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1. Introduction

Quantum Chromodynamics is a remarkable theory. It is a convincing prieetaaple of the
triumph of the quantum field theory. Asymptotic freedom allows QCD to be cmsisown to
arbitrary short distance scale, enabling us to define the theory completielgnis of the funda-
mental microscopic degrees of freedom — quarks and gluons. Thiaruemtal definition is very
simple, yet the theory describes a wide range of phenomena — from thespgatsum of hadrons
to deep-inelastic processes. As such, QCD should also possess fimgtildbermodynamic prop-
erties. The knowledge of QCD thermodynamics is essential for the undeirsgeof such natural
phenomena as compact stars and laboratory experiments involving rétatieavy-ion collisions.

Full analytical treatment of QCD is very difficult because, neglectinglqueasses, this theory
has no numerically small fundamental parameters. The only independamimgcale in this the-
ory is the dynamically generated confinement séalep ~ 1fm~L. In certain limits, in particular,
for large values of the external thermodynamic parameters tempeiatame/or baryo-chemical
potentialug, when thermodynamics is dominated by short-distance QCD dynamics, thg tdagor
be studied analytically, due to the asymptotic freedom. But, as seen below, gténteoesting
experimental region of parametéfsand g is that of orde\qcp.

The above makes first principle lattice approaches, which do not relynait parameter ex-
pansions, an invaluable and the most powerful tool in studying QCD themmaadics. In addition,
the domain where all relevant time/distance (or energy/momentum) scales are isi@dpecially
suited for a lattice study (accommodating a wide scale window would requirerespondingly
large lattice).

The full potential of lattice methods is close to being realized as far as the sfl@¢D at
us = 0is concerned. The main practical problems in this regime — accommodatirgiesufi light
guarks and approaching the continuum limit — are being methodically andsafotly addressed
through the use of improved lattice discretization schemes, as well as advianglgorithm and
hardware technology.

The status of thermodynamics of QCDrain-zeropg is different. The main impediment to
lattice simulations is the notorious sign problem, discussed in Section 3.1. No nuthiedd so
far is known, or expected, to converge to the correct physical rastiite infinite volume limit is ap-
proached afixed g # 0. However, since the most interesting structure of the QCD phase diagram
(phase transitions and critical points) lie at nonzggpany progress in this direction is especially
valuable. Existing lattice methods generically rely on clever extrapolations fmm 0. These
techniques yield interesting results in the regime of small, but already expésillgarlevantis.

A contemporary view of the QCD phase diagram is shown in Fig. 3. It is a tatigm of a
body of results from model calculations, empirical nuclear physics, #sw/érst principle lattice
QCD calculations and perturbative calculations in asymptotic regimes.

Several reviews in these proceedings, in addition to original contribytisasdevoted to re-
cent progress in lattice studies of QCD thermodynamics. Ref. [1] reviegarsntidynamics of
QCD atug = 0. Ref. [2] discusses lattice results at smadl In addition, Ref.[3] describes resent
progress in uncovering phase structure of QCD at laggeelevant to the physics of compact stars,
and outlines targets of opportunity for potential future lattice studies in this ioma
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This report provides an overview of the structure of the QCD phaseatiagased on available
theoretical (lattice and model calculations) and phenomenological input. Saheerecent lattice
results reported separately in this volume are also briefly discussed inrSéctio

2. The phase diagram

Thermodynamic properties of a system are most readily expressed in tesirpbase diagram
in the space of thermodynamic parameters — in the case of QCD ¥ ag phase diagram. Each
point on the diagram corresponds to a stable thermodynamic state, chaeachy various ther-
modynamic functions, such as, e.g., pressure, baryon density, etelassvkinetic coefficients,
e.g., diffusion or viscosity coefficients, or other properties of variausetation functions).

Static thermodynamic quantities can be derived from the partition function — lasGilim
over eigenstates of QCD Hamiltonian, which can be alternatively expressagath integral in
Euclidean space:

Z(T, g) = ZeXp{ MBBG} = /@(Aq, q") exp{—Se} (2.1)

wherea labels states with enerds, and baryon numbd,. The path integral is over color gauge
(gluon) fieldsA,; periodic in Euclidean time with period/T, and quarks fields, antiperiodic with
the same period. The Euclidean action given by

S =S+ /d“x ¢ Dq 2.2)

o= uds

whereSyy [A] is the SU(3) Yang-Mills action and, in the chiral Weyl basis, the Dirac sgiaod

matrix are
(A (oD my B
CI—(qR) and ]D)_< oT‘D> Hq (2.3)

whereoy, = (1,i0), Dy = dy —iAy, andug = pg/3.

