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1. Introduction

One of the major tasks of lattice QCD is computing the properties of hadrons form the un-
derlying theory of QCD. Over the last several years significant effort has been devoted into lattice
calculation of the nucleon structure. Traditionally, nucleon structure has been probed in both elastic
scattering experiments, where form factors are measured, and deep inelastic scattering experiments,
where nucleon structure functions are measured. Recently, hard exclusive processes have been used
to define the so called generalized parton distribution functions (GPD) [1, 2, 3, 4, 5, 6, 7, 8, 9] which
encompass both form factors and structure functions in certain limits. For that reason, lattice calcu-
lations of the GPDs have been one of the major efforts to understand nucleon structure from lattice
QCD during the last few years.

The generalized parton distribution functions are defined by off-forward matrix elements of
bilocal operators on the light cone

OΓ(x) =
∫ dλ

4π
eiλxq(

−λn
2

)ΓPe−ig
∫ λ/2
−λ/2 dα n·A(αn)q(

λn
2

), (1.1)

where x is the longitutinal momentum fraction, n is a light cone vector, Γ could be Γ = /n, /nγ5 or
Γ = nµσ µνγ5. If we define t =−∆2, with ∆ = P′−P the 4-momentum transfer, and ξ =−n ·∆/2,
the longitudinal momentum transfer, these matrix elements can be parameterized in terms of nine
independent generalized distribution functions:

〈P,s|O6n(x)
∣∣P′,s′〉 = ū(p,s)

[
/nH(x,ξ , t)+

nµ∆ν

2m
iσ µν E(x,ξ , t)

]
u(p′,s′) (1.2)

〈P,s|O6nγ5(x)
∣∣P′,s′〉 = ū(p,s)

[
/nγ5 H̃(x,ξ , t)+

n ·∆
2m

γ5 Ẽ(x,ξ , t)
]

u(p′,s′) (1.3)

〈P,s|O5T (x)
∣∣P′,s′〉 = ū(p,s)

[
nµσ

µk
γ5

(
HT (x,ξ , t)− t

2m2 H̃T

)
+

+
εµναβ ∆αγβ

2m

(
ET (x,ξ , t)+2H̃T (x,ξ , t)

)
+

+
nµ∆[µσν ]αγ5∆α

2m2 H̃T (x,ξ , t)+
εµναβ Pαγβ

m
ẼT (x,ξ , t)

]
u(p′,s′) (1.4)

In the forward limit, i.e. ∆ = 0 the regular parton distribution functions such as the quark
density, helicity and transversity distributions are recovered:

H(x,0,0) = q(x) (1.5)

H̃(x,0,0) = ∆q(x) (1.6)

HT (x,0,0) = δq(x) . (1.7)

The first moments of the GPDs are the regular form factors. For example the vector form
factors: ∫ 1

−1
dxH(x,ξ , t) = F1(t) (1.8)∫ 1

−1
dxE(x,ξ , t) = F2(t) (1.9)

2



P
o
S
(
L
A
T
2
0
0
6
)
0
1
8

Nucleon Structure Konstantinos Orginos

y

xz

⊥r

)( ⊥rρ

0
⊥r

p

x

y

xz

0
⊥r

p

f x( )

1

xp

Qz 1~⊥δ

x

y

xz

p

xp

Qz 1~⊥δ

⊥r

0
⊥r

),( ⊥rxf

1

Figure 1: The infinite momentum frame probabilistic interpretation of form factors (left), parton distribu-
tions (center), and generalized parton distribution functions at ξ = 0 (right).

and the axial vector form factors. ∫ 1

−1
dxH̃(x,ξ , t) = gA(t) (1.10)∫ 1

−1
dxẼ(x,ξ , t) = gP(t) (1.11)

In the infinite momentum frame and ξ = 0 the generalized parton distribution functions admit
a very simple probabilistic interpretation (see Fig. 11) [7, 10, 11, 12, 13, 14, 15]. By taking
the inverse Fourier transform with respect to the transverse momentum transfer ∆⊥, we obtain
distributions in longitudinal momentum fraction and impact parameter space. For example∫ d2∆⊥

(2π2)2 e−i∆⊥·r⊥H(x,0, t) = f (x,r⊥) (1.12)

where r⊥ is the impact parameter vector living on the two dimensional transverse space. Taking
the first moment of f (x,r⊥), i.e. integrating over the momentum fraction x ,we obtain the charge
distribution ρ(r⊥) in impact parameter space. In the forward limit, i.e. no momentum transfer,
f (x,r⊥) becomes the quark density f (x) with momentum fraction x. In general f (x,r⊥) is the
probability to find a parton with momentum fraction x at the point r⊥ in the transverse plane. As it
is shown in Fig 1(right most panel), the function f (x,r⊥) becomes increasingly narrow and small
as x approaches one. This is just due to the fact that the probability of finding a single constituent
carrying all the momentum of the nucleon is negligible.

