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achieve a factor 2 improvement.
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1. Introduction

Recent progress of lattice QCD simulations with dynamical flavors relies on the development
of numerical algorithms and computational facilities. While the computational power has increased
to a multi-Tera-flops level, we cannot yet simulate QCD at realistic quark masses. To overcome
this status various numerical algorithms for dynamical lattice QCD have been proposed.

The standard algorithm to simulate dynamical lattice QCD is the Hybrid Monte Carlo (HMC)
algorithm [1]. Hence most of recent improvements on the lattice QCD algorithm aim to speed up
the HMC algorithm. There are two key technologies in the literature;

(1) Decouple UV and IR fermionic modes by preconditioning lattice Dirac operator, and modify
the HMC Hamiltonian/2).

(2) Use the Sexton-Weingarten molecular dynamics (MD) integrator with multi (fictitious) time
scales/8], in which the IR modes of pseudo-fermions are assigned to the coarser time scales
and the UV modes to the finer time scales.

Various types of preconditioner have been proposed; the even/odd site precond#idbies] |
Hasenbusch’s heavy mass preconditiongr, (9], Lischer’s even/odd domain decomposition
(SAP) preconditionerlQ], Polynomial preconditioner1l], n-th root multiple pseudo-fermion
trick [12], etc. These preconditioners combined with the Sexton-Weingarten MD integrator achieve
a remarkable (a factor two to ten ) speed up over the naive HMC algorithm.

In this article we investigate the UV-filtering precondition&g][for the O(a)-improved Wilson-
Dirac [14] fermions. The UV-filtering preconditionef ] has been proposed for the Multi-Boson
(MB) algorithm [15,16]. With this preconditioner the number of external multi-boson fields can
be significantly reduced, leading to a sizable speed up of the MB algoritBn YWe apply this
UV-filtering preconditioner to the Polynomial Hybrid Monte Carlo (PHMC) algoriti#yill7]. In
the next section we describe our UV-filtered Polynomial Hybrid Monte Carlo (UV-PHMC) algo-
rithm. The numerical results are presented in Se@iomhere we investigate the efficiency of the
algorithm for the plaquette gluon action and ®@)-improved Wilson quark action witf = 5.2,

Nt = 2, Csw = 2.02, M/M,, ~ 0.8 and0.7 on a16® x 48 attices.

Using the PACS-CS computet§] the PACS-CS collaboration is planning to further promote
theNs = 2+ 1 lattice QCD project that has been started by the CP-PACS/JLQCD joint collabora-
tion [19]. The UV-filtered PHMC (UV-PHMC) algorithm will be applied to the single flavor part
of theN; = 2+ 1 simulations. A status report of the PACS-CS collaboration is given in R€ff. [

2. Algorithm

To describe the UV-PHMC algorithm we start with the lattice QCD patrtition function with the
O(a)-improved Wilson fermion in the symmetrically even/odd-site preconditioned 16y2].

¥ = /.@u defD[U]N e SelVl-Sw U], 2.1)
SwU] = —N¢Tr[Log[T Y], (2.2)
D= 1ee—TeeMe0TooMoe: 1ee— Mea (2-3)
T = (1+csuko -F)7 L. (2.4)
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whereU denotes gauge link§z[U] is a gauge actionT is the local clover term with the clover
leaf field strengthF and the clover coefficiery. Meo (Mog) is the single hopping matrix jumping
from odd (even) sites to even (odd) sites, &néndMee Operate only on even sites. We apply the
UV-filter preconditioner td in Eq. 2.1).

2.1 The UV-filter
We introduce the UV-filter precondition®U] as

P[U] = expsMed, (2.5)

where S is a tunable parameter (UV-filter parameter). We can understand that this operator is a
preconditioner by setting= 1 as follows.

