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1. Motivation

In 1998 a neat possibility was found to preserve chiral sytnmg@n a modified form) on
the lattice [1, 2, 3]. It has been used extensively in queth¢PED, but due to its computational
demands the applications diynamicalchiral fermions are still in an early stageHence it is
strongly motivated to develop suitable algorithmic toatsprder to arrive — within a few years —
at results that can be confronted with the light hadron phemmwlogy.

Present chiral QCD simulations are restricted to coarsiedat in particular thermodynamic
studies typically us&\; = 4 anda ~ 0.28 fm. On such lattices the standard overlap operator is
non-local. Locality improves, however, if we replace thened by a truncated perfect hypercube
operator [5]. In quenched QCD, the locality of the resultovgrlap hypercube fermiofoverlap-
HF) operator persists on rather coarse lattices [6]. Atgareslynamical hypercube fermion (HF)
simulations for QCD are under investigation [7]; they wildicate how far the above property
still holds beyond the quenched approximation. Thermordhyoaests show already that the cutoff
effects for the HF are pushed to high energy [8].

In this work, we explore the feasibility of dynamical overelF simulations with an algorithm
which is peculiar to this type of Ginsparg-Wilson fermior@ur testing ground is the Schwinger
model (2d QED), a popular toy model with certain featureslainio QCD? Qualitative differences
from QCD are the super-renormalisability of the Schwingedai and the absence of spontaneous
chiral symmetry breaking. We consider the case of two degémdéavours.

2. The overlap hypercube fermion

The Ginsparg-Wilson Relation (GWR) is a criterion for ait@tmodified, exact chiral sym-
metry [3], which was discovered by studying the propertiepasfect and classically perfect [1]
lattice fermions. Since those formulations involve coogdi over an infinite range, a truncation is
needed, which distorts the perfect symmetry and scalinggsties to some extent. For the free,
optimally local, perfect fermion [10] the truncation to atumypercube preserves excellent scaling
[11] and chirality [5]. It leads to the foruyrxy = pu(X—Y)yu + A (X—Y), i.e. a vector term plus
a scalar termx,y are lattice sites). Il = 2 these terms involve only couplings to nearest neigh-
bours and across the plaguette diagonals. We gBugdy multiplying the compact link variables
Uy u € U(1) along the shortest lattice paths connectirandy (for the diagonal the two shortest
paths are averaged) [12]. Thus we arrive at the opeBatek, (U ), which describes the HF.

SinceDyg is yg—,-Hermitian,DLF = yDnrs, the exact chirality (which got lost in the trunca-
tion) can be restored by insertii@yr into the overlap formula [2], which yields the overlap-HF

operator

m H
DovHr(m) = <l— _) D(()(\)/)HF+ m, D(()(\)/)HF =1+x HZ )
\/ Hfe
0)

2
Hur is Hermitian and)f)(\),)HF fulfils the GWR in its simplest form{Df)(\),)HF, Y5} = Df)vHFyng)?,)HF In
practice we evaluate this operator by means of Chebyshgwnquoiials — after projecting out the

Hur=¥%(Drr—1).  (2.1)

IRecent status reports on dynamical overlap fermion sinauistin QCD are given for instance in Refs. [4].

2Earliest efforts to simulate the Schwinger model with dyiwaoverlap fermions were reported in Ref. [9].

3We are using here the HF version which is denoted as CO-HFa{shoptimised hypercube fermion) in the Ref.
[12]. This is optimal for our algorithm to be described in Sec 3.
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lowest two modes df-l,ﬁF, which are treated separately. The polynomial approxisnatias driven
to some absolute accuracy o{see below), so we deal wiloyHr .

Compared to H. Neuberger’s standard overlap ope@{of2], we replace the Wilson kernel
Dw by Dye [5]. Since the latter is an approximate solution to the GWRaly, its transition
Dnr — Dovnr is only a modest chiral correction (in contrast to the tramsiDyw — Dy). This
property is illustrated in Fig. 1, which compares the sgeofiDyr andDoyyr for a typical config-
uration atm= 0.03 andB = 5 on a 16x 16 lattice?