Lattice QCD can only contribute to the calculation of the moments of these objects. The
moments are related to nucleon matrix elements of local operators. These matrix elements can be
rotated to Euclidean space and then computed on the lattice. The moments of GPDs are related to
matrix elements of simple quark bi-linear operators,

〈p′,s′
∣∣Oγ

µ1µ2···µn

∣∣ p,s〉 (1.13)

1Figure taken from [9].
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where the operators Oγ

µ1µ2···µn are given by

Oq
µ1µ2···µn =

(
i
2

)n−1

q̄γµ1

↔
Dµ2 · · ·

↔
Dµn q− trace,

O5q
σ µ1µ2···µn =

(
i
2

)n−1

q̄γσ γ5
↔
Dµ2 · · ·

↔
Dµn q− trace,

Oσq
ρνµ1µ2···µn =

(
i
2

)n

q̄σρν

↔
Dµ1 · · ·

↔
Dµn q− trace,

Oσ5q
ρνµ1µ2···µn =

(
i
2

)n

q̄γ5σρν

↔
Dµ1 · · ·

↔
Dµn q− trace. (1.14)

and
↔
D= −→D −←−D and −→D ,←−D are covariant derivatives acting on the right and the left, respectively.

The indices are symmetrized, and in some cases antisymmetrized. The moments of the regular
parton distribution functions are then related to the forward limit of the above matrix elements. In
addition, the matrix elements with no derivatives define the elastic axial vector and vector form fac-
tors of the nucleon. The above matrix elements define the generalized from factors. The moments
of the GPDs are polynomials in ξ , with coefficients given by generalized form factors, which can
be easily computed on the lattice. Standard techniques of extracting matrix elements from three
point functions apply. However, over the last several years it has been realized that getting results
that can be of physical relevance is a rather non-trivial task. Careful study of all the systematics
of the lattice calculation is required. In the last few years though we have been making steady
progress in accounting for all these systematics and obtaining results that are very encouraging.

2. Lattice Actions

One of the major problems in hadron structure calculations on the lattice is the approach to the
physical pion mass. During the last few years developments in both the algorithms and the lattice
actions used allowed us to make significant progress in this area. For realistic lattice calculations
dynamical fermions with pion masses below 400 MeV are needed. This allows chiral extrapolation
formulas to be used with some reliability. In addition a dynamical strange quark is required in order
to guarantee that the low energy constants of the Chiral Lagrangian used in the chiral extrapolations
match those of the physical theory. Large physical volumes are also needed so that finite volume
systematic errors are under control. These constrains make realistic lattice calculations possible
only very recently.

The development of actions with exact chiral symmetry on the lattice has been proven to be a
significant help. The first quenched lattice calculations with such actions have already been done
with pion masses significantly lighter than those used before [16, 17, 18]. Unfortunately, the cost
of these actions is such that only very recently have the first results with two light dynamical flavors
appeared [19, 20].

The development of improved Kogut-Susskind fermions was a significant step towards light
dynamical fermion calculations [21, 22, 23, 24, 25]. Recent work by the LHP collaboration takes
advantage of both developments, working with pion masses as low as 300 MeV [26, 27, 28, 29].
The Kogut-Susskind fermions provide a cheap representation of the quark loop effects, while the
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use of domain wall fermions in the valence sector takes advantage of the constraints of chiral sym-
metry in both the renormalization of the operators and the effective field theory need to extrapolate
to the chiral point. Although one might think that this mixed action scheme is a complication diffi-
cult to control, in practice it has been shown that the effects of the miss match between the sea and
the valence sectors are small in the case of flavor non-singlet quantities. This is very clearly seen
in the work by NPLQCD [30, 31, 32, 33, 34, 35]. In theory all these complications can be taken
care of in the context of mixed action chiral perturbation theory [36, 37]. One problem with Kogut-
Susskind fermions is that there is still a theoretical issue of the validity of computations when the
number of flavors is not an integer multiple of four, but recent theoretical work indicates that the
troublesome non-localities of the lattice action go away in the continuum limit [38, 39, 40, 41].
Hence these effects are most likely taken care of in the continuum limit.

Recently, algorithmic developments [42, 43, 44, 45, 46, 47, 48, 49, 50] together with increased
computational power, has allowed for dynamical Wilson and improved Wilson fermion calcula-
tions. The QCDSF collaboration is using such a formulation to achieve pion masses below 300
MeV.

Finally, the development of twisted mass Wilson fermions opens up yet an other avenue for
approaching the chiral limit [51, 52, 53, 54, 55, 56, 57]. The ETM collaboration has applied this
technology to the moments of pion structure functions with pion masses as low as 250 MeV [58,
53].

3. Renormalization

One of the main problems we face in calculating the moments of GPDs is the renormalization
of lattice operators. The fact that the full O(4) Euclidean rotational symmetry is broken down to
the hypercubic H(4) symmetry results in operator mixings that are not allowed in the continuum.
In particular, for higher moments, the mixing with lower dimensional operators cannot be avoided,
limiting us to the ability to compute only the first three moments. Recently Detmold and Lin
proposed a method to avoid this problem [59]. However, it remains to be decided how practical
this idea is.

The use of fermions with chiral symmetry on the lattice eliminates in some cases, such as the
dn matrix elements related to the moments of the polarized structure functions, mixings with lower
dimensional operators. An example of this can be seen in [17].