1 3\2 1 \3
Q[U] = P[UID[U] = expMed (1 — Mee) = 1 — <M;e) — (Mge) - (2.6)

SinceMee is O(k2), P[U] removesO(k?) term and the preconditioned opera@mecomesl +
O(k*) close to identity matrix13]. Using this preconditioner one can rewrite the quark determi-
nant as

defD[U]™ = def(P[U])"*PUID[U]]™

= defQ[U]™ exp—sNi Tr[Med] = defQUI™ exp—NrSwu)l,  (2.7)
where
Sw[U] = STr[Med = sk? z treolordirac T (M) (1 — Y )Upu (MT (n+ ) (1+ Vu)UJ(n)]- (2.8)
N

Note thatS,, is still a local action and vanishes wheg, = 0. For the unimproved Wilson
fermion further preconditioning, which remov€Xk*) term, has been investigated in the MB
algorithm [13]. In our improved cas®©(k*) preconditioning results in a complicated (non ultra-
local) action forS,, and we do not investigate ti@&k*) preconditioner in this article. We employ
Eq. 2.5) for the UV-filter.

2.2 Hybrid Monte Carlo algorithm with the UV-filter

By applying the polynomial approximatioRy,,, ~ (QU])~L, and introducing a pseudo-
fermion ¢ and a fictitious momenta for gauge links, we obtain

7 - / INIU D¢ Tpdetw[U]N e HU-0"d, 2.9)
HU, @', ¢ = Tr[N?]+ Ss[U] + S [U] + N Sw[U] + S[U, ¢, ¢, (2.10)
% = ‘R\lpoly[mee](p|2? (211)
W = Ry, [Med (1 — Mee) expisMed, (2.12)
Npoly .
PNpoly[Mee] = z Ck(Mee)k» (2.13)
k=0
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wheres andcy are tuned to satisfW ~ 1. The choice of andc, will be described in the next
subsection. Whes = 0 this action reduces to that for the normal PHMC algorithm. R2dl3)
applies to theN; = 2 case. For thé\s = 1 case, we use the factorized polynomial instead of
Eq. 2.139 as described in Ref2ll]. The actionsSs, &y, andS,y can be classified in the UV part,
andSy in the IR part. The effect AV is incorporated by the noisy-Metropolis test as having been
used in the MB algorithm16] and CP-PACS/JLQCD’s previous studid€]. We investigate the
PHMC algorithm with Eq.2.9).

The flow of the algorithm is almost the same as that described in R#fekcept for the
following minor changes.

e For the MD integrator we employ the Sexton-Weingarten MD integr&owith two time-
step scales (UV and IR). The PUP-order integration scheme has been used in the literature.
In this study we test the following UPU-order integrator;
N1

(s ()] o (s ()]

(2.14)
wheredto = 7/No/N1, 811 = /Ny, andt is trajectory lengthU (4 1) integrates gauge links
by 81, P«(d7) integrates gauge momenta 8y. The UV-modes are integrated Byy and
the IR-modes byRr. Np andN; are the number of time-steps in each trajectory Bpd
should be an even number in this scheme.

e For the single flavor case we need to take the square root of the correctionWiatrto the
noisy-Metropolis test. We tested a new algorithm of R22] for the matrix square root prob-
lem. The algorithm utilizes the Krylov-subspace method via the Arnoldi factorization. Since
the use of the Krylov-subspace method does not significantly affect the whole efficiency of
the UV-PHMC algorithm, we will skip the details of the matrix square root algorithm in this
article.

e For the UV-filter we need to calculate the matrix exponentidilgf We tested the following
three methods; (i) the Taylor expansion approximation method, (ii) the Padé approximation
method (without multi-shift solver), (iii) the Krylov-subspace approximation meti23H [

We employ the Taylor expansion approximation method (i) because of its simplicity and
moderate efficiency. The truncation error of the Taylor approximation is controlled by mon-
itoring the spectrum norm d¥lee

2.3 Choice of polynomial coefficients

In order to minimize the cost of the algorithm, the UV-filter coefficisiaind the polynomial
coefficientsc should be chosen to satisfy the condition Wat- 1 with a smallN,oy. We investi-
gated the following two coefficient schemes.