2.1 Chiral symmetry argument

In the chiral limit — the idealized limit when 2 lightest quarksndd, are taken to be massless,
the Lagrangian of QCD acquires chiral symmetry SU3U (2R, corresponding to SU(2) flavor
rotations of(u.,d; ) and(ur, dr) doublets independently. The ground state of QCD breaks the chiral
symmetry spontaneously locking SU(2and SU(2j rotations into a single vector-like SU(2)
(isospin) symmetry and generating 3 massless Goldstone pseudoscalas bafie pions. The
breaking of the chiral symmetry is a non-perturbative phenomenon.

At sufficiently high temperatur@ > Aqcp, due to the asymptotic freedom of QCD, pertur-
bation theory around the approximation of the gas of free quarks andgy{gaark-gluon plasma
— QGP) should become applicable. In this regime chiral symmetry is not brdkems we must
expect a transition from a broken chiral symmetry vacuum state to a chiyatignetric equilibrium
state at some temperatufg~ Aqcp. The transition is akin to the Curie point in a ferromagnet —
where the rotational O(3) symmetry is restored by thermal fluctuations (E#3=SU(2)x SU(2)
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Figure 1. Phase diagram of QCD with massless quarks dictated by the shimmetry argument. The order
of the transition (solid magenta line) is not determinedtiy simplest argument.

symmetry in QCD). Thermodynamic functions of QCD must be singular at theiti@m point —
as always when the transition separates thermodynamic states of diflxealt symmetry.

Thus, the region of broken chiral symmetry on Thes phase diagram must be separated from
the region of the restored symmetry by a closed boundary as shown in Fig. 1

2.2 Pisarski-Wilczek argument

The chiral symmetry argument alone is not sufficient to determinertdrer of the temperature
driven chiral symmetry restoration transition. A more elaborate argumesgdban universality,
advanced by Pisarski and Wilczek [4] asserts that the transiinonotbe of second order fahree
masslesguarks.

In a simplified form, the logic of Ref.[4] is as follows. Let us assume that thesitian is of
the second order. Then the critical behavior of the system (long-destagttavior of correlation
functions, singular contributions to thermodynamic functions, etc.) is detednfipehe long-
wavelength modes which, in the case of the second order transition in & thigoN; light quarks,
are theN? — 1 pions of the spontaneously broken (Bl axial flavor symmetry plus the critical
mode — the magnitude of the chiral condengate qq.

Universality implies that the critical behavior is the same as in any local the@rglimensions
with the same global symmetry breaking pattern and the same set of critical modag case,

a representative example of the universality class is alNgW(SU(N;) sigma model of aN; x

Nt matrix-valued field®. It turns out, that folN; = 3, the model cannot be critical: there is a
relevant operator cubic in the order parameter fielddgethich always destabilizes the symmetric
minimum of the effective potential fo via a first order transition, before the curvature of the
minimum vanishes (i.e., before criticality is reached). Hence, QCD With 3 massless quark
flavors must undergofirst order chiral restoration transition.

2.3 N = 2 chiral limit and tricritical point

Fortwo masslesquarks the transition can be either second or first order. As lattice anelmod
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Figure 2: The order of the chiral symmetry restoration transitionZanassless and one massive quarks.
The dashed line (red) is the second order transition, ttid Boé (blue) is the first order transition. In the
low T region: chiral symmetry is broken in nuclear matter. Detail the phase structure at higla are
omitted.

calculations show, both possibilities are realized depending on the value sif#mge quark mass
ms and/or the baryo-chemical potentjai.

The point on the chiral phase transition line where the transition chandes isrcalled tri-
critical point, see Fig. 2. The location of this point is one of the unknownthefQCD phase
diagram with 2 massless quarks. In fact, even the order of the transitja-at0, which many
older and recent studies suggest is of the second order (as shown ) i still being questioned
(see review by Heller in this volume [1]).