Perturbation theory has been widely used in computing the renormalization constants. Re-
cently Gockeler et al. [60, 61] have revisited the issue of operator mixing and renormalization
of twist two operators for Wilson and Clover Wilson fermions. In the case of off-forward matrix
elements the mixing pattern is more complicated than in the case of forward matrix elements hence
a more careful study is required. In addition, perturbative calculations for the case of the Neu-
berger overlap operator for several choices of the gauge action have been done by Ioannou and
Panagopoulos [62], and for the case of domain wall fermions with by Bistrovic [63] and Capitani
et al. [64].

Finally, QCDSF and RBC collaborations have used successfully the Rome-Southhampton
non-perturbative renormalization technique [65, 66, 17, 67].
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omitted for clarity, as are data at masses beyond the range
of the graph.) The discrepancy in the vicinity of m2

! !
0:35 GeV2 is of the order of magnitude of the finite volume
effects in Fig. 1.

Conclusions.—In summary, we have calculated gA in
full QCD in the chiral regime. The hybrid combination of
improved staggered sea quarks and domain wall valence
quarks enabled us to extend calculations to the lightest
mass, 354 MeV, and largest box size, 3.5 fm, yet attained,
and to obtain statistical accuracy of 5% with negligible
error from volume dependence. Chiral perturbation theory
implies mild dependence on the pion mass, and a three
parameter constrained fit yields an excellent fit to the data
and generates an error band of size 7% at the physical pion
mass which overlaps experiment. Thus, this calculation
represents a significant milestone in the quest to calculate
hadron structure from first principles.

The fact that gA is so accurately measured and amenable
to lattice calculations offers significant opportunities for
further refining and testing the precision of lattice calcu-
lations. Extending the range of pion masses to include 300
and 250 MeV and decreasing error bars to 3% offers the
prospect of reducing the present statistical error by a factor
of 2, and the feasibility of this with existing MILC con-
figurations is being explored. Additional opportunities in-
clude calculation on MILC lattices with lattice spacings
a " 0:09 and 0.06 fm to determine finite lattice spacing
dependence, and using partially quenched hybrid "PT [27]
to account for differences in valence and sea quarks in
extrapolating to the continuum limit.

We are grateful for helpful discussions with Will
Detmold, Martin Savage, Tony Thomas, Wolfram Weise,
and Ross Young, and to Tony Thomas and Ross Young for
pointing out an error in conventions used in defining chiral

constants in an earlier version of this manuscript. This
work was supported by the DOE Office of Nuclear
Physics under Contracts No. DE-FC02-94ER40818,
No. DE-FG02-92ER40676, and No. DE-AC05-
84ER40150, the EU I3HP under Contract No. RII3-CT-
2004-506078 and by the DFG under Contract No. FOR
465. Computations were performed on clusters at Jefferson
Laboratory and at ORNL using time awarded under the
SciDAC initiative. We are indebted to members of the
MILC and SESAM Collaborations for providing the dy-
namical quark configurations which made our full QCD
calculations possible.
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Figure 2: Lattice calculations of the nucleon axial coupling.

4. Axial coupling of the proton

One of the most accurately known quantities related to nucleon structure is the nucleon axial
coupling. It can be very accurately measured in neutron beta decay experiments. Its deviation
from one is a direct indication of the non-trivial structure of the nucleon. The latest particle data
book [68] value is

gA

gV
= 1.2695(29) (4.1)

It is very difficult to compute this number on the lattice to such a precision. In addition to other
systematics, one needs to properly account for charge symmetry breaking effects. However, com-
puting this number from lattice QCD would be a significant success. Present calculations can
compute it to an accuracy a little bit better than 10%. One still relies on chiral extrapolations from
rather heavy pion masses. As a result the true systematic error due to the chiral extrapolation is
difficult to quantify. It is remarkable that over a wide range of pion masses very little dependence
of the quark mass is observed.

One of the recent interesting results is the fact that the axial coupling seems to be sensitive to
finite volume corrections. One of the first studies that observed this was a quenched domain wall
fermion calculation [69]. Recently, the finite volume effect has also been observed in two flavor
dynamical improved Wilson fermion calculations by QCDSF [70, 71]. Their results, although
at relatively heavy pion masses, corrected for finite volume effects, resulting in an extrapolated
number compatible with experiment within the quoted statistical error. QCDSF has also reported
some preliminary results at significantly lighter pion masses.
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Figure 3: QCDSF results for the momentum fraction computed with overlap fermions in the quenched
approximation.

LHPC has computed gA using the mixed action scheme (domain wall valence on Kogut-
Susskind sea) at one lattice spacing with lightest pion mass 350 MeV. The results corrected for
finite volume using [72] are presented in Fig. 2. The result of the chiral extrapolation using the
one loop chiral perturbation theory including the Delta resonance [72] is gA = 1.22(8) which is
consistent with experiment within errors. Recent work by Bernard and Meissner [73], going to two
loop chiral perturbation theory, indicates that one may need pion masses below 300 MeV before
reliable chiral extrapolations can be obtained. Certainly, the lattice results shown here indicate that
improving the control of the chiral extrapolation would definitely benefit from lower masses. In
fact, it seems that this is the only way one can improve the precision on the gA calculation both
from the point of view of statistical and systematic errors. LHPC is currently working on pushing
closer to the chiral limit. Using the Kogut-Susskind lattices produced by MILC they expect to be
able to perform calculations in the range of 250 MeV pions. In addition, calculations on a smaller
lattice spacing are in the pipeline, in order to control the continuum extrapolation error.