(A) Taylor expansion method: By expandifid — Mee) expsMed] ~* with respect toMee, we

obtain
3 G 2 N wi £ (-9
[(1— Mee) €Xp[SMed] ™ ~ z Ck(Megg)®, with ck:Z) T (2.15)
k=0 = :

This is nothing but the hopping matrix expansion.
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(B) Adopted polynomial methodLB]: This method minimizes the following function;

2
= |[(W-1)n|?, (2.16)

(1— Mee) eXp[SMed — 1) n

Npoly
R(C,s) = ‘ <[z c(Mee)
k=0

wheren is a Gaussian random noise vector &nd (Cop,C1,Cp, . . . ,choly). This method has
been used in the MB algorithm as described in R&8].[ The function minimization is
carried out by a linear fitting fag with a fixeds followed by Newton’s method fos. We take

several thermalized gauge configurations for the fitting.

Figurel shows the polynomial coefficients

Adopted UV-filtered polynomial coefficients (config.#1)

with the Adopted polynomial method (B). We . ‘ e

observed that the dynamic range of the coeffi- %§ R o R P
cients spreads fro®(102) to O(10'3). This % A "
means that careful treatment of the numerical }82 &

accuracy and stability is required to compute © ?g:

the polynomialRy,,, within a finite precision 1o; 2
arithmetic. Although we used double precision o}y ==
arithmetic and Clenshaw recurrence formulato - TR T T S
construct the polynomial, we could not main-_ i o .
tain good accuracy and stability fﬂ\lpdy- In Figure 1: Adopted polynomlal coeﬁ|C|ent§ wmn:z.
the rest of paper, therefore, we employ the Taand Npoly = 70 determined on a thermalized config-

) - )Gration at16® x 48, B =52 N =2, kK =0.135Q
lor expansion method (A) and E2.L3) for the Ccsw = 2.02. Similar behavior is observed for different

coefficients. sandNpoyy. The configuration dependence is negligi-
ble.

3. Numerical Results

We employ the plaquette Wilson gauge action S
Two quark masses are studied@t= 5.2 on al16® x 48.Iat- Simulation H L
tlcg for Nt = 2 and cgyy = 2.02 (see Tablel). The S|mg- p: 0.1340 0.1350
lations are denoted as H (heavy quarlf mass.S) and L (IlghthPS/MV 08  ~07
guark mass). Tabl2 and3 present the simulation results for
the norm of MD force for each sector and simulation statis-Table 1: Simulation parameters.
tics. The trajectory length is set to unity, andNy (N) is the
number of time steps in for UV scale (IR scale) in a single trajectory. For comparison we tabu-
late the PHMC algorithm and the symmetrically even/odd-site preconditioned HMC (SHMC) in
the tables.s = PHMC is equivalent tos = 0 of UV-PHMC. The definition of the force norm is
IFl=Ynu Tr[F“(n)FJ(n)}/Z/L3/T, wherelL = 16, T = 48, andF,(n) is the MD force to drive
gauge linkU,(n). Pumc is the HMC Metropolis test acceptance rate, &aghp the global noisy
Metropolis test acceptance rate. We monitored the averaged number of matrix vector multiplication
of Mee to move forward the algorithm by one trajectory (“Mult/traj” in the tables).

Without UV-filtering the MD force from pseudo-fermion (gauge) actjgg| (|Fg|) is about
1.4 (4.5). The contribution frort,y| and|Fy| is smaller than that frorfFo| and|Fg|. We observe
that|Fg| depends on the UV-filter parameteaind takes its minimum value at= 1. The reduction
of |Fo| froms=0tos= 1is about a factor three for both (L) and (H) lattices. ExploidycandN;
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[T,N1, No] s traj. [Feiv| |Fe| |Fol [Fuv| Rumc Pomp Mult/traj

[1,20,6] 1.1 1500| 0.282888(14) 4.51815(22) 0.493642(97) 0.0455531(7@)742(14) 0.894(10) 5587(13)
[1,254] 1.1 1000| 0.28329(40) 4.504(16)  0.49404(89)  0.04577(24)0.847(19) 0.868(13) 6679(17)
[1,56,0] PHMC 800 | 0.282814(16) 4.52032(34) 1.33903(28) - 0.780(24) 0.895(17) 12456(15)

Table 2: Simulation statistics witiNyoy = 80 (H) parameter.

