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1. Introduction

A way to understand lattice QCD at nonzero chemical potential, and the physics behind it, is
to analyze the statistical properties of the Dirac eigenvalues. Twenty years ago [1, 2] it was realized
that this approach apparently leads to a contradiction: At zero temperature a small (in units of the
nucleon mass) chemical potential is expected to have a small effect on the chiral condensate,Σ. On
the contrary the scatter plots of the Dirac spectrum obtained in lattice simulations [1, 3] leads one
to conclude thatΣ will vanish in the chiral limit forany nonzero value of the chemical potential.
This conclusion was reached by means of an electrostatic analogy [1] where the chiral condensate
is regarded as the electric field created by charges located at the position of the eigenvalues in the
complex plane. The quark mass serves as a test charge inserted at the point(m,0) in the complex
plane where the electric field is measured. At zero chemical potential this analogy correctly leads
to the Banks-Casher relation [4]. For a nonzero chemical potential the Dirac operator loses it anti-
hermeticity and, consequently, the eigenvalues spread out into the complex eigenvalue plane. In the
chiral limit the test charge (quark mass) moves to the center of this charge distribution and the chiral
condensate hence vanishes for any nonzero chemical potential. The only way out seemed to be that
a finite fraction of the eigenvalues would remain in a singular distribution (delta-function) on the
imaginary axis at nonzero chemical potential. However, in unquenched QCD the sign problem
creates a loophole in the electrostatic analogy. The unquenched spectral density of the QCD Dirac
operator (the charge distribution) is a complex function which for forµ > mπ/2 depends strongly
on the quark mass (the test charge). Analytic calculations in theε-regime [5] show that the complex
valued spectral density has oscillations with a period inversely proportional to the volume and an
amplitude that grows exponentially with the volume [6]. These oscillations lead to the discontinuity
of the chiral condensate at zero quark mass [7]. Spontaneous chiral symmetry breaking is therefore
intimately related to the sign problem. Because the oscillations of the eigenvalue density take place
on a scale inversely proportional to the volume, the microscopic scaling of theε-regime is required
to resolve the individual oscillations and hence the way in which the discontinuity of the chiral
condensate is built up form the eigenvalue density.

In quenched QCD there is of course no sign problem and the electrostatic analogy is in fact
valid. By solving a random matrix model for QCD at the mean field level it was argued in [8] that
quenched QCD at nonzero chemical potential is the zero flavor limit of QCD with nonzero isospin
chemical potential. Indeed, the chiral condensate vanishes in the chiral limit for any nonzero isospin
chemical potential [9, 10, 11]. Lattice simulations [12, 13, 14] have already been successfully
compared to the quenched microscopic eigenvalue density computed in [15].

The complex oscillations of the unquenched eigenvalue density is a manifestation of the sign
problem. The oscillations appear forµ > mπ/2. In theε-regime it is also possible to compute the
unquenched average of the phase factor of the fermion determinants and thereby to measure the
strength of the sign problem directly [16]. It is shown that the average phase factor goes to zero
at µ = mπ/2 and remains at zero forµ > mπ/2. The sign problem is therefore particularly acute
for µ > mπ/2. It is not surprising that the sign problem sets in atµ = mπ/2. Suppose we had
neglected the sign problem, that is, replaced the fermion determinant in the partition function by
its absolute value. Since conjugating a fermion determinant corresponds to changing the sign of
the chemical potential [17] the free energy would have a second order discontinuity atµ = mπ/2
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signaling the formation of a Bose condensate of pions [9]. Reinserting the phase factor of the
fermion determinant must wipe out this Bose condensate completely and hence the complex nature
of the fermion determinant must be particularly important forµ > mπ/2. Since we know the
physical origin of the scaleµ = mπ/2 we can understand the behavior of the sign problem at
nonzero temperature and chemical potential. This allows us to make contact to lattice simulations
[18, 19, 20, 21, 22] at nonzero temperature and chemical potential.

This review is organized as follows. We first define theε-regime and briefly discuss two
independent ways to compute the microscopic spectral correlation functions. Then we analyze
the unquenched eigenvalue density in detail. In section4 we show how the oscillations of the
eigenvalue density lead to the discontinuity of the chiral condensate. Finally we discuss the strength
of the sign problem and the consequences for lattice simulations.

