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Figure 1: Sketch of the QCD phase diagram.

1. Introduction

Lattice QCD currently is the only quantitative approach to finite temperature QCD based on
first principle calculation. For a recent review see [1]. At non zero density however, lattice QCD is
harmed by the sign problem ever since its inception. The Fermion matrix becomes complex and can
not be interpreted as a probability distribution. Hence straight forward Monte Carlo simulations
become impossible. For a detailed description of the sign problem in the epsilon regime see [2].

During the last few years a lot of progress has been made to circumvent the sign problem
for small values of µq/T , where µq is the quark chemical potential and T the temperature. This
progress helps to understand the physics relevant for heavy ion collisions and eventually will clarify
the existence/location of the critical end-point in the QCD phase diagram. In Fig. 1 a sketch of the
QCD phase diagram in the T -µ plane is shown. Lattice QCD calculations provide more and more
evidence that the QCD transition at µq = 0 is not a phase transition in the thermodynamic sense,
but a smooth crossover. Further evidence was seen recently in [3]. Nevertheless, one can define a
transition temperature Tc by the peak position of the chiral susceptibility. As a function of the quark
chemical potential the line of transition temperatures (Tc(µq)) is smoothly connected to a critical
end-point in the (T,µq)-diagram. For larger chemical potentials the QCD transition is expected to
be first order. At high densities, several color superconducting phases are expected.

The rest of the article is organized as follows: in Sec. 2 I will briefly recall different methods
which have been used so far to calculate thermodynamic observables at non zero chemical potential.
In Sec. 3 I will summarize current knowledge about the µq-dependence of the critical temperature.
I will continue with reviewing results on quark number fluctuations along the transition line (Sec. 4)
and the critical point (Sec. 5). Finally I will discuss the physics beyond the critical point in Sec. 6.

2. Methods to extract information on the chemical potential dependence

2.1 Reweighting from the (µ = 0)-ensemble

On the lattice one has to choose several parameters to characterize a thermodynamic system.
In addition to the number of lattice points in spacial and temporal directions, Ns,Nt respectively, we
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have to choose quark masses mq, the coupling β ≡ 6/g2 and the chemical potential µq. Together
these parameters define the lattice spacing a and thus also the temperate T ≡ 1/aNt and volume
V ≡ (aNs)

3 of the simulated system. A thermodynamic observable is calculated on the lattice as

〈O〉β ,mq,µq
=

1
Z(V,T )

∫

DU O [detM(U ;mq,µq)]
N f /4 exp{−βSG(U)} . (2.1)

Here N f is the number of dynamical fermions. The notation is written down for staggered fermions
as the additional factor of 1/4 in the power of the fermion determinant indicates. See [4] for a
discussion of the “4th root trick” needed to calculate the staggered fermion determinant.

In principle it is possible to calculate the expectation value of the observable at the parameter
set p = {β ,mq,µq}, from an ensemble generated at p0 = {β0,mq,0,µq,0}. We have the identity

〈O〉p = 〈O R(U ; p, p0)〉p0
/〈R(U ; p, p0)〉p0

, (2.2)

where we define the reweighting factor R as

R(U ; p, p0) ≡ [detM(U ; p)/detM(U ; p0)]
N f /4 exp{−(β −β0)SG} . (2.3)

The reweighting method as a tool to perform extrapolation and interpolation in the gauge coupling
β goes back to [5]. For reweighting in the chemical potential it was first used by the Glasgow
group [6]. However, since the overlap between the generated ensemble at µq,0 = 0 and the target
ensemble at µq > 0 exponentially decreases with increasing µq, the method was successful only
after it was generalized to a multi-parameter approach [7]. For Nt = 4 lattices it was found that
reweighting along the transition line Tc(µq) works quite well up to aµq<∼0.3 or equivalently for
µq/T<∼1.2.

In general the reweighting approach requires the evaluation of the fermion determinant on ev-
ery configuration. As this is computationally demanding, one may consider to expand the reweight-
ing factor given in Eq. (2.3) in terms of the chemical potential [8]. In this case the reweighting
procedure is, however, only correct up to a certain order in µq/T .