[T,N;,No] s traj. [Ferv| |Fal |Fol |Fuv| Pamc Pomp Mult/traj
[1.258 00 10 | 0.286702(53) 4.53781(27) 1.490(25) - - - -
(1,258 05 10 | 0.286761(40) 4.53801(23) 0.8285(16) 0.0211877(54) -

(1,258 1.0 10 | 0.286812(50) 4.53933(43) 0.52395(64) 0.042375(16) - - -
[1,25,8] 1.1 1000| 0.2867765(90) 4.53843(17) 0.52682(26) 0.0466221(50)669(17) 0.863(16) 12607(26)
[1,254] 1.1 1000| 0.286783(11) 4.53845(30) 0.52650(23) 0.0466247(86)692(18) 0.868(16) 12640(29)
[1,25,2] 1.1 1000| 0.286798(11) 4.53813(18) 0.52763(29) 0.0466381(66)664(17) 0.902(11) 12596(29)
(1,250 1.1 1200| 0.286841(16) 4.53814(36) 0.52693(41) 0.0466632(9R)274(29) 0.882(21) 11992(45)
(1,254 1.1 900 | 0.286805(22) 4.53784(63) 0.52736(29) 0.046644(2().636(13) 0.891(14) 12958(35)
(1,252 1.1 1000| 0.286790(13) 4.53858(34) 0.52609(43) 0.046627(1@).531(26) 0.864(17) 12816(45)
(1,258 15 10 | 0.286751(28) 4.53789(24) 0.74044(39) 0.063577(17) - - -
(1,258 20 10 | 0.286861(33) 4.53787(27) 1.25248(53) 0.084818(31) - - -
[1,70,0] PHuc 1100| 0.286793(13) 4.53816(29) 1.39445(57) - | 0.762(16) 0.871(14) 30385(20)
(1,70,0] sHvc 340 | 0.286771(16) 4.53909(21) 1.39161(48) - 0.80(3) - 37491(166)

Table 3: Simulation statistics witiNyoy = 160(L) parameter. {: the PUP-order MD integrator is uséd.

[[,Ng,No] s traj. [Few| |Fa| |Fol |Fuv] Pimc Pemp Mult/traj
0.937(10)
0.943(11)

[1,254] 1.1 1000| 0.2867632(93) 4.53873(20) 0.363581(73) 0.0466130(7@)006(12) 18896(110)

Table 4: Simulation statistics witiN¢ = 1+ 1, Nyoy = 160(L) parameter.

by keeping the HMC acceptance r&g,c around0.7, we get the computational cost reduction in
Mult/traj by a factor two as =1 for both (L) and (H) lattices. Comparing the efficiency between the
PUP-order and the UPU-order schemes at the (L) parameter, a small gain in the HMC acceptance
is observed for the UPU-order scheme.

Tabled shows the result withl; = 1+ 1 simulation. The action contains two pseudo-fermions
where one pseudo-fermion represents single flavor. The force fkgjncontains the force from
both pseudo-fermions. As observed in Refl]the HMC acceptance rate becomes better than that
with the Ns = 2 single pseudo-fermion simulation. The reason of the improvement using multiple
pseudo-fermion is explained in Refd2] 24].

4. Summary and outlook

In this work we have presented the effectiveness of the UV-filtering preconditioner to the
Polynomial Hybrid Monte Carlo algorithm. The simulations have been carried out on lattices with
moderate size and moderate quark masses. The UV-filtering preconditioner reduces the magnitude
of MD force of the pseudo-fermion part and enables us to extend the MD time-step size of the
pseudo-fermion. The gain in computational cost is a factor two on the lattices we have investigated.
We have also tested thdy = 1+ 1 case to confirm the efficiency of the single flavor algorithm.

The UV-filtering for the Wilson type fermions is applicable to the heavy mass preconditioner by
Hasenbuschi] and the polynomial filtering11] and further speed up is expected. We are planning
to apply the UV-filtered PHMC algorithm to the single flavor partNgf= 2+ 1 simulations.

The simulation has been carried out on Hitachi SR11000 at Information Media Center of Hi-
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roshima University. This work is supported in part by the Grant-in-Aid of the Ministry of Education
(Nos. 13135204, 13135216, 15540251, 16540228, 16740147, 17340066, 17540259, 18104005,
18540250, 18740130).
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