2. Theε-regime at nonzero chemical potential

In order to extend the Banks-Casher relation to nonzero chemical potential it would be helpful
to know the eigenvalue density of the Dirac operator near the origin, in the phase where chiral
symmetry is spontaneously broken, for smallµ andm. Remarkably, in theε-regime it is possible
to get all this. By definition [23] the ε-regime deals with the phase where chiral symmetry is
spontaneously broken. The quark mass and chemical potential are taken such that (V is the 4-
volume andFπ is the pion decay constant)

mΣ∼ 1
V

and µ
2F2

π ∼
1
V

. (2.1)

The correlations of the Dirac eigenvalues,z, are considered on the microscopic scale [24] where

zΣ∼ 1
V

. (2.2)

The original work on theε-regime [23] focused on the quark mass dependence of the finite
volume partition function and shows how the chiral condensate goes to zero if the quark mass is
taken to zero in a finite but large volume. The effect of the chemical potential on the finite volume
partition function is determined by the flavor symmetries and the scaling of the chemical potential
with the volume. Using the GOR relation and (2.1) it follows that the chemical potential, in the
ε-regime, is of the same order as the pion mass. With this scaling the Compton wavelength of the
pion is much larger than the linear size of the volume and the effective partition function reduces to
a group integral over the static modes of the pion field uniquely determined by the pattern of chiral
symmetry breaking [25]

ZNf ({mf }; µ) =
∫

U∈U(Nf )
dU det(U)ν e−

V
4 F2

π µ2Tr[U,B][U−1,B] + 1
2ΣVTrM(U+U−1). (2.3)

Both M andB are diagonal matrices.M is the quark mass matrix andB contains the quark baryon
charges. Since here all quarks have the same baryon charge theB matrix is proportional to the
unit matrix and the dependence on the chemical potential automatically drops out of the partition
function (2.3). This is exactly as expected, since the pions have baryon charge zero, the chemical
potential is inert.
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2.1 The eigenvalue density

The zero temperature effective partition function does not depend on the chemical potential
even though the eigenvalues of the Dirac operator do1. The chemical potential adds a hermitian
part to the Dirac operator and the eigenvalue spectrum,

(D+ µγ0)ψ j = zjψ j , (2.4)

is no longer purely imaginary. The support of the eigenvalue density

ρNf (z,z
∗,{mf }; µ)≡

〈
∑

j

δ
2(z−zj)

〉
Nf

, (2.5)

is therefore two dimensional domain in the complex eigenvalue plane. Here we have used the
notation

〈O〉Nf
≡
∫

dA O ∏Nf

f=1det(D+ µγ0 +mf ) e−SYM∫
dA∏Nf

f=1det(D+ µγ0 +mf ) e−SYM

. (2.6)

The eigenvalue density is the function which allows us to turn the average of a sum over eigenval-
ues, e.g.〈∑1/(zj + m)〉, into an integral,

∫
d2z ρ/(zj + m). However, due to the presence of the

complex fermion determinant in the measure (the sign problem) the unquenched eigenvalue density
is not expected to be real and positive.

The eigenvalue density in theε-regime, also known as the microscopic eigenvalue density,
describes the eigenvalues in a range of order 1/ΣV from the origin. At present there exist two
independent ways to compute the microscopic correlation functions of the QCD Dirac operator
at nonzero baryon chemical potential. One can obtain them directly from the effective partition
functions [15, 6] writing the δ -functions in (2.5) by means of the replica trick [8, 27]

ρNf (z,z
∗,{mf }; µ) =

1
ZNf

lim
n→0

1
n

∂z∂z∗

∫
dA|det(D+ µγ0 +z)|2n

Nf

∏
f=1

det(D+ µγ0 +mf ) e−SYM .(2.7)

Note that the integral is a partition function withn additional quarks and conjugate quarks. The
conjugate quarks corresponds to quarks with the opposite baryon charge [17] and this is why these
partition functions and hence the eigenvalue density depend onµ. We refer to these partition
functions as the generating functionals for the eigenvalue density.

Alternatively one can start from a chiral random matrix theory and use biorthogonal polyno-
mials in the complex plane [28, 29, 30, 5]. For an up-to-date review of the random matrix approach
to QCD at nonzero chemical potential, see [31]. (In principle, one can also make use of the super-
symmetric method [32].)

