn{]0]. As discussed in the talk by M. Clark fh&] RHMC algorithm
is not only exact but allows various other improvements — multiple time-step itimyschemes,
multiple pseudofermion fields, etc. — that can speed up the simulations bysfadt@rup to 8
compared to the R algorithm.

A couple of exploratory studies with Wilson-type fermions were preseritddsaconference,
using a hypercube actiop ]12] and with twisted-mass Wilson ferm{ofs [1&3]irBthe rest of this
talk | will concentrate on simulations with (improved) staggered fermions. Foptinpose of this
talk the validity of the fourth-root trick, discussed in detail by S. Shakd, jill be assumed.

3. The phase diagram

3.1 The physical point

Determining the nature of the finite temperature transition or crossover atylseal point is
not only of interest in its own right, but has implications on the possible phageasn with finite
chemical potential (see.g. the talks by C. Schmid{]15] and M. Stephar{o}[16]). The Wuppertal-
Budapest group[[17] made a systematic investigation using stout-link imprevexibhs and the
exact RHMC algorithm. They used a physical strange quark mass astcahfdegenerate) light
quark masses. The chiral susceptibility fdr= 4 and 6 and various volumes is shown in Hig. 4.
It shows no sign of increasing with volume as would be expected for aigephase transition,
indicating existence of only a crossover.

-I LI I LI I L I- _I LI I LI I T 1T T 71 I_

100 |- A 4x125 7] 200 - . Bl

C i o 4x16: ] i z ® o Bx24% ]

80 - g [ O 4x24 7] 150 :_ § i o 6x323_:

Ni C ] . ] % B 3 = ]
x 60 : . 1 0R i 3 3 ]
C & ] 100 N ilz 8 N

40 0 e ] Fal” s )

-8 ‘I‘ E L a, 4

a | ay,
20 _I 11 1 1 I 11 1 1 I 11 1 | I_ 50 _I 11 1 1 I 11 1 1 I 11 1 1 IeE
3.2 3.3 3.4 3.5 3.4 3.5 3.6 3.7
6/g? 6/g?

Figure 4. The chiral susceptibility foN; = 4 (left) andN; = 6 (right) and various volumes, from ReE[l?].

A definite statement, however, needs an extrapolation to the continuum amitkinfilume
limits. For a meaningful extrapolation renormalized observables have to rideoed. The
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Wuppertal-Budapest group does this by subtractingTthe 0 value,Ax = x(T) — x(T = 0),
to cancel a potential additive divergence, and then multiplies mﬁtho obtain an RG invariant
observable. This is then extrapolated to the continuum limit for fixed asagetNs/N; = 3,4 and
5, see Figf[]5.
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Figure 5:  The continuum extrapolation df“/(mgAx) for fixed aspect ratioNs/Ny = 3,4 and 5, from
Ref. [17].

The resulting continuum renormalized susceptibility stays finite and nonhzeh infinite
volume limit. It would diverge for a genuine phase transition. Hence we rmwe ltonvincing
evidence that, in nature, QCD has a crossover at finite temperature ranlazgon chemical po-
tential.

3.2 The second order boundary line

De Forcrand and Philipsen mapped out the second order critical linedpatates the first
order region at small quark masses from the crossover region at imtiateguark masses in the
myq — Ms plane of the phase diagra]18]. They used standargnimproved, staggered fermions
and the exact RHMC algorithm.

At fixed amy they determined the location of the second order point, as functiamgf, by
requiring that the Binder cummularB,(m{Tl') attain its critical Ising values- 1.6. The locations,
with errors, are shown in Fig] 6. The arrows in the plot indicate paramedéiries at which zero-
temperature simulations were performed to determine meson masses and latiicg. 5pa For-
crand and Philipsen found

e For the physical strange quark mass, the second order boundars @icnon-vanishing
mﬁ{jt < mfj’gys, i.e.,the physical point is in the crossover region, in agreement with the result
of the Wuppertal-Budapest group.

e The critical line is consistent with€™ (myq) = mif® —cnf’?, i.e., the behavior that is ex-
pected if a tricritical point exists.