2.2 The Taylor expansion method

It is conceptually very simple to calculate the expansion coefficients of any observable O
(Eq. (2.1)) in a Taylor series around µq = 0:

O(µ̂) = c0 + c1µ̂ +
1
2

c2µ̂2 + · · · . (2.4)

Since on the lattice all quantities are given in units of the lattice spacing (a), the expansion param-
eter is µ̂ ≡ aµq = N−1

t (µq/T ). This idea goes back to the first calculation of the quark number
susceptibility [9]. The response of hadron masses [10] as well as the pressure and further bulk ther-
modynamic quantities [11, 12, 13, 14] have been studied by this method. The first two nontrivial
coefficients in Eq. (2.4) are given by

c1 =

〈

∂O
∂ µ̂

〉

+

〈

O
∂ lndetM

∂ µ̂

〉

(2.5)

c2 =

〈

∂ 2O
∂ µ̂2

〉

+2

〈

∂O
∂ µ̂

∂ lndetM
∂ µ̂

〉

+

〈

O
∂ 2 lndetM

∂ µ̂2

〉

−

〈

O

〉〈

∂ 2 lndetM
∂ µ̂2

〉

.
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Besides derivatives of the observable itself, the calculation of derivatives of lndetM with respect
to µ̂ is required. The derivatives have to be taken at µ̂0 = 0. Note that due to a symmetry of the
partition function (Z(µq) = Z(−µq)) all odd coefficients in Eq. (2.4) vanish identically. For the
same reason we have 〈∂ lndetM/∂ µ̂〉 = 0 at µ̂ = 0. We explicitly use this property in Eq. (2.5) to
derive the expansion coefficients.

The advantages of this method are that expectations values only have to be evaluated at µ̂ = 0,
i.e. calculations are not directly affected by the sign problem. Furthermore, all derivatives of the
fermion determinant can be expressed in terms of traces by using the identity lndetM = TrlnM.
This enables the stochastic calculation of the expansion coefficients by the random noise method,
which is much faster than a direct evaluation of the determinant. Moreover, the continuum and
infinite volume extrapolations are well defined on a coefficient by coefficient basis.

On the other hand it is a priori not clear for how large µ/T the method works and how large
the truncation errors are. Furthermore one is strictly limited by phase transitions, since phase
transitions are connected with discontinuities or divergences. An estimation of the convergence
radius of the series gives a lower bound on the applicability range and thus also a lower bound to
the phase transition line in the (T,µ) plane (see the discussion in Sec. 5).

2.3 Analytic continuation

At imaginary chemical potentials, the fermion determinant is real and positive, thus simula-
tions by standard Monte Carlo techniques are possible. Results on the imaginary µ̂I axis can be
analytically continued to the real µ̂R axis. It is especially easy to convert a Taylor series in µ̂I ,
expanded around µ̂ = 0, into a Taylor series in µ̂R. Since the series has only even powers of µ̂ , due
to the the symmetry Z(µ̂) = Z(−µ̂), one only has to switch the sign of every second coefficient
(c2 → −c2,c6 → −c6, . . .). There is however another symmetry of the partition function which
limits the analytic continuation. Due to the periodicity [15] Z(µR,µI) = Z(µR,µI +2πT/3) simu-
lations with µI > 0 will only give access to the physical region µR<∼πT/3. This method was used
to map out the phase transition line [16]-[18]. One should note, that for this method neither an
evaluation of the determinant, nor any of its derivatives is required. In order to determine the func-
tional dependence of an observable on µ̂R one needs many different simulation points for several
values of µ̂I , to perform an analytic continuation using a certain Ansatz.

A demonstration of the imaginary chemical potential method is given in Fig. 2. The method
was applied to the case of 2-color QCD [19]. Here it is not only possible to calculate observables at
µ̂2 < 0, but also at µ̂2 > 0, since 2-color QCD does not suffer from a sign problem. Thus one can
explicitly check how far the extrapolation in µ̂2 is valid and which type of Ansatz is especially well
suited for the extrapolation. In general, extrapolations with rational functions seem to be better
than extrapolations with polynomials [19, 20].