The microscopic eigenvalue density of the Dirac operator in quenched QCD was first obtained
from effective partition functions like (2.3) in [15] and subsequently reproduced from the random
matrix methods [5]. The expression for the quenched eigenvalue density is

ρNf =0(z,z∗; µ) =
|z|2Σ4V3

2πµ2F2
π

e−2µ2F2
π Ve
− (z2+z∗2)Σ2V

8µ2F2
π K0

(
|z|2Σ2V
4µ2F2

π

)∫ 1

0
dtte−2µ2F2

π Vt2I0(zΣV)I0(z∗ΣV).

(2.8)
1To understand how this is possible is frequently referred to asthe silver blaze problem [26].
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The unquenched eigenvalue density, on the other hand, was derived first by means of the random
matrix techniques [5] and subsequently derived using the replica trick [6]. Here we give the result
for one flavor in the topologically trivial sector (see [5, 6] for the general expressions)

ρNf =1(z,z∗,m; µ) = ρNf =0(z,z∗; µ)

(
1−

I0(zΣV)
∫ 1

0 dtte−2µ2F2
π Vt2I0(mΣV)I0(z∗ΣV)

I0(mΣV)
∫ 1

0 dtte−2µ2F2
π Vt2I0(zΣV)I0(z∗ΣV)

)
. (2.9)

Note that the unquenched density is the sum of the quenched density and a term from unquenching
ρNf =1(z,z∗,m; µ) = ρNf =0(z,z∗; µ)+ρU(z,z∗,m; µ) and that the density is zero form= z.

3. A complex and oscillating eigenvalue density

The eigenvaluez and its complex conjugatez∗ do not enter symmetrically in the unquenching
part of the eigenvalue density (2.9). This suggests that the unquenched eigenvalue density is in
general a complex function. Here we take a closer look at the unquenched eigenvalue density of
the QCD Dirac operator and identify the scale at which it becomes complex.

For infinitely large quark mass the unquenching term in (2.9) is suppressed and the eigen-
value density is constant and nonzero in a strip along the imaginary axis of width 2µ2F2

π /Σ. The
quark mass enters the strip of eigenvalues whenm< 2µ2F2

π /Σ or, equivalently, whenmπ < 2µ.
After the quark mass has entered this strip the unquenched eigenvalue density is dramatically dif-
ferent from the quenched eigenvalue density. Starting atz= ±m and extending to the support of
the eigenvalue density are two regions in which the unquenched eigenvalue density is complex
and oscillating. Figures1 and2 illustrate the appearance of the oscillating regions for 2µ > mπ .
The oscillations have an amplitude which grows exponentially with the volume and have a period
inversely proportional to the volume. This structure has a physical origin: The generating func-
tionals for the eigenvalue density in (2.7) are partition functions with additional pairs of conjugate
fermions (for explicit evaluation of these partition functions in theε-regime see [15, 33]). The
three regions of the unquenched eigenvalue density correspond to three phases of the generating
functionals [7, 34, 35]. The uniform part of the density corresponds to the phase with a conden-
sate of pions made op of the quarks with massesz andz∗. This pion condensate forms when 2µ

exceeds the mass of these pions,(2µ)2 > 2Re[z]Σ/F2
π . This why the with of the strip of eigenval-

ues isRe[z] < 2µ2F2
π /Σ. The oscillating region corresponds to a phase with Bose condensation of

pions of squared mass(m+ z∗)Σ/F2
π . This condensate dominates form< z since in this case the

squared mass,(m+z∗)Σ/F2
π , of these pions is smaller than the squared mass,(z+z∗)Σ/F2

π , of the
pions made up of the quarks with massesz andz∗. Finally, the region outside the support of the
eigenvalue density corresponds to the normal phase, without Bose condensates, of the generating
functionals.