One should emphasize that these results are most likely qualitative, only. tdwigalpstag-
gered fermions were used on lattices vihkh= 4, were the lattice spacing in the crossover/transition
region is quite largea ~ 0.27 fm. Therefore lattice effects could be significant. For exam-
ple, at the second order critical point for three degenerate flavers;odcrand and Philipsen
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Figure 6: Determination of the second order boundary line betweefirdteorder and crossover regions in
them,q — ms plane, from Ref.|E8].

find my;/m, = 0.304(2), whereas the Bielefeld group, using p4 fermions, concluded fhht [19]
myz/m, < 0.18, the physical value of the mass ratio. For additional results with threendeg
ate flavors see also the contribution by Cheng [20].

3.3 Massless 2 flavox QCD

Kogut and Sinclair continued their study of massibigs= 2 xQCD onN; = 8 lattices with
Ns = 12,16 and 24 [21].xQCD contains an irrelevant chiral 4-fermion interaction, which makes
the fermion matrix non-singular in the limit of zero (bare) quark mass whileepvasgy the chiral
symmetry of the Lagrangian, thus enabling the study of spontaneous yrnatetry breaking in
the massless limit. For numerical simulations, the 4-fermion interaction is madeatjoadrthe
fermions by introducing an auxiliaryo, ) field.

Kogut and Sinclair used (standard) staggered fermions which, at fittieelapacing have a
U(1) x U(1) chiral symmetry, expected to be spontaneously brokén(iy. Hence, if the chiral
symmetry restoration transition is second order, one expects the transitieninattee 3-dO(2)
universality class. Therefore, one wants to compare to thed82) spin model. However, the
magnetization of th@©(2) spin model has large finite size effects, as seen in[Fig. 7 (left). Hence,
instead of comparing to infinite voluni®2) behavior, Kogut and Sinclair compare to finite volume
behavior for a “best matched size”. The strategy, thus, is to find the volamehich theO(2)
magnetization gives the best fit

<4_”1U(B)> :b<M(a(B*Bc)+Tc)> i.e. 1/J:T:a(B*Bc>+Tc~ (3.1)

of the chiral condensate, for a given QCD lattice size.

Such fits work well, see Fig] 7 (right), strongly suggesting thaj(t€D data are compatible
with the O(2) spin model. The correspondir@(2) volumes are small, %for 16° x 8 and & for
24% x 8. Thus, one should not attempt comparisons with large volume critical lehd<ogut
and Sinclair find, in retrospect, that such fits also work for their eaNiet 6 data. Hence the
conclusions of their earlier work, Ref.]22], should be modified adogyl.
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Figure 7: The magnetization of th®(2) spin model in the transition region for various volumestjlahd
an example of a best volume fit ¢@/y) to theO(2) spin model magnetization (right), from ReE[Zl].

3.4 2 flavor LQCD with KS quarks at Ny = 4

The Pisa grouf[23] continued their investigation of the phase transitibla ef2 QCD with
standard staggered quarks\at= 4. To check their previous resul{s J24], obtained with the inexact
R-algorithm they performed comparisons with the exact RHMC algorithm. Tdwayd that the
systematiaZ(£2) step-size errors are comparable to the statistical ones.
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Figure 8: Test of first order finite volume scaling with L3 kept constant, from Ref] [R3].

They then tested their hypothesis of a first order transition with a finite samgctudy of
the specific heaGy, and chiral susceptibilityym,, with the scaling variabley LY kept constant for
the choicey, = 3, the value for a first order transition, see Fig. 8. The specific hegsaicely,
but not the chiral susceptibility. They speculate that the reason for ther@tght be the large mass
needed for the smaller volumam —1 = 0.1068.

On the other hand, T. Mendes ]25] recently compared previous dataebIttC collabora-
tion [PG] and her own new data at a heavier masa= 0.075, with the (infinite volumeD(4)
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Figure 9: Comparison oN; =2 QCD data with staggered fermionshat= 4 to theO(4) scaling function,
from Ref. [25].

scaling function, as shown in Fif]. 9. Mendes inferred that the scalingsnprite well, especially
at the heavier mass.