2.4 The canonical approach

The canonical partition function (ZC) can be constructed by introducing a δ -function into the
grand canonical partition function which fixes the net number of quarks present in the system.
Using an integral representation of the δ -function one recognizes the integration parameter as an
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Figure 2: The chiral condensate as a function of µ̂2,
in SU(2) gauge theory [19]. The solid lines are fits
with different Ansätze to the data for µ̂2 < 0.
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imaginary chemical potential. One finds

ZC(T,Q = 3B) =
1

2π

∫ π

−π
d
(µI

T

)

exp
{

−i3B
µI

T

}

ZGC(T, iµI) . (2.6)

Thus, the canonical partition functions are the coefficients of the Fourier expansion of the grand
canonical partition function (ZCG) in imaginary µ . Here we have used the 2πT/3 periodicity of
the grand canonical partition function which as a consequence leads to the fact that the canonical
partition functions vanish for non-integer values of the baryon number B = 3Q.

The Fourier-coefficients can be computed exactly [26]. As for the reweighting method (2.1),
the evaluation of the fermion determinant is required on every configuration. In fact the same
method can be used, which is the calculation of all 6N3

s eigenvalues of the so-called “reduced
matrix” [7].

After having calculated the canonical partition functions, a relation between the chemical po-
tential and the baryon number is needed, in order to explore the phase diagram in the (T,µ)-plane.
Such a relation can be obtained by using the saddle point approximation of the fugacity expansion
(which is exact in the thermodynamic limit). One finds

µ(ρ) =
1
3

∂ f (ρ)

∂ρ
, (2.7)

where ρ = B/V is the baryon number density and f (T,ρ) = − T
V logZC(T,ρ) is the Helmhotz free

energy density. For several different temperatures the saddle point approximation is shown in Fig. 3
[27]. Due to the computational costs the calculation have been performed on 63 × 4 lattices, with
N f = 4 flavors of staggered fermions. As can be seen from the “S”-shape of the curves, one can
have more than one solution when solving for the baryon density ρ , at given µ and T . This reflects
the nature of the transition in the four-flavor theory, which is of first order. By using a Maxwell
construction, one is able to calculate the two densities ρ1(T ) < ρ2(T ), giving the lower and upper
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boundary of the coexistence area, as well as the critical chemical potential µ crit
B (T ), as functions of

the temperature.

2.5 The density of states method

An alternative to the importance sampling technique used in most Monte Carlo simulations
is the density of states method. Here one reorders the path integral representation of the partition
function in the following way: first expectation values with a constrained parameter will be cal-
culated. I.e. one selected parameter (φ ) is fixed. Expectation values according to the usual grand
canonical partition function (ZGC) can then be recovered by the integral

< O >=
∫

dφ 〈O f (U)〉φ ρ(φ)

/

∫

dφ 〈 f (U)〉φ ρ(φ) (2.8)

where the density of states (ρ) is given by the constrained partition function:

ρ(x) ≡ Zφ (x) =
∫

DU g(U)δ (φ − x) . (2.9)

Here 〈 〉φ denotes the expectation value with respect to the constrained partition function. In ad-
dition, the product of the weight functions f ,g has to equal the correct measure of ZGC: f g =

detM · exp{−SG}. The idea of reordering the partition functions is rather old and was used suc-
cessfully for gauge theories [21] and QED with dynamical fermions [22]. For QCD the parameter
φ is usually chosen to be the plaquette [23]: φ = P. In [24], however, the DOS method was con-
structed for the complex phase (φ = θ ). Within the random matrix model, the authors of [25] used
the quark number density (φ = nq).

The advantages of this additional integration becomes clear, when choosing φ = P and g(U) =

1. In this case ρ(φ) is independent of all simulation parameters. The observable can be calculated
as a function of all values of the lattice coupling β . If one has stored all eigenvalues of the fermion
matrix for all configurations, the observable can also be calculated as a function of quark mass (m)
and number of flavors[23] (N f ).

Note that this method does not solve the sign problem. It is, however supposed to solve the
overlap problem. Moreover, it is also possible to combine the DOS method, with the reweighting
method 2.1, by reweighting the constrained expectation values in the case of g(U) 6= 1. For large
reweighting distances an overlap problem is then introduced once again.