To see how the structure emerges from (2.9) let us look at the limit where the width of the
eigenvalue support is large, 2µ2F2

π V � 1, and where the quark mass and eigenvalue is inside
the support and well away from the origin (mΣV � 1, |z|ΣV � 1). In this case the unquenched
eigenvalue density simplifies to (z= x+ iy)

ρNf =1(x,y,m; µ)∼ 1
4µ2F2V

(1−e
VΣ
[

Σ(x2−y2+m2)
8µ2F2

π

− Σx2

2µ2F2
π

+ Σxm
4µ2F2

π

+x−m

]
e

iVΣy

(
1− Σ(x+m)

4µ2F2
π

)
). (3.1)
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Figure 1: The real part of the microscopic eigenvalue density of the QCD Dirac operator for fixed quark
massmΣV = 100. The chemical potential increases from the top and down such that the width 2µ2F2

π V = 50,
100, 150. To the left of the plots the chemical potential is expressed in terms of the pion mass. Note that the
support of the eigenvalue distribution reaches the quark mass whenµ = mπ/2. As µ exceeds this value two
oscillating regions starts atz=±m and extend towards the edge of the support.
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Figure 2: The unquenched eigenvalue density for fixed chemical potential 2µ2F2
π V = 100 and decreasing

quark massmΣV = 150, 100, 50. The pion mass in units of the chemical potential is given to the left of the
plots. Inside the oscillating regions the imaginary part of the eigenvalue density is nonzero and oscillates out
of phase with the real part shown. Note that the oscillations by far exceeds the scale of the plot.
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The term independent ofx andy (the ′1′) gives the plateau of the quenched part (since we assumed
that the eigenvalue was inside the strip we do not see the boundary atx = 2µ2F2

π /Σ). The second
term gives the effect of unquenching, it is exponentially suppressed or enhanced with the volume
depending on the sign in the square bracket. This gives the boundary of the oscillating region.
Finally, from the oscillating exponential it is clear that the period of the oscillations is of order
1/V. For x andm well inside the support the oscillations are predominantly along the imaginary
axis.

The oscillations are of course a manifestation of the sign problem so we should expect that the
sign problem is acute forµ > mπ/2. We will confirm this expectation in section6.

4. The Banks-Casher relation at nonzeroµ

At zero chemical potential the accumulation of eigenvalues at the origin on the imaginary
axis is responsible for chiral symmetry breaking [4]. As we discuss now the oscillations of the
eigenvalue density are responsible for chiral symmetry breaking atµ 6= 0 [7].

Using the definition of the eigenvalue density (2.5) the chiral condensate can be expressed as
an integral over the complex eigenvalue plane

ΣNf (m; µ) =
∫

d2z
ρNf (z,z

∗,m; µ)
z+m

. (4.1)

As noted below eq. (2.9) is it natural to write the unquenched eigenvalue density as a sum of two
terms

ρNf (z,z
∗,m; µ) = ρNf =0(z,z∗; µ)+ρU(z,z∗,m; µ), (4.2)

whereρU(z,z∗,m; µ) is what is left after subtracting the quenched density. See the left hand column
of figure 3. The quenched density is by definition real and positive so, in agreement with our
asymptotic analysis above, the complex oscillations reside entirely inρU(z,z∗,m; µ). Inserting
ρNf = ρNf =0 +ρU in (4.1) shows that the chiral condensate is built up from two terms

ΣNf = ΣQ +ΣU . (4.3)

The individual contributions to the chiral condensate are shown the right hand column of figure
3. As expected from lattice simulations and the electrostatic analogy the quenched contribution
drops to zero in the chiral limit. The entire discontinuity of the chiral condensate thus comes
from the oscillating part, cf. the lower row of figure3. To see analytically how the oscillations
of the eigenvalue density build up the discontinuity, insert the asymptotic form (3.1) in (4.1) and
first perform the integral overy for fixed x by going to the complexy = a+ ib plane [7]. In
this plane the roles of the two exponentials in (3.1) are mixed: Since there is an explicit factor
of V in both arguments, the second exponential now also affects the boundary of the oscillating
region (this is why it is essential that the oscillations have a period of order 1/V and an amplitude
which is exponentially large in the volume). Due to the mixing the contour can be deformed into
a region where the integrand is exponentially suppressed. They-integral through the oscillating
part is therefore given by the residue at the pole alone. The residue follows automatically from the
observation that the unquenched eigenvalue density vanishes atz= m [7].