I would conclude that the issue of the order of the phase transition fav@rfQCD, even with
staggered fermions &; = 4, and certainly in the continuum limit, remains an open question.

3.5 T, for full QCD

The RBC-Bielefeld collaboratior] [P, P8] has recently performed a syatie study of the
crossover temperature in full QCDe., physical strange quark mass, and degenerate light up and
down quark massesy. They used p4 fermions and the exact RHMC algorithm for simulations
with Ny = 4 and 6, several light quark massas and fairly large volumes,  Ns/N; < 4.

For each simulation parameter set, they located the crossover point fropedkeposition
of the chiral and Polyakov loop susceptibilities. The two peak positionsaapgeo coincide at
large volume, suggesting that the crossovers for deconfinement &atl shmmetry restoration
occur simultaneously. So the authors averaged over the two determinatforitearolume. T, in
units ofral is shown in Fig[ 0 as function afiesro. The data at finite lattice spacing/] 1/N,
and unphysical light quark masses are then extrapolated to the continuurrohmghysical point,
given bympgrg = 0.321(5) — ro was taken from Ref[[29]o = 0.469(7) fm — using the form

(Tero)m e = Tefo+A(Mpgro)d + B/NZ . (3.2)

Here,d = 1.08 would be expected for a second order phase transition (i@t#g universality
class) andl = 2, i.e, a linear dependence on, for a first order transition. At the physical point
they find Terg = 0.457(7) "5, with the second error coming from usinig= 2 andd = 1 in the
extrapolation.

In physical units, the transition/crossover temperatur is 192(7)(4) MeV . This is about
12% larger than the value obtained by the MILC collaboration, using asgtatidns, the R-
algorithm, lattices with\; = 4,6,8 andNs/N; = 2, and a combined chiral/continuum limit extrap-
olation as in eq.[(3]2). The MILC collaboration obtairikd= 16910)(4) MeV [f]. While they
worked in units of the scali, the conversion to physical units was done with compatible values
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Figure 10: T¢in units ofral as function ofmpgrg,
from Ref. [2]]. The vertical line shows the location
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Figure 11: Recent lattice determinations G,
collected by P. Petreczky in Ref. ]30].

and does not contribute to the disagreement. A collection of recent detéionsafT., assembled
by P. Petreczky in Ref[[30], is shown in Fif.] 11.

4. The equation of state

After establishing the phase diagram, including the order and nature oh#se pransitions
and/or crossovers, one would like to understand the nature of theediffehases. One of the
basic quantities for this is the equation of state (EOS), the preggilrg the entropy density
S(T) =dp(T)/dT and the energy densit(T) = TST) — p(T). Besides its intrinsic interest as
a fundamental property of QCD, the EOS is of phenomenological interesteample, it is an
import input in hydrodynamical models of the QGP, often used to try to interpgailts from
heavy-ion collision experiments, such as the observed elliptic flow. Foaatifative understand-
ing, obviously, a quantitative understanding of the EOS is necessary.

4.1 Low temperature behavior
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Figure 12: Comparison of the EOS from lattice simulations with a hadesonance gas model with masses
adjusted to the lattice quark masses used, from Réf. [31].
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In the low temperature hadronic phase, the excitations are weakly interhetiingns, includ-
ing all resonances. This suggests that a hadron resonance gagHR@gIshould give a good de-
scription of the EOS. This was recently tested by a comparison with lattice datpp#sfermions
andN; = 4 [BT]. Since the light quark mass used was larger than the physical lighk gnass, the
hadron masses of the HRG where adjusted to match those on the lattice. Withjubkisnaat the
HRG works surprisingly well, even around the crossover temperatsiegrabe seen in Fify.]12.