3. The transition line

Using any of the methods presented above, the calculation of the transition line Tc(µq) is
possible. This has been done for many systems, which differ in the number of quark flavors,
quark masses, physical volume and lattice spacing. This makes a comparison of different methods
difficult. The case of N f = 4, m/T = 0.2 and Nt = 4, however, has been studied extensively with
almost all methods. A comparison is given in Fig. 4 [27]. As one can see, the agreement between
different methods is very good up to aµq ≈ 0.3 or equivalently µq/T ≈ 1.2. For larger chemical
potential the two results from the reweighting method [7, 27] (Sec. 2.1), indicated as green and
blue points, seem to stay above the other results. The reason could be the lack of overlap between
the simulated and the reweighted ensemble.
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Other results shown in Fig. 4 come from the imaginary chemical potential approach [18]
(Sec. 2.3), solid line, from a generalized imaginary chemical potential approach [28], black dots,
and from the canonical approach [27] (Sec. 2.4), red points. These results seem to be in agreement
even for somewhat larger chemical potentials. However, the transition line from the canonical ap-
proach bends down at µ/T ≈ 1.5. Strong coupling calculations at β = 0 [29] show that this is
indeed necessary in order to match with the correct strong coupling limit.

To discuss the transition line a bit more quantitatively, one can expand Tc(µq) in terms of the
chemical potential

Tc(µq)

Tc(0)
= 1− t2(N f ,mq)

( µq

πT

)2
+O

(

( µq

πT

)4
)

. (3.1)

In general the first non trivial coefficient t2 will depend on the number of flavors and the quark
masses as indicated above. Of course they will also be sensitive to finite volume and cut-off effects.
One can, however, hope that for large physical volumes and small lattice spacings, i.e. Ns/Nt > 4
and Nt > 4, those effects are small. A detailed comparison of t2 is given in Tab. 1. In general, the
curvature of the transition line becomes steeper for increasing number of flavors and decreasing
quark masses. Two of the 3-flavor results which have been obtained with the p4-improved action
[30] are shown in Fig. 5. In some cases it has also been possible to estimate the sub-leading
coefficient t4, which has been found to be very small or even negative. If an extrapolation with a
Padé Ansatz is performed, the transition line tends to be steeper for high µq [20] compared to the
truncated Taylor series and shows faster convergence.

We also note, that the calculation of Tc(µq) has two parts. The first part involves the calculation
of βc(µ̂), the second one is the calculation of the lattice β -function (a∂β/∂a). Some of the results
listed in Tab. 1 have been obtained by using the perturbative two-loop β -function, which has the
tendency to underestimate the curvature of the critical line.
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N f am Ns t2 Action β -Function Method Reference

2 0.1 16 0.69(35) p4 non-pert. Taylor+Rew. [8]
0.032 6,8 0.500(54) stag. 2-loop pert. Imag. [17]

3 0.1 16 0.247(59) p4 2-loop pert. Taylor+Rew. [30]
0.026 8,12,16 0.667(6) stag. 2-loop pert. Imag. [40]
0.005 16 1.13(45) p4 2-loop pert. Taylor+Rew. [30]

4 0.05 16 1.86(2) stag. 2-loop pert. Imag. [18]

2+1 0.0092,0.25 6-12 0.284(9) stag. non-pert. Rew. [35]

Table 1: Comparison of the first nontrivial coefficient t2 in the Taylor expansion of the transition line. All
results have been obtained with Nt = 4.

4. Hadronic fluctuations

Following the transition line into the non-zero chemical potential plane, quark number fluc-
tuations χq belong to the most important observables. They will diverge at the critical end-point
and thus provide an excellent signal for the existence and its location on the lattice and eventually
may be detectable in heavy ion experiments. Hadronic fluctuations can be computed from Taylor
expansion coefficients of the pressure with respect to the quark chemical potential:

p
T 4 =

∞

∑
n=0

cn(T )
(µq

T

)n
with cn(T ) =

1
n!