8



P
o
S
(
L
A
T
2
0
0
6
)
0
2
3

The sign problem in theε-regime of QCD K. Splittorff

yΣV
Re[ρNf =1(x,y,m;µ)]

Σ2V2

xΣV

ρNf =0(x,y;µ)

Σ2V2

Re[ρU (x,y,m;µ)]
Σ2V2

-1000100

-50
0

50

0

0.001

0.002

-1000100

-50
0

50

−160 −120 −80 −40 0 40 80 120 160 
−1.2
−0.9
−0.6
−0.3

0
0.3
0.6
0.9
1.2

 Σ
(m

ΣV
)

-1000100

-50
0

50

0

0.001

0.002

-1000100

-50
0

50

−160 −120 −80 −40 0 40 80 120 160 
−1.2
−0.9
−0.6
−0.3

0
0.3
0.6
0.9
1.2

Σ Q
(m

ΣV
,µ

FV
1/

2 ) 

-1000100

-50
0

50

0

0.001

0.002

-1000100

-50
0

50

−160 −120 −80 −40 0 40 80 120 160
mΣV

−1.2
−0.9
−0.6
−0.3

0
0.3
0.6
0.9
1.2

Σ U
(m

ΣV
,µ

FV
1/

2 )

Figure 3: Left column: The unquenched eigenvalue density (top) split into the quenched part (middle) and
the oscillating part (bottom).Right column: The chiral condensate as a function of the quark mass. The
top panel shows the full chiral condensate and the two plots below give the individual contributions from
the quenched eigenvalue density and the oscillating region respectively. Note that it is the oscillations of the
eigenvalue density which are responsible for the discontinuity of the chiral condensate at zero quark mass.

5. Lattice simulations in theε-regime at µ 6= 0

The sign problem in QCD occurs since the baryon chemical potential introduces a mismatch
between quarks and anti-quarks. If we instead consider a chemical potential for the third compo-
nent of isospin then the anti-particle is a part of the measure which therefore remains real [17].
Quenched QCD withµ 6= 0 is the zero flavor limit of QCD at nonzero isospin chemical potential
[8]. The microscopic eigenvalue density (2.8) in the quenched case has been compared successfully
to staggered lattice simulations [12, 13] as well as to simulations of a Ginsparg-Wilson Dirac oper-
ator at nonzero chemical potential [14]. The measure of 2 color QCD at nonzero baryon chemical
potential is also real and this has allowed to test the predictions for the microscopic spectral density
[38] in the quenched case [39] as well as the unquenched [40].
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If the baryon chemical potential is purely imaginary the Dirac operator remains anti-hermitian.
The correlations between two such Dirac operators separated by a microscopic difference between
the values of the imaginary chemical potential is extremely sensitive to the value ofFπ . The cor-
relation function thus provides a way to extract the pion decay constant from simulations in the
ε-regime [41].

6. The strength of the sign problem

The analysis of the spectra of the QCD Dirac operator has shown that the sign problem mani-
fest itself in the eigenvalue density whenµ > mπ/2. This is precisely the value ofµ for which the
eigenvalue density reaches the quark mass and thus where eigenvalues,z, for which(z−m)∼ 1/ΣV
become frequent. In order to quantify the strength of the sign problem let us write

det(D+ µγ0 +m) = |det(D+ µγ0 +m)|eiθ (6.1)

and consider the expectation value of the (squared) phase factor of the fermion determinant〈
e2iθ
〉

Nf

=
〈

det(D+ µγ0 +m)
det(D+ µγ0 +m)∗

〉
Nf

=
ZNf +1|1∗

ZNf

. (6.2)

For µ = 0 the phase,θ , is zero and〈e2iθ 〉 = 1. If the fluctuations drives〈e2iθ 〉 to zero the sign
problem is very strong.