In Fig. 2 we also plot recent results by RBC [74, 20] and QCDSF [71] and together with
the old LHPC/SESAM results [75] obtained with two dynamical flavors of Wilson fermions. The
consistency between different formulations is reassuring.

5. Moments of structure functions

As noted above the moments of the structure functions are related to forward matrix elements
of the nucleon. In order to fix our notation for these matrix elements are related to moments as

7
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following

1
2 ∑

s
〈p,s|Oq

{µ1µ2···µn}|p,s〉 = 2〈xn−1〉q(µ)× [pµ1 pµ2 · · · pµn + · · ·− tr]

−〈p,s|O5q
{σ µ1µ2···µn}|p,s〉 =

1
n+1

2〈xn〉∆q(µ)× [sσ pµ1 pµ2 · · · pµn + · · ·− tr]

〈p,s|O [5]q
[σ{µ1]µ2···µn}|p,s〉 =

1
n+1

dq
n(µ)× [(sσ pµ1− sµ1 pσ )pµ2 · · · pµn + · · ·− tr]

(5.1)

where {} implies symmetrization and [] anti-symmetrization of indices. The nucleon states |p,s〉
are normalized so that 〈p,s|p′,s′〉 = (2π)32E(p)δ (p− p′)δs,s′ . The operators O are these defined
in Eq. 1.14

In addition the transversity moments are defined by

〈p,s|Oσ5q
ρν{µ1µ2···µn}|p,s〉= 2

mN
〈xn〉δq(µ)× [(sρ pν − sν pρ)pµ1 pµ2 · · · pµn + · · ·− tr] . (5.2)

The above operators give us the moments of structure functions for arbitrary flavor. In practice how-
ever, the lattice correlation functions needed require the calculation of the so called "disconnected"
diagrams. This is numerically a very challenging exercise, and hence people usually concentrate
on computing the iso-vector moments for which the disconnected diagrams do not contribute. In
this conference, we shaw some results of an attempt to compute these disconnected diagrams in the
case of the strange quark [76].

The calculation of moments of structure functions has also been a big puzzle for lattice QCD.
Traditional lattice calculations in the quenched approximation, as well as in full QCD with two light
quark flavors, have been unable to reproduce the experimental results for the first few moments of
both the polarized and the unpolarized moments. Published lattice results from LHPC can be found
in [75] and from QCDSF in [77, 78, 66, 79, 67]. The common feature of all these calculations is
the fact that relatively heavy quark masses have been used. QCDSF has performed the continuum
extrapolation in the quenched approximation without any substantial change in the overall picture.
RBC has also attempted to push to lighter pion masses using domain wall fermions in the quenched
approximation [16, 17]. They also observed no curvature that would reconcile the lattice results
with the experimental expectations down to 400 MeV pions.

It has been argued [80] that the apparent disagreement of lattice results with the experimental
expectations is due to the fact that the there is a very strong chiral logarithm governing the mass
dependence of these matrix elements close to the chiral limit. Thus resolving this puzzle requires
computations closer to the chiral limit. QCDSF using improved Wilson fermion algorithms is
currently computing these matrix elements with pion masses in the vicinity of 300 MeV.

Although the RBC quenched domain wall fermion calculations failed to observe the curvature
that might reconcile the lattice with the experimental results, certain interesting features of the
calculation were observed [17]. First the calculation of the twist 3 matrix elements dn related to the
polarized structure function g2 seems to significantly simplify. The operator O5q

[σ{µ1]µ2···µn} mixes
with the operator Oσq

σν{µ1µ2···µn−1} if chiral symmetry is not a good symmetry, as is the case for
Wilson fermions (and clover Wilson). This mixing introduces a linear divergence that needs non-
perturbative subtraction in order to extract the physical matrix elements. QCDSF has successfully
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Figure 4: Chiral extrapolation of the first moments of structure functions in MS µ = 2GeV. Perturbative
renormalization is used.

performed this subtraction [79] for the case of the matrix element d2. The RBC results for d1,
which has similar mixing issues to d2, demonstrate that the domain wall fermions eliminate the
need for non-perturbative subtraction. Hence, the calculation of these matrix elements significantly
simplifies with the use of fermions respecting chiral symmetry on the lattice.

Furthermore, due to chiral symmetry, the renormalization constants needed for the operators
O5q
{σ µ1µ2···µn−1} are the same as these of the operators Oq

{µ1µ2···µn}. Hence, one can form the ratio
of the lattice first moment of the quark density to the lattice first moment of the helicity distribu-
tion and obtain the ratio of the renormalized quantities, allowing direct comparison to experiment.
In [17] the renormalization constants of these first moments were computed non-perturbatively
with the Rome-Southampton method and found to be equal. It was also found that this ratio (in
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Figure 5: Chiral extrapolation of the ratio of the first moments of structure functions.

the quenched approximation) is in good agreement with the experimental ratio. The main reason
for this agreement is the fact that the ratio has a smoother chiral behavior since the chiral logs
partly cancel. In addition, the ratio has less systematic contamination due to uncertainties in the
renormalization constant determination.