4.2 The EOS at high temperatures

At (very) high temperatures the running couplig@) vanishes (logarithmically ifT), and
one expects that the EOS should be computable in perturbation theoryoBgdhttis afflicted with
infrared divergences, requiring resummation of certain classes afadisg givinge.g. an 0(g?)
and ang(g°) contribution. At&(g®) the IR divergences cause all orders of PT to contribute, so
that this order needs to be computed non-perturbatively. The last patiter orderg®log(1/g)
has recently been computed using the technique of dimensional redd&jon [3
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Figure 13: The pure gauge EOS in perturbation theory and the compangbn.GT data, from Rest,

B3I

The convergence, for pure gauge theory, is illustrated in [Flg. 13. Whéledhvergence is
questionable, with fitting the unknown, non-perturbatiyg® term to (pure gauge) LQCD results
for T > 3T, good agreement can be fourjd][33]. The EOS, at high temperaturesisgasonably
well understood. The approach to the Stefan-Boltzmann (SB) limit is raliivey due to the slow,
only logarithmic vanishing of(T ) with increasing temperature.

The high temperature behavior of pure gauge LGT #Rdimensions was recently investi-
gated in detail[[34]. In 2-1-d, the dimensionless ratig? /T serves as the running coupling that
vanishes at high temperatures. Since the interaction measure (the trat@ygn@nishes for free

glUOﬂS, one expects
e—-2p @ T

Fig.[I4 shows pressure and interaction measure, scaled to the leadindpgire behavior.
The data nicely confirm thde — 2p)/(gT)? approaches a constant at high temperature. The EOS

10
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Figure 14: The pressure (left) and the interaction measure, scalexhthirlg perturbative behavior, (right)
for purge gauge LGT in 2 1 dimensions, from Ref|I:]34].

is, again, well understood at high temperature, increasing our conéiderout understanding of
the 3+ 1-D theory. Due to the faster running of the coupling, the pressure arbun@T. is even
farther from the SB limit than for 3- 1-d QCD.

4.3 The EOS around the transition/crossover region

While the EOS is well understood and modeled at low and high temperaturesttperiurba-
tive input from lattice calculations is needed to determine the EOS at intermedigteritures,
i.e., in the transition/crossover region. It is also needed, as we have teeealjbrate the high
temperature description — via the fit of th&g®) term — and to check the range of validity of the
HRG model at low temperatures.
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Figure 15: Quark mass effects from NLO pertur- with staggered quarksN; = 2 standard staggered
bation theory on a “phenomenological modeling” 9ata are from Refs[ [B$,36] ands = 2+ 1 stout-
of the EOS 3] (see text). link data from Ref.[[B].

This intermediate temperature range is also the region where the effectsifahge quark,
with ms/Tc ~ &(1), and even of the charm quark, become visible. This can be seen [n]Fidnidts
shows the quark mass effects incorporated as NLO perturbativeetiongto a phenomenological

11
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modeling of the EOS based on the HRG, pure gauge lattice results and peauntheory [3B], and
Fig.[L§, which compares lattice results for staggered quarksNyita 2 [B3,[36] andNs = 2+ 1 [|]
flavors. The effect of the strange quark becomes clearly noticeable aunti 5T, and the effect
of the charm quark above ~ 3T..
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Figure 17: The interaction measure (left) and the energy density {rfgbm 2+ 1 flavor simulations with
asqtad fermions along two lines of constant phy [37].

There have been two recent computations of the EOS in full QCD, on thegattletermina-
tion in the continuum limit, both usinly, = 4 and 6 lattices. The first, using stout-link improved
fermions and the exact RHMC algorithm, appeared in Rgf. [6]. Since Btdutermions do not
have an improved high temperature behavior, the authors of [Ref. [@kd@m a-posteriori tree-
level correction factoceont/cy, = 0.571 and 0663 for Ny = 4 and 6 to correct for the tree level
0 (@) lattice effects (see difference in the data presented i Hig. 16 and Figgh§);
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Figure 18: The pressure with asqtad fermions, from R [37], (lefg wiith stout-link fermions, corrected
for tree-level lattice effects, from Reﬂ [6], (right) foulf QCD simulations.