The expectation value of the phase factor is equal to the partition function (ZNf +1|1∗) with
an additional fermionic flavor and an additional conjugate bosonic flavor divided by the standard
dynamical partition function (ZNf ). In the ε-regime these partition functions can be evaluated
explicitly [42, 16]. The thermodynamic limit,mΣV→∞ andµ2F2

π V→∞, of the result is extremely
simple. The sign problem has two distinct phases (see figure4): For µ < mπ/2 the sign problem
saturates at a nonzero value〈

e2iθ
〉

Nf

= (1− 4µ2

m2
π

)Nf +1eV0 for µ < mπ/2. (6.3)

In the other phase the sign problem is exponentially bad in the volume〈
e2iθ
〉

Nf

∼ e
−VF2

π

(m2
π−4µ2)2

8µ2 for µ > mπ/2. (6.4)

The behavior of the phase follows directly from leading order chiral perturbation theory [16]. At
leading order the low energy effective partition function is given by a saddle point approximation

ZLO ∼ J

√√√√∏ f Vm2
π, f

∏bVm2
π,b

e−VΩMF , (6.5)

wheremπ,b (mπ, f ) are the masses of the Goldstone bosons (fermions). (The Goldstone fermions
are made up of a fermionic quark and a bosonic conjugate quark.) The free energy densityΩMF

is given by the Lagrangian at the mean field value of the fields. Finally,J is the Jacobian from the
measure.
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Figure 4: The expectation value of the phase factor of the fermion determinant in QCD with two dynamical
flavors. Shown is the curve forµFπ

√
V � 1. In this limit of theε-regime〈exp(2iθ)〉 only depends on the

ratio 2µ/mπ .

For µ < mπ/2 the additional fermionic and bosonic quark in the numerator of (6.2) has no
effect on the mean field free energy. The factors of exp(−VΩMF) hence cancel between the numer-
ator and denominator in (6.2). For µ > mπ/2 the partition function in the numerator is in a Bose
condensed phase and, consequently, the mean field free energy in the numerator does not match
that in the denominator. This leads to an expectation value of the phase which is exponentially
small in the volume.

The saddle point approximation, (6.5), also allow us to understand the preexponential factor
in (6.3). The masses of the charged pions do depend onµ even forµ < mπ/2 [43, 44, 9]. The
charged pions are the ones made up from a fermionic quark and a bosonic conjugate quark. There
are 2(Nf +1) such Goldstone fermions, half of which have massmπ−2µ while the other half have

massmπ + 2µ. The resulting overall factor(m2
π −4µ2)Nf +1 is divided bym

2(Nf +1)
π which is left

after canceling out the neutral Goldstone bosons from the partition function in the denominator.
This explains the result (6.3) for 〈e2iθ 〉Nf whenµ < mπ/2.

Since〈e2iθ 〉Nf is a ratio of two partition functions it is real. The same is true for〈e−2iθ 〉Nf

implying that 〈sin(2θ)〉Nf
is purely imaginary. To see that〈sin(2θ)〉Nf

is nonzero we need to

compute〈e−2iθ 〉Nf and show that it is different from〈e2iθ 〉Nf . The expectation value of the inverse
phase factor also has a very simple form in the thermodynamic limit〈

e−2iθ
〉

Nf

= (1− 4µ2

m2
π

)−Nf +1eV0 for µ < mπ/2. (6.6)

The expectation value of the inverse phase isnot equal to the expectation of the phase. They are
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only equal in quenched and phase quenched QCD where the weight function is real.
Note that lattice tests of the predictions for〈e2iθ 〉 are possible forµ < mπ/2 even in un-

quenched QCD. Related observables has been measured on the lattice [36, 37, 19].

7. Nonzero temperature

Unquenched lattice simulations at nonzero chemical potential must deal with the sign problem.
At present three major approaches have been explored, the multi parameter reweighting method
[18], the Taylor expansion method [19, 20], and analytic continuation from imaginary chemical
potential [21, 22]. See also the plenary review at this lattice conference by C. Schmidt [45].

Above we computed the strength of the sign problem and found that it changes drastically
whenµ = mπ/2. The fact that the change takes place atµ = mπ/2 has a physical origin:〈exp(2iθ)〉
is a ratio of two partition functions, c.f. (6.2), and since the partition function in the numerator
includes a conjugate quark it experiences a phase transition into a Bose condensed phase at this
value of µ. The Bose condensate changes the functional form of the free energy and causes an
exponential suppression of〈exp(2iθ)〉 for µ > mπ/2. The region in theµ,T-plane for which this
Bose condensate is present is therefore identical to the region where〈exp(2iθ)〉 is exponentially
suppressed. As we have argued above the chemical potential above which the quark mass is inside
the support of the eigenvalue density is also determined by Bose condensation of weakly interacting
pions. The region of theµ,T-plane where the sign problem is exponentially suppressed is therefore
identical to the region where the quark mass is inside the support of the eigenvalue density. This
region is below the thick line indicated in figure5. As the temperature is increased the line bends
to the right since for a sufficiently high temperature the Bose condensate will melt. The curve
gives the melting temperature of the Bose condensate as calculated in [10]. It is consistent with the
melting temperature computed in phase quenched lattice QCD [11].