N3
t

N3
s

∂ lnZ
∂ (µ̂Nt)n

∣

∣

∣

∣

µ̂=0
. (4.1)

Due to the particle anti-particle symmetry (µq ↔ −µq) all odd coefficients vanish. Thus the first
three non-zero coefficients are c2, c4, and c6. They have been calculated in the case of two flavors
of p4-improved staggered fermions, with mq/T = 0.4 [13] and are shown in Fig. 6. Note that in
the Taylor expansion of the pressure the up and down quark chemical potentials have been chosen
to be equal. Having calculated the coefficients cn(T ) one can construct the quark number density
and quark number fluctuations

nq

T 3 =
∞

∑
n=2

ncn(T )
(µq

T

)n−1
;

χq

T 2 =
∞

∑
n=2

n(n−1)cn(T )
(µq

T

)n−2
. (4.2)

Also shown in Fig. 6 are the quark number fluctuations for various values of the chemical potential.
It is interesting to see that at µq = 0, the fluctuations χq show a rapid but monotonic increase at the
transition temperature, whereas a cusp is developing at Tc(µq) for µq > 0. This is a clear sign for
approaching the critical end-point.

In the case of 2-flavor QCD, the quark number susceptibility is directly proportional to the
baryon number fluctuation. Having two light quarks and one heavier strange quark, the situation is
not that simple anymore. To match the situations realized in heavy ion collisions, one still wants to
expand the pressure in terms of µq = µu = µd , keeping the strange quark chemical potential zero
(µs = 0). However, in order to analyze fluctuations of conserved quantum numbers, it appears to
be more appropriate to perform a basis change going from the space of quark number fluctuations

χα,β =
〈

nαnβ
〉

−〈nα〉
〈

nβ
〉

∝
T
V

∂ 2logZ
∂ µα∂ µβ

, (4.3)
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Figure 6: The Taylor expansion coefficients c2, c4 and c6 of the pressure [13] and the quark number fluctu-
ations χq for different values of the quark chemical potential.

where α,β ∈ {u,d,s} to the space of hadronic fluctuations, indicated by α,β ∈ {I3,Y,B} with I3

being the third component of the isospin, Y being the hypercharge and B the baryon number. In
Fig. 7 the diagonal susceptibilities χI3,I3 , χY,Y and χB,B as well as the off-diagonal susceptibility χY,B

are shown [31]. They have been measured by the MILC Collaboration with 2+1 flavor of Asqtad
fermions on a 123 ×6 lattice. The light quark mass is mq = 0.2ms where ms is the physical strange
quark mass. The curves have been normalized such that the continuum Stefan-Boltzmann value
is 0.5 for all of them. Qualitatively they show the same behavior as the diagonal quark number
fluctuations, only the off-diagonal susceptibility χY,B shows a cusp already at µ = 0. However, up
to a minus sign also the off-diagonal quark susceptibility χu,d shows a cusp at µ = 0.

Furthermore, also fluctuations of other conserved quantities such as electric charge Q have
been computed. It is especially interesting to analyze the correlations between different conserved
charges. Also shown in Fig. 7 are the correlations

CX ,S =
〈XS〉−〈X〉〈S〉

〈S2〉−〈X〉2 , (4.4)

where S is the strangeness and the operator X is either the electric charge (X = Q) or the baryon
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Figure 7: Different hadronic fluctuations [31] and the correlation between strangeness and baryon number,
electric charge fluctuations respectively [32].

number (X = B) [32]. Such calculations have been performed on an 163×4 lattice, using a standard
staggered action. The two dynamical light quark masses yield mπ/mρ = 0.3. The strange quark
has been treated in the quenched approximation. The results show that above Tc strangeness and
electric charge or baryon number fluctuate independently. This is consistent with the quasi-particle
picture of the Quark-Gluon-Plasma (QGP). However, below Tc, in the hadronic phase fluctuations
are clearly correlated. These correlations are thus directly related to the degrees of freedom in the
QGP. These are also clearly visible in the calculation of higher order cumulants of fluctuations [33].