The second, by the MILC collaboration, described in more detail in theibatitn by L. Lev-
kova [37], uses asqtad fermions. For the most part, configuratiorevaged earlier with the R-

Lincidentally, this figure also indicates that the stout-link improvement hgligitsle impact for the EOS.
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algorithm [T] were analyzed. The major effort, over the last six monthgemed an estimate of,
and correction for, the step-size errors induced by the R-algorithnesgided in more detail in
the contribution by L. Levkovd[37].

The preliminary, step-size corrected results along two different linesrdtant physics, with
m = 0.2mgandm = 0.1ms, and twoN;’s, 4 and 6 for the latter case, for the interaction measure and
the energy density are shown in Hig} 17. Overall, light quark mass and Ispéoing effects appear
to be fairly small. The pressure along these lines of constant physics isacednwith the result
from stout-link fermions of Ref[[6] in Fid. 18. With appropriate caveats,tihio determinations
agree reasonably well.

A reliable continuum extrapolation of the EOS for full QCD should becomeiptesin the
not too distant future. Certainly, simulations with = 8 are needed, and a repeat of the asqtad
fermion simulations foN; = 4 and 6 with the exact RHMC algorithm would be desirable.

5. Other results

1.2
LK
1k o
TigY? o *
x
X ¢
0.8 o 1
% L
¥
06 | ot
s Nf:O ——
TIT, N=2+1 —e—
04 L— ; ;
1 2 4

Figure 19: The space-like string tension for pure gauge theory and fel Zlavor QCD, from Ref.ES].

At high temperature, one expects dimensional reduction for QCD to wollk egpecially
in the chromomagnetic sector. The dimensionful 3-d gauge coupling is g'w@é =g’(T)T,
and the fermions, to leading order, affect only the running(a@f) — higher order corrections can
be included, see Ref[ [42]. This proposition was studied recently byuriegghe spatial string
tension in 2+ 1 flavor QCD with p4 fermiong[28] and comparing to pure gauge resulihasn in
Fig.[I9. The comparison can be quantified by fittifg = csg3 = csg?(T)T, with c3 = 0.587(41)
for 2+ 1 flavor QCD, as compared @ = 0.566(13) for 4-d SU(3) pure gauge theorl [43] and
c3 = 0.553(1) for the 3-d theory[[44]. Similarly, for 2-flavor QCD with clover fermionskita
reportedcs = 0.54(6) [A5], compatible with these results.

Several other interesting results in finite temperature lattice gauge theosarappduring
the last year or were presented at this conference. These includdyaostine dynamics of the
phase transition in pure SU(3) lattice gauge thepry [38], indications ohanigal fixed point in
finite temperature U(1) lattice gauge theofy|[39], a suggestion that thercamtex field is the
field that becomes massless at the deconfinement transition of pure da(®etgory [49], and
impressively accurate results for two-color strong coupling QCD with stegbfermions at finite
temperature, and finite chemical potential, with a novel cluster algor{thim [41].
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6. Conclusions

During the last year simulations with improved staggered fermions have ggdadwnvincing
evidence that in nature, at zero baryon density, there is a crossowette hadronic phase to the
quark-gluon plasma phase, rather than a genuine phase transitioA 18 determination found
a crossover temperature of 182 MeV [R7], some 10-15% larger than earlier estimates. Both
results need confirmation from other groups and, in particular, fronr &hmion discretizations.

Progress has been made in the computation of the EOS for full QCD at intatméeim-
peratures, around the crossover region, where model and peitarbalculations are unreliable.
N; = 8 results, though, are needed for controlled continuum extrapolations.

Much remains to be done in understanding the quark-gluon plasma phasevinittity of the
crossover. For example, determinations of transport coefficientsespdmse functions would be
very desirable.

Acknowledgments: Thanks to all who provided information and figures for this review, andkba
to my colleagues from the MILC collaboration and to Frithjof Karsch for niouediscussions on
the subject covered here.
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