Neither can it be claimed reliably (model or assumption independently) thasimstton, if it
begins as a 2nd ordergg = 0, changes to first order. However, numerous model calculations show
this is the case (Section 3.4). Lattice calculations also support such a pi&eaoent advances
in the understanding of QCD at loW and largeug, reviewed in [3], also point at a first order
transition (at lowT, high-ug) from nuclear matter to color-superconducting quark matter phase.
Fig. 2 reflects this consensus.

At low temperature, nuclear matter (which is expected to be still bound in thal diniit)
should be placed on the broken symmetry side of the chiral transition lineassh Fig. 2.

2.4 Physical quark masses and crossover

When the up and down quark masses are set to their observed finite, ihkiglagram as-
sumes the shape sketched in Fig. 3. The second order transition lines(thieee was one) is
replaced by a crossover — the criticality needed for the second ordeitioa in Fig. 2 requires
tuning chiral symmetry breaking parameters (quark masses) to zero. &ibseace of the exact
chiral symmetry (broken by quark masses) the transition from low- to highdeatyre phases of
QCD need not proceed through a singularity. Lattice simulations do indeedtbhat the transition
is a crossover fopg = 0 (most recently and decisively Ref.[5], see also Ref.[1] for a review)

1This fact is technically easier to establish than the order of the transition ifitte kimit — taking the chiral limit
is an added difficulty.
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Figure 3: The contemporary view of the QCD phase diagram — a semidatwvi sketch.

This transitional crossover region is notoriously difficult to describe odehanalytically
— description in terms of the hadronic degrees of freedom (resona®ebgeaks down as one
approaches crossover temperature (often caligdand the dual description in terms of weakly
interacting quarks and gluons does not become valid until much higher tetper. Recent ter-
minology for the QCD state near the crossovE{ (1 — 2)T¢) is strongly coupled quark-gluon
plasma (sQGP).

Transport properties of SQGP have attracted considerable attentioex&ople, generally,
the shear viscosity is a decreasing function of the coupling strength. The dimensionless ratio of
n/hto the entropy densitgtends to infinity asymptotically far on either side of the crossover —in
dilute hadron gasl( — 0) and in asymptotically free QGH (— ). Near the crossover/sshould
thus be expected to reach a minimum [6]. The viscosity can be indirectly deezirmrheavy
ion collisions by comparing hydrodynamic calculations to experimental datih G&mparison [7]
indeed indicates that the viscosity (per entropy density) of this “crossiquéd” is relatively small,
and plausibly is saturating the lower bound conjectured in [8].

2.5 Physical quark masses and the critical point

The first order transition line is now ending at a point known as the QCD a&frjtigint or end
point? The end point of a first order line is a critical point of the second ordéis is by far
the most common critical phenomenon in condensed matter physics. Most lgpgdess such
a singularity, including water. The line which we know as the water boiling iiansends at
pressurep = 218 atm andl = 374°C. Along this line the two coexisting phases (water and vapor)
become less and less distinct as one approaches the end point (the dewsitgr decreases and
of vapor increases), resulting in a single phase at this point and beyond

In QCD the two coexisting phases are hadron gas (IGWeand quark-gluon plasma (higher
T). What distinguishes the two phases? As in the case of water and vapdistimction is only

2The QCD critical point is sometimes also referred teisal critical point which sets it apart from another known
(nuclear) critical point, the end-point of the transition separating nutilpsid and gas phases (see Fig. 3). This point
occurs at much lower temperatur€$10MeV) set by the scale of the nuclear binding energies.
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gquantitative, and more obviously so as we approach the critical point. Biaahiral symmetry is
explicitly broken by quark masses, the two phases cannot be distingdighredlizations (broken
vs restored) of any global symmetty.

It is worth pointing out that beside the critical point, the phase diagram @ @ ig. 3 has
other similarities with the phase diagram of water. A number of ordered quatier phases must
exist in the lowT high-ug region, which are akin to many (more than 10) confirmed phases of
ice. For asymptotically larggg, QCD with 3 quark flavors must be in color-flavor locked (CFL)
state [9, 3].

3. Locating the critical point: theory

The critical point is a well-defined singularity on the phase diagram, angéaap as an attrac-
tive theoretical, as well as experimental, target to shoot at. Theoreticallyngd the coordinates
(T, ug) of the critical point is a straightforwardly defined task. We need to calcthat@artition
function of QCD given by Eq. (2.1) and find the singularity correspogdinthe end of the first
order transition line. But it is easier said than done.