5. The critical end-point

Locating the critical point is one of the most challenging tasks for lattice QCD at finite chem-
ical potential. The first attempt to locate the critical point used the reweighting method [34]. For
this calculation, 2+1 flavor of standard staggered fermions have been used at a pion mass of about
300 MeV and a kaon mass of about 500 MeV. Lattice sizes have, however, been rather small (43×4
- 83 × 4). A critical chemical potential of µ crit

B = 725(35) MeV was found. A second calculation
[35], using again the reweighting method, with physical masses (mπ = 150 MeV, mK = 500 MeV)
and somewhat larger volume (63 ×4 - 123 ×4), let to µcrit

B = 360(4) MeV.
When using the reweighting method for locating the critical point, the minima of the normal-

ized partition function in the complex β -plane (Lee-Yang zeros) have to be determined

Znorm ≡

∣

∣

∣

∣

Z(βRe,βIm,µ)

Z(βRe,0,0)

∣

∣

∣

∣

=

∣

∣

∣

∣

〈

e6iβNt N3
s ∆SGeiθ e(N f /4)(lndetM(µ)−lndetM(0))

〉

(βRe,0,0)

∣

∣

∣

∣

. (5.1)

In SU(3) gauge theory, where we have eiθ = 1, this can be done with high accuracy, which can be
seen in Fig. 8 [36]. One can even identify a second Lee-Yang zero. In order to locate the critical
point, one has to take the infinite volume limit and monitor the approach of the Lee-Yang zeros
on the real axis. When the first Lee-Yang zero touches the real axis in the infinite volume limit,
a critical point has been reached. In Fig. 8 this is shown for full QCD with physical masses [35].
In QCD with non-zero chemical potential the analysis of Lee-Yang zeros is, however, subtle [36].
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Figure 8: Lee-Yang Zeroes in the complex β plane, in the case of SU(3) gauge theory [36] (left) and the
distance of the smallest Lee-Yang zero from the real axis as function of the chemical potential, in the case
of full QCD [35] (right).

For large volumes and chemical potentials the phase factor of the determinant eiθ will force the
Lee-Yang zero onto the real axis, which might lead to an underestimation of the critical point.

Another difficulty with the reweighting method at finite chemical potential has been pointed
out in [37]. It was noted, that taking the fourth (or square) root of the determinant (which is
necessary in order to simulate 2 or 1-flavor QCD with staggered fermions; see also [4]) could lead
to phase ambiguities. This problem becomes acute when µq > mπ/2.

All of the above mentioned limitations are, however, irrelevant for the location of the critical
point with the reweighting method if the critical point is located at small values of µq.

Using the Taylor expansion coefficients of the pressure, it is also possible to estimate the
location of the critical point. The convergence radius of the expansion is limited by the nearest
singularity in the complex chemical potential plane. For each fixed temperature, the radius of
convergence is given by

ρ = lim
n→∞

ρn = lim
n→∞

√

∣

∣

∣

∣

cn

cn+2

∣

∣

∣

∣

. (5.2)

Moreover, the sign of the coefficients cn gives information about the location of the singularity
in the complex plane. If all coefficients are positive, the singularity is located on the real axis of
the complex chemical potential plane. If the sign is strictly alternating, the singularity lies on the
imaginary axis. For a detailed discussion see [38].

Having only a limited number of expansion coefficients, one can only estimate ρ . The hope
is that the convergence of the ρn will be fast. Indeed, a clustering of the ρn is seen in the phase
diagram, as shown in Fig. 9 [13]. This calculation, which has been performed with 2 flavors of p4
improved fermions and mπ/mρ = 0.7, suggests a critical chemical potential of µ crit

B ≈ 500 MeV.
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Figure 9: Estimates of the radius of convergence in the (T,µq)-plane (left), the ratio c4/c2 of the expansion
coefficients (right).

All calculated ρn are, however, consistent (within statistical error) with the resonance gas model in
the Boltzmann approximation, where the radius of convergence is infinity.

The authors of [39] have estimated the critical chemical potential from a Taylor expansion
of the quark number susceptibility and find µ crit

B ≈ 180 MeV. Two flavors of standard staggered
fermions have been used on lattices up to 243 ×4 and quark mass corresponding to mπ/mρ = 0.3.
The difference between the two estimates [13, 39] of the critical point is large. We note that the
second estimate comes from the expansion coefficients of χq. As can be seen from Eq. 4.2 this
will result in a smaller ρn for each fixed n. The limit limn→∞ ρn is of course the same. For finite n,
however, the estimate of µ crit

B ≈ 180 MeV would correspond to µ crit
B ≈ 240 MeV, when estimating

the ρn with coefficients of the same order from the expansion of the pressure. Nonetheless, the
difference between the two estimates is still striking. The origin could be the difference in mass.
However, preliminary results from the RBC-Bielefeld Collaboration, also shown in Fig. 9, do not
indicate a strong mass dependence in c4/c2 = 1/ρ2

2 .