QCDSF has pushed the quenched calculations with overlap fermions to even lighter pion
masses and also at significantly higher statistics. Their preliminary results ploted in Fig. 3 show
curvature appearing below 400 MeV in the first moment of the quark density distribution 2

Recently [29] LHPC has completed a calculation at one lattice spacing (a = 0.125fm) using
domain wall fermions on 2+1 Kogut-Susskind sea quarks generated by the MILC collaboration.
The use of domain wall fermions in the valence sector imposes the chiral symmetry constraints
that are responsible for the nice features outlined above. In addition, fitting to one loop continuum
chiral perturbation theory becomes significantly simpler as calculations by NPLQCD first showed
in the calculation of π − π scattering lengths [30]. Subsequently, analytic results [37, 81] and
applications to other observables [33, 35, 31, 32] showed similar behavior. LHPC performed the
fits for all moments computed using leading order chiral perturbation theory [82, 83, 84] formulas.
For example I present here the first moment of the quark density and the helicity distributions

〈x〉u−d = C
[

1−2
3g2

A +1
(4π fπ)2 m2

π ln
(

m2
π

(4π fπ)2

)
+ e(4π fπ)

m2
π

(4π fπ)2

]
(5.3)

〈x〉∆u−∆d = C̃
[

1−2
2g2

A +1
(4π fπ)2 m2

π ln
(

m2
π

(4π fπ)2

)
+ ẽ(4π fπ)

m2
π

(4π fπ)2

]
(5.4)

where the normalization is set such that the physical fπ is expected to be around 132MeV. In
the above formula we have taken the scale µ = 4π fπ . Furthermore, in the above formulas one
can eliminate the unknowns of gA and fπ at the chiral limit by replacing them with their values
measured on the lattice at a given pion mass. This amounts to a modification of the above formula

2Figure contributed by G. Schierholz.

10



P
o
S
(
L
A
T
2
0
0
6
)
0
1
8

Nucleon Structure Konstantinos Orginos

0.8

0.9

1
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1.2

<1>∆u-∆d δu-δd<1> u-d<x> <x>∆u-∆d <x>δu-δd <x >22
∆u-∆d

Figure 6: The ratio of experiment vs lattice (red points) for the iso-vector moments. The small errorbar for
〈1〉Du−Dd comes from neutron beta decay experiments, while the rest come from DIS experiments. The blue
points denote the lattice statistical error bar, while the red error bars are the experimental errors on these
quantities.

at higher order. If we do this we have only two unknown fit parameters: the counter term and the
value of the matrix element at the chiral limit. In Fig. 4 the fits done with the above method are
presented. We see that there is a hint of a curvature for the point at 350 MeV (lightest point).

The extrapolated results obtained by evaluating Eq. 5.4 at the physical mπ/ fπ point using the
fitted values for the counter terms and the parameters C and C̃ are in remarkable agreement with
the experimental expectations. The results of such fits where presented by Renner [29] in this
conference. A summary of his results is shown in Fig. 6. As we can see all lattice extrapolated
results are in a very good agreement with experiment and in all cases, the deep inelastic scattering
experimental error is larger than the lattice statistical error. Further investigation of these fits is
required in order to assess possible systematic errors. One certainly needs to perform the continuum
extrapolation to remove all discretization errors. In addition, the LHPC results are perturbatively
renormalized and hence, non-perturbative renormalization is needed to eliminate the remaining
renormalization systematic error. However, one can look at particular ratios of the unrenormalized
matrix elements, which require no further normalization factors due to the domain wall fermion
chiral symmetry. This ratio for the first moments of the quark density and helicity distribution is
plotted in Fig. 5 and indeed is in agreement with experiment at the physical point.
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Figure 7: Experimental determinations of the ratio GE/GM for the proton [85]. The open symbols corre-
spond to the Rosenbluth determinations of GE/GM [86, 87, 88, 89]. The solid symbols come from polariza-
tion data experiments at JLab [90, 91, 92].

6. Form Factors

In the last few years a lot of interesting experimental results for nucleon elastic form factors
have appeared. The measurements at Jlab using polarization transfer [93, 90, 91, 92] for extract-
ing the form factors, and extending the Q2 region to 6GeV2 contradicted results based on the
Rosenbluth separation technique [87, 88, 89]. Hence the old belief that the ratio of the electric
to magnetic form factor is one if scaled by the magnetic moment was questioned. For a compila-
tion of the experimental results see Fig. 7. After careful examination of the two techniques it was
realized that the polarization transfer data are less prone to systematic errors due to two photon
effects [94, 95, 96]; hence the true behavior of the ratio is the one measured in polarization transfer
experiments.

These experimental results renewed the interest in lattice calculations of nucleon form factors.
There are three recent calculations available. The LHPC calculation [29] which is based on the 2+1
flavor dynamical mixed action calculation scheme, the QCDSF calculation [97] with 2 dynamical
flavors of improved Wilson fermions (and improved currents), and the unimproved Wilson fermion
(quenched and 2 flavor dynamical ) calculation by Alexandrou et.al. [98].