Of course, calculating such an infinitely dimensional integral analytically yore present
reach. Numerical lattice Monte Carlo simulations is an obvious tool to choodhifotask. At
zeroug Monte Carlo method allows us to determine the equation of state of QCD as a fuattio
T (and show that the transition is a crossover). Howevdinae g the Nature guards its secrets
better.

3.1 Importance sampling and the sign problem

The notorious sign problem has been known to lattice Monte Carlo expeces tia early
days of this field. Calculating the partition function using Monte Carlo methodesiran the
fact that the exponent of the Euclidean acti&nis a positive-definite function of its variables
(values of the fields on the lattice). This allows one to limit calculation to a relatsrall set of
field configurations randomly picked with probability proportional to the valuexp(—Se). The
number of such configurations needed to achieve reasonable acisurastly smaller than the total
number of possible configurations. The latter is exponentially large in th&/ sid¢he system, or,
the number of the degrees of freedom: @gnstV). The method, also known as importance
sampling, utilizes the fact that the vast majority of these configurations cotdribtiny fraction
because of the exponential suppression by ). Only configurations with sizable ekp Se)
are important.

In QCD with g # 0 the Monte Carlo actiosyc (playing the role ofS) is complex. With
Suc complex, how does one pick important configurations? A number of waygdonevent
the problem have been tried. For example, using the modulus ¢f&e) as a measure of
importance, or the value of ekpSuc) at zero ug, when it is still positive. Unfortunately, none
of the methods can be expected to converge to correct result with thesimogdattice volume,

3Deconfinement, although a useful concept to discuss the transitionHadimon to quark-gluon plasma, strictly
speaking, does not provide a distinction between the phases. With geass in vacuumT = 0) the confining
potential cannot rise infinitely — a quark-antiquark pair inserted into the @iabotube breaks it. The energy required to
separate two test color charges from each other is finite if there arenityadajuarks.
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unless this limit is not accompanied by an exponential(eapstV) increase of the number of
configurations, rendering Monte Carlo technique useless.

3.2 Theoverlap problem

To demonstrate the problem, consider the most straightforward attempt tonegou it —
reweighting? We cannot obtain a correctly weighted sample of important configuratioastiyir
atug # 0. But we still can apig = 0. So, we take thgg = 0 sample and offset incorrect probability
by multiplying the contribution of each configuration by a factor @xfs|,—0— S). This is exact
in the limit when the sample contaial possible configurations.

The problem is in the size of the sample needed for a Monte Carlo computatibr-as.
The method uses the fact thatfatite volumeV, even atug = 0, the configurations important
for ug #~ 0 pop up, but with a very small probability. This probability is exponentially srasll
volumeV — oo: exp(—const V). When we calculate the partition function the reweighting factor
is correcting for that, and is therefore exponentially large (for the confiexboth he magnitude
and the complex phase are). Fluctuations, or statistical noise, in the exjatlgdginy number of
the rare important configurations completely washes out the significaribe tésult.

In layman’s terms, imagine that we want to study ice, but can only run expetsraénormal
room temperature and pressure. Using the reweighting method is anatogioyisg to glimpse
the information by waiting for rare configurations when all the water mole@adeglentally gather
in one corner of the lab, forming a chunk of ice. The amount of time that thgerexent would
require is exponentially large &— .

3.3 Complex deter minant

Why is the Monte Carlo action in QCD complex and what can be done about it8e&,0
integrate over the quark fields in (2.1) explicitly and obtain

z— / IA &S [ detD = / A e Sve 3.1)
q

where (as in Eq. (2.3) and using the propéfy= —D):

_(oD-u my
(T oo ) 02

For ug = 0 each quark determinant in Eq. (3.1) is manifestly positive:
detD = def(o-D)(c-D)"+mé] > 0. (3.3)

The positivity (and even reality) is lost ify # 0. This is the sign problem.

However, the following still holdg¢detD(pq))* = detD(—pg). This opens two possibilities
for the measure in the Euclidean path integral (3.1) to remain positiveifet 0: (a) if pgq is
imaginary; or (b) if there are two degenerate quarks, exg+ my and u, = — g, which is what
happens with the chemical potentjalof isospinls, or in phase-quenched QCD. Both alternatives
are being exploited to glimpse into the regime # 0, yet unaccessible to direct Monte Carlo. In
particular, the recent results from the simulations at fipjtare reported in Ref.[11]. Simulations
at imaginaryug are discussed further in Section 4.2.