The critical point can also be studied directly at µq = 0. This can be done by tuning the quark
masses carefully to a value where the critical chemical potential is µ crit

B = 0. In the quark mass
plane of two degenerate light quark and one strange quark, (mu,d ,ms)-plane, a line exists on which
this condition is fulfilled. Starting from this line, one can define a surface of critical points in the
3-dimensional space of (mu,d ,ms,µq). On one side of the surface, the order of the QCD transition is
first order (for smaller masses) on the other side the transition is only a smooth crossover. The line
of critical points at µq = 0 has been computed for standard staggered fermions [40] as shown in
Fig. 10. For locating the critical points, the fourth order Binder cumulants of the chiral condensate
have been calculated. Since the probability distribution of the order parameter is universal, also
the value of its fourth cumulant is a renormalization group invariant quantity which furthermore is
volume independent at the critical point. From a calculation of cumulants at imaginary chemical
potential the region of first order phase transitions was found to shrink as sketched in Fig. 10.
This calculation has been performed with standard staggered fermions on an rather coarse lattices
(Nt = 4). If this result gets confirmed in the continuum limit it would put doubts on the existence
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Figure 10: Line of critical points in the quark mass plane for µB = 0 and iµB = 2.4T (left) and sketch of the
surface of critical points as found in [40] (right).

of a critical point in QCD with physical masses. It is interesting to mention, that a shrinking region
of first order transitions has also been found in the case if isospin chemical potential [42].

6. Beyond the critical point

Even more challenging than locating the critical point, is the study of the physics at high den-
sities and low temperatures. One attempt to do so is a calculation using the density of states method
[41]. Using four flavors of standard staggered fermions (i.e. taking the root of the determinant is
not necessary), several simulation points in the (β , µ̂) plane have been chosen to generate phase
quenched configurations by employing the method proposed in [43]. The lattice size has been
63 × 4 and 64. The quark mass was chosen to be m/T = 0.2. The generation has been done with
constrained plaquettes. In oder to do so, the δ -function in Eq. 2.9 has been replaced by a sharply
peaked Gaussian potential, which in practice means that the force term in the HMD-R algorithm
had to be modified. In the notation used in Sec. 2.5 this would mean φ = P, g = |detM|e−βSG and
f = eiθ . For each simulation point, several runs have been performed with about 20 different values
of the plaquette. By calculating the eigenvalues of the reduced matrix the phase of the determinant
was calculated for each of those runs. By numerically calculating the integrals

〈P〉 =
∫

dx xρ(x) 〈cos(θ)〉x

〈

P2〉 =
∫

dx x2ρ(x)〈cos(θ)〉x , (6.1)

we recover the grand canonical expectation value of the plaquette and its square. Here ρ(x) is
the density of states (Eq. 2.9), which has been measured by the integral method, usually used to
calculate the pressure. The susceptibility of the plaquette is then given by the usual expression
χP =

〈

P2
〉

−〈P〉2. From the peak position of the plaquette susceptibility the phase diagram was
calculated as shown in Fig. 11. The scale was set by the Sommer radius r0, measured on a 103×20
lattice. We find a triple point, where three different phases seem to coexist. The phases show
different plaquette expectation values. The triple point is located around µ tri

q ≈ 300 MeV, however
its temperature (T tri) decreases from T tri ≈ 148MeV on the 63 ×4 lattice to T tri ≈ 137MeV on the
64 lattice. This shift reflects the relatively large cut-off effects one faces with standard staggered
fermions and temporal extents of 4 and 6.
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Figure 11: Phase diagram from the density of state method [41].

Also shown in Figure 11 are points from simulations with quark mass m/T = 1.2. The phase
boundary turned out to be — within our statistical uncertainties — independent of the mass.
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