In Fig. 8 the LHPC results for the iso-vector F1 form factor are ploted together with the ex-
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Figure 8: Fu−d
1 (Q2) for several pion masses. The black band represents the experimental error based on

data by [99].

perimental error band 3. We can see that as the pion mass approaches the physical point the lattice
data are approaching experiment. LHPC performed a fit using the chiral perturbation formulas
of [100] to the rms radius and found that the extrapolated result is close to the experimental. A hint
of the expected curvature in the rms radius extrapolation is evident in the data. In addition LHPC
presented preliminary results on the axial form factors and the high Q2 region which is expected to
be of high interest due to upcoming experiments.

QCDSF presented their results in this conference as well [97]. These new results are extending
to lighter pion masses the results presented earlier in [101], where it was clear that in order to
make contact to chiral perturbation theory one needed lighter pion masses. Here, they focus on
determining the appropriate fit formulas for the form factors as a function of Q2. They conclude that
the statistical precision is not sufficient for a firm conclusion. However, they observed differences
in the Q2 dependence of F1 and F2 and between the contributions of the up and down flavors, as
Fig. 9 indicates4. They also studied possible chiral perturbation fits to the rms radii identifying
possible strong effects as one approaches the physical point, in accordance with the expectations
of chiral perturbation theory.

Finally results from the calculation by Alexandrou et al. are ploted in Fig. 10. The figure
is taken from [98]. Evidently, the lattice results seem to disagree with the experimental numbers

3I thank G. Fleming for computing the experimental error band and providing this figure. The errorband was based
on data by [99].

4I thank D. Pleiter for providing this figure.
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Figure 9: The ratio of up and down contributions to F1 (connected only) for mπ = 400MeV [97].

throughout the range of the plotted Q2 dependence. These results are quenched except two points
which are two flavor dynamical Wilson fermion calculations. The deviation might be due to lattice
spacing errors which one expects to become larger as Q2 grows. In addition, Alexandrou et al.
presented their recent results on the Nucleon to Delta transition form factors [102, 103].

One needs to carefully study the results from different calculations in order to understand
how various systematic errors affect the lattice calculations of form factors. Given the different
calculations available better understanding of these effects is expected in the near future.

6.1 Strangeness in the nucleon

One important experimental goal is to understand the strange quark contributions to the elctro-
magnetic form factors of the nucleon. The most recent experiments by HAPPEX [104, 105] and
G0 [106] at JLab, together with the older ones by SAMPLE at MIT-BATES [107], and by A4 at
Mainz [108, 109], confirm that there is a non-zero strange contribution to the proton elctromagnetic
form factors. However, the size of these contributions is rather small.

Although lattice calculations of disconnected diagrams such as these contributing to the strange
form factors are rather difficult, there are already two lattice calculations of the strange electric and
magnetic form factors of the proton. Fist Lewis et al. [110] used Wilson fermions in the quenched
approximation and performed the needed chiral extrapolations in the context of quenched chiral
perturbation theory. Second Leinweber et al. [111] used FLIC fermions again in the quenched
approximation. They employed a combination of lattice QCD, charge symmetry and chiral per-
turbattion theory and avoid direct computation of the disconnected diagrams. Both calculations
produced results consistent with current experimental data.
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Figure 10: The ratio of the electric to magnetic iso vector form factors by Alexandrou et al. [98].

6.2 Neutron electric dipole moment

Over the last couple of years, calculations of the neutron electric dipole moment (dN) due to
the existence of a non-trivial theta term in the QCD action were also revived. When such a term
exists, time reversal and parity symmetries are broken. Hence, CP violating terms such as the
electric dipole moment, appear in the electromagnetic form factors of the nucleon. Experimentally
no permanent EDM of fundamental particles has been observed, requiring that the coefficient (θ )
with which the theta term enters the QCD Lagrangian must vanish. This is known as the strong CP
problem. In other words θ seems to be fine tuned to zero. The most stringent experimental limit on
the existence of an EDM comes from the neutron where dN < 6.3×10−26ecm. This in turn implies
the most stringent experimental constrain on θ . The relation between the neutron EDM and θ can
only be reliably estimated non-perturbatively. Hence lattice QCD calculations are needed.

There are two ways one can compute the electric dipole moment (EDM). The first relies on
computations of the regular vector electromagnetic form factor isolating the CP violating term
proportional to the EDM. The other is using the background field method to extract the EDM by
measuring the mass splitting of the neutron with spin aligned or anti-aligned with the external field.
In both cases, one uses re-weighting in order to include the effects of the non-positive definite theta
term. Since the EDM is experimentally small re-weighting should work well.

CP-PACS performed a quenched calculation with domain wall fermions [112]. However, the
quenched calculation for this quantity is very misleading since the electric dipole moment is ex-
pected to diverge in the quenched chiral limit due to the fact that the topological susceptiblility
remains finite in this limit. In this conference CP-PACS presented their new results in quenched
and dynamical calculations using the external field method [113]. In both cases they were able to
obtain a non-vanishing signal.

Berruto et al. [114, 115] performed the first two flavor dynamical domain wall fermion calcu-
lations using the form factor method with re-weighting. Their result, together with the experimental
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bound [116] on the neutron EDM, yields θ < 6.3×10−11.
Finally, in this conference QCDSF presented their first results using high statistics quenched

overlap fermions [117].