4For QCD at finiteug this method is known as the “Glasgow method” (reviewed in Ref. [10]).
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Figure4: Comparison of predictions for the location of the QCD catipoint on the phase diagram. Black
points are model predictions: NJLa89, NJLb89 — [12], CO94.3; [14], INJL98 — [15], RM98 — [16],
LSMO01, NJLO1 - [17], HBO2 — [18], CJT02 — [19], 3NJLO5 — [20NBLO6 — [21]. Green points are lattice
predictions: LRO1, LR04 — [22], LTEO3 — [23], LTEO4 — [24]. @hwo dashed lines are parabolas with
slopes corresponding to lattice predictions of the slopgdu3 of the transition line apig = 0 [23, 25].
The red circles are locations of the freezeout points fovhén collisions at corresponding center of mass
energies per nucleon (indicated by labels in GeV) — Section 5

3.4 Predictionsfrom models

In the absence of a controllable (i.e., systematically improvable and congengineV — oo
limit) method to simulate QCD at nonzer, one turns to model calculations. Many such calcula-
tions have been done [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. &®aummarizes the results. One
can see that the predictions vary wildly. An interesting point to keep in mind issteh of these
models is tuned to reproduce vacuuims= pg = 0, phenomenology. Nevertheless, extrapolation to
nonzeroug is not constrained significantly by this. In a loose sense, most lattice metteeladxt
Section) can be also viewed as extrapolations fpgya= 0, albeit with reliable input fronfinite T.

4. Latticeresultson the critical point

This section is devoted to brief (and necessarily incomplete) descriptiangm@ntly devel-
oped lattice methods for reaching out into thgg plane. The comments below are selective and
are meant to complement the original contributions in this volume. For a more ebermive
description of these methods, as well as other methods not discussetheesader may consult
the most up-to-date review of Schmidt in these proceedings [2] as weh asrdier review by
Philipsen [26], both of which also contain further references to origiapkers.

4.1 Reweighting

The first lattice prediction for the location of the critical point was reportgd-bdor and
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Figure5: Expected direction of motion of the critical point (left) the quark masses are decreased as shown
in the Columbia plot in the inset.

Katz in Ref. [22]. The assumption is that, although the problem becomesenpally difficult
asV — oo, in practice, one can get a sensible approximation at fihitén addition, simulations
at finite T might suffer lesser overlap problem because of large thermal fluctgd2@h One can
hope that if the critical point is at a small valueaf, the volumév may not need to be too large to
achieve a reasonable accuracy. In particular, numerical estimateg28jaat the maximal value
of ug which one can reach within the same accuracy shrinks only as a powgv of 1

The results of Ref. [22] are the most definitive and well-known, but thiep attract the
strongest of criticisms. The method of the Ref. [22] is based on computingasiéon of the
zero of the partition function in the complex temperature plane and observieg (for whichiig)
this zero crosses (and with its complex conjugate — pinches) the real disddtermines thé
and ug coordinates of the critical point. However, as Ejiri points out in Ref. [P@fce the fluctu-
ations of the phase, argdgt of the Dirac determinant are large, they cause fake zeros to appear.
It is therefore alarming that, as Splittorff argues [30], both points fouriReh [22] (differentmy
andV) happen to lie on the critical line of the phase quenched Q@BtD| instead of deb) —
which is the line where fluctuations of arg @etlo become large. In a related observation, Golter-
manet al[31, 32] argue that the procedure of taking the fourth root [33] okthggered fermions
causes problems in a finifg; calculation such as in Ref.[22].

4.2 Imaginary ug and Nf = 3

By the universality argument of Section 2.2, the finite temperature transiticst irder for
my = My = ms = 0. By continuity, it must remain 1st order in a finite domain of thgn,q plane
(taking my = my = myq) surrounding the origin — the plot of this domain is known as Columbia
plot [34, 1]. For physical quark masses gugl= O the temperature driven transition is a crossover,
which means that the physical point is outside the 1st order domain imdhg; plot. Reducing
guark masses should pull the point into the 1st order domain.