The lattice computations of [19] suggests that the strength of the sign problem scales with the
critical chemical potential: In the left panel of figure5 we show contour lines from [19] of the
variance of the two flavor staggered fermion determinant, in our notation

√
〈(2θ)2〉−〈2θ〉2. The

lines give the contours up to the value 2π in steps ofπ/4. The contours are parallel to the thick
line indicating the expected critical chemical potential for which the quark mass hits the support of
the eigenvalue density and the sign problem becomes very severe [46].

Almost all of the lattice simulations [18, 19, 20, 21, 22] address the region of theµ,T-plane
where the sign problem is less severe. One exception is [18]. These two studies of the critical
endpoint used two sets of quark masses. The endpoint was found to depend strongly on the quark
mass. In fact, as observed in [20], the value of the chemical potential at the endpoint scales like pion
mass in these studies. In the right hand part of figure5 we give the location of the endpoints found
in [18] together with the line where the quark mass is expected to hit the support of the eigenvalue
density. Surprisingly both endpoints points are located very close to the line [46]. To the right
of the line the sign problem is exponentially strong and this has been argued [37] to invalidate
the Yang-Lee analysis used in [18]. Moreover, when the quark mass is inside the support of the
eigenvalue density the 4th root trick used in [18] may be illdefined [47]. For these reasons one may
fear that the signals interpreted as a signature of the endpoint in [18] is rather a breakdown of the
method used.
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〈exp(2iθ)〉= 0

Ev density oscillates

← Quark mass hits
eigenvalue density

4th root illdefined

Yang-Lee analysis fails
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2µ/mπ
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Figure 5: Left: Contour lines of the variance
√
〈θ 2〉−〈θ〉2 = π/4,2π/4, . . .2π of the phase of the fermion

determinant from [19]. Note that the variance depends on the distance from the line where the quark mass
hits the support of the eigenvalue spectrum (indicated by the thick line).Right: The measured endpoints
from [18] and the line where the quark mass hits the eigenvalue density. To the right of this line the Yang-Lee
analysis [37] and the 4th root trick [47] used in [18] are troublesome.

8. Summary

The study of theε-regime of QCD at nonzero chemical potential has provided new insights
in QCD which go beyond the microscopic scale. Here we have reviewed those aspects which
have direct relevance for the sign problem in lattice QCD. The non-hermitian nature of the Dirac
operator atµ 6= 0 also have a very nontrivial effect on the analytical methods which where used to
derive the results discussed here. For a review focused on these aspects, see [31].

Here we have discussed how the analysis of the spectrum of the QCD Dirac operator allows us
to understand the sign problem in lattice QCD at nonzero chemical potential. From the perspective
of the Dirac operator the sign problem plays an all important role for spontaneous chiral symmetry
breaking. The sign problem induces violent complex oscillations in the spectral density of the
Dirac operator and these in turn build up the entire discontinuity of the chiral condensate in the
chiral limit. Therefore, to address spontaneous chiral symmetry breaking in the chiral limit on the
lattice atµ 6= 0, one must deal with the sign problem.

The strength of the sign problem can be measured by the average of the phase factor,〈exp(2iθ)〉.
In general〈exp(2iθ)〉 depends on quark mass, the chemical potential, the volume, the temperature
as well as the lattice cutoff. In theε-regime we can quantify the dependence of〈exp(2iθ)〉 onµ and
the quark mass:〈exp(2iθ)〉 is nonzero forµ < mπ/2 while for µ > mπ/2 it is exponentially small
in the volume. The separation between these two scales is linked to the onset of Bose condensation
and this physical insight allows us to extrapolate the results beyond theε-regime. Forµ > mπ/2
we expect that there is a critical temperature at which the sign problem changes its nature. Care
should be taken not to misinterpret manifestations of this change in lattice QCD.
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