6.3 Polarizabilities

The polarizabilities of the nucleon describe its response to external electric or magnetic fields.
They are the coefficients appearing in the low momentum transfer expansion of the hadronic ten-
sor in Compton scattering, and carry important information about nucleon structure. The recent
relation of two photon processes to the systematic errors appearing in the experimental extraction
of the electromagnetic form factors of the nucleon via the Rosenbluth separation technique, has
renewed the interest in understanding Compton scattering. The polarizabilities describe the low
energy limit of this process.

The simplest method of performing these calculations in lattice QCD is the background field
method. Lattice results in the quenched approximation exist for both the electric [118, 119] and the
magnetic polarizabilities [120].

Recently [121, 122], it was shown how the background field method can be used to extract
the spin polarizabilities. In the same publication, the finite volume corrections were computed in
chiral perturbation theory indicating a surprisingly large dependence on both the volume and the
quark mass (O(10%)).

7. Moments of generalized parton distribution functions

As mentioned in the introduction, on the lattice we can compute nucleon matrix elements of
the twist 2 operators. These matrix elements are generalized form factors that are the coefficients
of the polynomial expansion in ξ of the moments of the generalized parton distribution functions.
Such calculations are a straight forward extension to the off forward limit of the standard lattice
calculations of the moments of the parton distribution functions. The relation of matrix elements
and generalized form factors is given by (see for example [124])

〈p′|Oq
µ1 |p〉 = 〈〈γµ1〉〉A10(t)+

i
2m
〈〈σµ1α〉〉∆αB10(t) ,

〈p′|Oq
{µ1µ2}|p〉 = p̄{µ1〈〈γµ2}〉〉A20(t)+

i
2m

p̄{µ1〈〈σµ2}α〉〉∆αB20(t)+
1
m

∆{µ1∆µ2}C20(t) ,

〈p′|Oq
{µ1µ2µ3}|p〉 = p̄{µ1 p̄µ2〈〈γµ3}〉〉A30(t)+

i
2m

p̄{µ1 p̄µ2〈〈σµ3}α〉〉∆αB30(t)

+ ∆{µ1∆µ2〈〈γµ3}〉〉A32(t)+
i

2m
∆{µ1∆µ2〈〈σµ3}α〉〉∆αB32(t), (7.1)

for the unpolarized case,

〈p′|O5q
µ1 |p〉 = 〈〈γµ1γ5〉〉Ã10(t)+

1
2m

∆µ1〈〈γ5〉〉B̃10(t) ,

〈p′|O5q
{µ1µ2}|p〉 = p̄{µ1〈〈γµ2}γ5〉〉Ã20(t)+

1
2m

∆{µ1 p̄µ2}〈〈γ5〉〉B̃20(t) ,
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Figure 11: The generalized form factors from QCDSF [123].

〈p′|O5q
{µ1µ2µ3}|p〉 = p̄{µ1 p̄µ2〈〈γµ3}γ5〉〉Ã30(t)+

1
2m

∆{µ1 p̄µ2 p̄µ3}〈〈γ5〉〉B̃30(t)

+ ∆{µ1∆µ2〈〈γµ3}γ5〉〉Ã32(t)+
1

2m
∆{µ1∆µ2∆µ3}〈〈γ5〉〉B̃32(t), (7.2)

for the polarized, and

〈p′|Oσq
µν |p〉 = 〈〈σµν〉〉AT 10(t)−

i
m2 〈〈1〉〉p̄[µ∆ν ]ÃT 10(t)−

i
2m
〈〈γ[µ〉〉∆ν ]BT 10(t) ,

17



P
o
S
(
L
A
T
2
0
0
6
)
0
1
8

Nucleon Structure Konstantinos Orginos

〈p′|Oσq
µνµ1 |p〉 = 〈〈σµ{ν〉〉p̄µ1}A20(t)−

i
m2 〈〈1〉〉p̄[µ∆{ν ] p̄µ1}ÃT 20(t)

− i
2m
〈〈γ[µ〉〉∆{ν ] p̄µ1}BT 20(t) −

i
m
〈〈γ[µ〉〉p̄{ν ]∆µ1}BT 21(t) ,

〈p′|Oσq
µνµ1µ2 |p〉 = 〈〈σµ{ν〉〉p̄µ1 p̄µ2}A30(t)+ 〈〈σµ{ν〉〉∆̄µ1∆µ2}A32(t) ,

− i
m2 〈〈1〉〉p̄[µ∆{ν ] p̄µ1 p̄µ2}ÃT 30(t)−

i
m2 〈〈1〉〉p̄[µ∆{ν ]∆µ1∆µ2}ÃT 32(t) ,

− i
2m
〈〈γ[µ〉〉∆{ν ] p̄µ1 p̄µ2}BT 30(t)−

i
2m
〈〈γ[µ〉〉∆{ν ]∆µ1∆µ2}BT 32(t)

− i
m
〈〈γ[µ〉〉p̄{ν ]∆µ1 p̄µ2}BT 31(t) , (7.3)

for the transverse GPDs. In the above t =−∆2, ∆ = p′− p, p̄ = (p′+ p)/2, {} denotes symmetriza-
tion while [] denotes anti-symmetrization, and 〈〈Γ〉〉= u(p′,s′)Γu(p,s) .