What happens on th€ug phase diagram as the poimkm,q is pulled towards and into the
first order domain? The most straightforward expectation is that the fast dne begins earlier,
at lower ug, i.e., the critical point is pulled towards thes = 0 axis, as shown in Fig. 5, until

10
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it disappears off the phase diagram altogether, and the whole transitiois liiehe 1st orde?.
Furthermore, lattice calculations gg = 0 show that real QCD is very near the 1st order domain
boundary. That suggests the critical point is not too far offftreis in theT ug plane.

What happens to the critical point whéms, m,q) is in the 1st order domain? It is still a
singularity of the partition function as a function gf, but it moves out into the complexs
plane. More precisely, it moves tmaginary ug axis. This remarkable fact allows one to observe
the (complex descendant of) the critical point in a direct Monte Carlo simalatisince there is
no sign problem for imaginaryg (Section 3.3). This observation is at the core of the method
developed by de Forcrand and Philipsen [25, 35].

The success of the method crucially depends oratieyticity of the coordinateu3 of the
critical point as a function of quark mass, eigs,around the point wherg3 = 0. The validity of
this can be argued as follows. In thE, g, ms) space the criticality is achieved (correlation length
goes to infinity) when 2 conditions are satisfiedE, u3, ms) = h(T, u3, ms) = 0, i.e., there are two
relevant operators in the universality class of the critical point and toefficientst andh, must
be tuned to zero. The coefficients of these operators are analytic fasaifathe parametefs.
Furthermore, the analyticity ip3 (not just in g, which otherwise could cause a branching point
at u3 = 0) follows from thepg — — g symmetry of the QCD partition function. Solving the two
conditions forT and p3 one finds the position of the critical poiT (ms), u2(ms)) in terms of
functions analytic irms.

de Forcrand and Philipsen determine the functigiims), or rather its inversens(u3), for
u < 0 and then analytically continue to rga$. This way one could estimate the position of the
critical point in theT Lig plane.

It is puzzling that the slope of the functians(u3) measured in this way [25, 35] appears
negligible in lattice units and has a wrong sigiiter a translation to physical units is applied. This
leads the authors of Refs. [25, 35] to suggest an unusual sceaar@v critical point is emerging
on the phase diagram as tfms,m,q) point is taken into the 1st order domain on the Columbia
plot, dragging a new line of 1st order transitions into Thgs plane. An unusual feature of such a
point worth pointing out is the positioning of the 1st order line onhitgh temperature side of the
critical point. As emphasized in Ref.[35], these results should still be dubjéarge uncertainties
due to discretization and/or finite volume errors and more refined simulatienseaded before
physical conclusions can be drawn.

4.3 Taylor expansion

Taylor expansion inug is another method to circumvent the sign problem. Derivatives of
pressure (or other thermodynamic quantities) are calculatggl-at0 and assembled into a Taylor
series expansion to obtain dependence of that quantitysdB3, 24, 36]

Consistent with the existence of the critical point at firtg there is a noticeable rise in the
baryon number susceptibilitys — see the peak on Fig. 6. Such a peak should be expected since the

SOne can see how this scenario is realized on a 3-flavor NJL model if2Bef.

5The non-analyticity characteristic of the critical behavior, arises duereamalytic dependence of the correlation
length,&, on the values of the relevant parameteasdh.

71.e., opposite to the sign implied by Fig. 5.

11
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Figure6: Allton, et al[37]: peak in baryon number susceptibiljtg = 9xq (left), but not in isospin suscep-
tibility x; (right). See Ref.[2] for updated figure.

baryon number susceptibility diverges at the critical point. On the othet, ltha isospin suscepti-
bility should not diverge at the critical point, because the critical mode,qqis an isoscalar and
cannot be excited by the operator of isoshiriwhile it is excitable by the operator of the baryon
number).

The authors of Ref. [37] caution against attributing the peak to the critaiat.pTheir reser-
vation is due to the fact that the low-side of the peak is well described by a hadronic resonance
gas model. Nevertheless, the agreement with the resonance gas doesasstarily mean that the
rise of susceptibility cannot be due to the critical point of QCD. On the coptreewing resonance
gas conceptually as a complementary (dual) description of QCD one mustiderthat resonance
description must reproduce the same thermodynamic functions as funda@€talescription —
including the critical point. Although the simple resonance gas model usedfifBReloes not
describe the critical point itself, it still might be describing the onset of titecal behavior, just
before the model breaks dovin.

Furthermore, the resonance gas model of Ref.[37] does not desieeilbegherT side of the
peak. The model must break down as the peak is approached from bekbig certainly not valid
above the peak, where a different description must be used. At thetgameboth sides of the
peak receive a natural interpretation in terms of the proximity of the critidakpo

4.4 Radius of convergence of the Taylor expansion

At a fixed temperature, the convergence radius of the Taylor expaimsjgnis limited by the
nearest singularity in the complex planergf. Assuming that at the temperaturg, at which the
critical point (Tg, yg) occurs on the phase diagram, this critical point is the nearest singularity to
Us = 0, one could use Taylor expansion to determimdg23, 24, 36, 2], ifTg is known.

Assuming that the radius of convergengg can be approximated using the first few terms
of the Taylor expansion, one can plag as a function off. The main remaining problem is to

8A calculation illustrating this point has been reported earlier in Ref.[18jiraving the resonance gas description
by a certain bootstrap procedure one obtains an equation of state wieisthaee a critical point, similar to the van der
Waals equation of state.
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Figure 7: Ref[38]: The location of complex plane singularities (cinghe thermodynamic limit)) in the
random matrix model at two representative values:of; andTg. At Tg the branching points pinch the real
axis — this is where the critical point appears on the phasgrdin. The trajectories of the branching points
are shown by a dashed (red) curve. On the right the radiusrafecgence of the Taylor series, set by the
distance fromug = 0 to the branching point, is plotted as a functiorlofthe latter is along the ordinate to
facilitate the comparison with QCD phase diagram). Theocatipoint is shown.

determine the value dlt i.e., to identify at which value of the complex singularity reaches the
real axis in theug plane. This question has been addressed using universality arguasentsi|
as an example random matrix calculation in Ref[38]. The trajectory of the lexrsmgularities is
illustrated in Fig. 7.

Two conclusions can be madé) The minimum value of the radius of convergencena
achieved afl = Tg, but rather at a temperature close to the temperdiuoé the chiral transition
atug = 0.2 (i) At Tg the functionur(T) has a high order singularity.

It is unlikely that such a weak singularity alone can be used to identify thewdllz. This
suggests that one should attempt to extract more information from the Tayles sfor example,
using the complex phase of thg-plane singularity at giveit. The critical point could then be
located by the condition that this singularity is on the real axis. Such analgsisiwequire observ-
ing sign oscillations of the Taylor coefficients, and will require the knowdedfjthe coefficients
up to an order higher than available to date.

5. Scanning QCD phase diagram in heavy ion collisions

Even though the exact location of the critical point is not known to us yetavhéable the-
oretical estimates suggest that the point is within the region of the phasamiggobed by the
heavy-ion collision experiments. This raises the possibility to discover thig pogsuch experi-
ments [39].

It is known empirically that with increasing collision energys, the resulting fireballs tend
to freeze out at decreasing values of the chemical potential. This is eaggéostand, since the

91n the chiral limit, the smallest value @i is zero, and is achieved exactlyBtfor g = 0.
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amount of generated entropy (heat) grows wjthwhile the net baryon number is limited by that
number in the initial nuclei.

The information about the location of the freezeout point for given expmmntal conditions
is obtained by measuring the ratios of particle yields (e.g., baryons or amitsato pions), and
fitting to a statistical model witf™ and ug as parameters. Such fits are amazingly good [40], and
the resulting points for different experiments are shown in Fig. 4.

As with any critical point, measurement of fluctuations can be used to detemhiee the
system is in the vicinity of the critical point. By measuring variables sensitiveagthximity
of the critical point as a function of monotonically increasiyfg of the collision, and observing
non-monotonic dependence, one discovers the critical point [39]vdlbes ofT Lg corresponding
to the freezeout at such a valueg§ give the coordinates of the critical point.

As a concluding remark, it should be pointed out that the physics of theatnit@int is uni-
versal (as far as slow and long distance phenomena are concexhért) allows to define certain
experimental signatures independently of microscopic description. Howae position of the
critical point on the phase diagram is determined by microscopic physids apntuniversal at all.
This obviously makes it very difficult to predict the coordinates of the clipodnt reliably as it
is evident in the scatter of predictions in Fig. 4. On the other hand, the satnghfauld turn the
knowledge of the position of the critical point obtained on the lattice, or in therxent, into a
powerful constraint on possible models of QCD thermodynamics.
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