Both LHPC/SESAM [125] and QCDSF [126] almost simultaneously published their first re-
sults on the moments of GPDs using two flavor dynamical Wilson fermions. These results were
obtained with relatively heavy pion masses, however, the expected qualitative behavior was already
observed. In particular, as seen in Fig. 11, the generalized form factors become flatter at higher mo-
ments. This is expected since for higher moments the region closer to x = 1 contributes more to
the integral over the momentum fraction, resulting in milder momentum space dependence on the
transverse momentum transfer. In other words, this observation is a direct consequence of the fact
that the probability distribution becomes narrower when x approaches one, as depicted in Fig. 1.
Both collaborations are now pushing towards the physical pion masses. QCDSF is using two flavor
improved dynamical Wilson fermions, while LHPC is using the mixed action scheme with domain
wall fermions in the valence sector and 2+1 flavors of Kogut-Susskind fermions in the sea.

LHPC presented their results in this conference [29]. In Fig. 12 we show their results for the
case of upolarized GPDs. In addition, in Fig. 13 the lattice data are compared to phenomenological
fits to generalized parton distributions introduced by Diehl et al. [127]. It is evident that as the pion
mass gets smaller the slope of the ratio A30/A10 becomes closer to phenomenological expectations.

Finally, in this conference QCSF presented their results on transverse generalized parton distri-
bution functions [128] (see also [129, 130, 131, 132]). By computing the moments of the transverse
parton distribution functions, one can perform the inverse Fourier transformation and produce a two
dimensional image of the nucleon. The transverse spin densities in the impact parameter space are
particularly interesting because they provide a qualitative understanding of the single spin asym-
metries such as the Sivers asymmetry [133, 134] and the Boer-Mulders effect [135], observed in
semi-inclusive deep inelastic scattering experiments.

7.1 The spin of the proton

The nucleon, being a composite object, acquires its spin from its constituents. Quantum ef-
fects, though, make it difficult to understand how spin arises. The naive expectation that the proton
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Figure 12: The generalized form factors from LHPC [29].
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Figure 13: The generalized form factors from LHPC [29]. A comparison of lattice results to a phenomeno-
logical fit to generalized parton distribution functions [127, 29].

spin is carried by the constituent quarks has been proven wrong experimentally, giving rise to the
proton spin "crisis". The proton spin can be decomposed [5, 136, 137] as follows

1
2

=
1
2

∆Σ+∆g+Lz or
1
2

=
1
2

∆Σ+Lq
z + Jg

z , (7.4)

where ∆Σ = ∆u + ∆d + ∆s is the quarks spin, ∆g is the spin of the gluons Lz is the total orbital
angular momentum of the quarks and gluons, Lq

z is the quark orbital angular momentum and, Jg
z

is the total gluon angular momentum. Note that the decomposition of the proton spin can be
done in only three terms (for example see [5, 136]) and not four as the naive quark model might
imply. Experimentally ∆Σ, which is a scale dependent quantity, is found to be almost zero within
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experimental errors, by both the EMS (at 10GeV2) and SMC (at 5GeV2) experiments.
From the point of view of generalized parton distribution functions it was shown [5] that the

generalized form factors of the first unpolarized moment, are related to the total angular momentum
of the quarks i.e.

Jq
z =

1
2

∆Σ+Lq
z =

1
2

[A20(0)+B20(0)] . (7.5)

Note the the operator whose generalized form factors are A20 and B20 is nothing but the energy
momentum tensor:

Oq
{µν} =

i
2

γ{µ
↔
Dν} −trace = T q

µν . (7.6)

Likewise the form factors Ag
20 and Bg

20 of the energy momentum tensor for the gluons T g
µν give the

total gluon angular momentum:

Jg
z =

1
2

[
Ag

20(0)+Bg
20(0)

]
. (7.7)

The first lattice calculation of the total angular momentum of the quarks inside the nucleon
was performed by Mathur et al. in the quenched approximation with Wilson fermions. In this
calculation the disconnected diagrams needed for the flavor singlet operators were computed using
the stochastic Z2 noise method.

Subsequently, LHPC and QCDSF computed the same quantities as part of their first gener-
alized parton distribution calculations. In both cases heavy two flavor dynamical Wilson quarks
were used and the disconnected diagrams were ignored. QCDSF and LHPC are currently pushing
the calculations towards the chiral limit. Their results show a remarkable cancelation between the
up and down quark orbital angular momentum. In addition, the total contribution from the quark
spin is higher than the experimental expectations, although it seems that the chiral extrapolation
of this observable may result in numbers comparable with experiment. In both calculations the
disconnected diagrams have to be included for them to be complete.

8. Conclusions

There has been a large effort in the lattice community to compute the properties and structure
of the nucleon directly from QCD. Significant effort has been devoted in understanding the sources
of systematic errors and steady steps have been taken to control them. The observed agreement
of results with experimental expectations enhances the confidence that the calculations are indeed
controlling the systematic errors. In particular, it seems that the long standing disagreement be-
tween experiment and lattice calculations of moments of structure functions is finally resolved.
Future lattice calculations will hopefully confirm this finding. Taking advantage of new theoretical
developments in the field of generalized parton distributions, lattice calculations can now compute
two dimensional images of the proton, helping to get further insight into the distribution of par-
tons inside the nucleon. The synergy between lattice calculations together with experiments may
soon become the way to fully utilize the power of generalized parton distributions in understanding
nucleon structure.
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