Due to its perfect action background, we
expect forDyr also a good approximate rota-
tion symmetry and scaling behaviour, which
is then likely to be inherited bfpoynr thanks
to the relationDoynr =~ Dne.  This relation
further suggests a high level of locality for
DovHF, Since it deviates only a little from the
ultralocal operatobyg. These properties have
been confirmed before in a Schwinger model
study with quenched configurations, where oo (Diract; envalui) 253

measurgment entrl-es were re-weighted Wltlggure 1: The spectra foDye and for Doyse (Up to
the fermion determinant [12]. a gap) atm= 0.03, in a typical, dynamical configura-

. tion at B =5 on a 16x 16 lattice. Since the spectra
3. A preconditioned are similar Dy is a good approximation tboyyr, and
Hybrid Monte Carlo force therefore approximately chiral.

Im (Dirac eigenvalue)

In order to simulate such fermions dynamically, the stathddybrid Monte Carlo (HMC)
algorithm would use the fermionic force term

— 1 9QovHF = 9QovHF ~_ _
L»UQoleF<QoleF ) AO:LI + ) AO:LI QoleF) QoleFLI"v (3.2)

whereQovHr = ¥5DovHr is the Hermitian overlap-HF operator, aAg,, are the non-compact gauge
link variables. However, this force term is computatiopakpensive, and in addition conceptually
problematic due to the discontinuous sign functidm:/\/HTZF in QovHr, SEC €eq. (2.1).

We render the force term continuous and computationallpehe inserting only approximate
overlap operators in the term (3.1)For the external factors we apply an overlap-HF to a low
precisione’, and we useHyr instead ofQqnr in the derivatives (although this could easily be
extended to a low polynomial as well),

— oH oH
_1 1 HF HF ~A—1 1
l'UQovHEe’ < OVHF’E/ﬁA—W + m ovHF,g/) QovHEg’ y. (3.2)

The Metropolis accept/reject step is still performed whitk high precision overlap operapyHr .
Hence the deviations in the force are corrected, and thepiht to worry about is the acceptance

4Throughout this work we use the Wilson plaquette gauge mctio
5Such a modified force might also be helpful to achieve togoligransitions more frequently, but we have no data
for comparison with the force (3.1).
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rate. Experiments with the complete simplification, whiedduceQoyHr e t0 Y5DHE , Were men-
tioned in Ref. [13], which reported a shrinking acceptarate for increasing volume (that work
was based on the “SO-HF” of Ref. [12]). However, it turned tmube highly profitable — and still
cheap — to correct the external factors to a low precision clidese

¢ =0.005 (forceterm, &= 10716 (Metropolis step, (3.3)

which increases the acceptance rate by an order of magritudpared to the use &8fyr through-
out the force term. Note that the force we obtain in this wagds based on a Hamiltonian dy-
namics, but the way we deviate from it (by proceeding frgfdrr to Qovhre) does manifestly
maintain the area conservation.

4. Resultsfor the acceptancerate, reversibility, locality and chiral condensate

We performed production runs on a £@.6 lattice a3 = 5 with five massesm = 0.03, Q06,
0.09, 012 and 024. We applied the Sexton-Weingarten integration schemgith a partial
(61)2 error cancellation (wher&t is the step size). The time scales for the fermionic vs. gauge
force had the ratio 1 : 5, but we did not observe a high seitgitiv this ratio. Our statistics of well
thermalised configurations, separated by 200 trajectagagven in Table 1.

Since the force (3.2) tends to push the trajectory a bit @fftypper-surface of constant energy,
we kept the trajectory length (between the Metropolis gtepert. We chose it aé= 1/8, which
is divided into 20 steps (i.&1 = 0.00625); this turned out to be a good compromise in view of the
acceptance rate and the dynamics between the trajectorgadnis. Fig. 2 shows the acceptance
rate (on the left) as well as the total number of required wgalie gradient iterations per trajectory
(on the right). As usual, heavier fermions are easier to sitauHowever, even down to our lightest
mass ofm = 0.003 we obtained a useful acceptance rai@ 3.
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Figure 2: The acceptance rate (on the left), and the number of Corgugeatdient iterations per trajectory
(on the right, including all operations) as a function of themion massn, on a 16x 16 lattice af3 =5 and
trajectory lengtit = 1/8 = 20- 1.

To study the quality ofeversibility, we moved forth and back with a variable number of steps,
and measured the (absolute) shift of the gauge actid®;|. Fig. 3 shows our results for the
precision of the reversibility, still 2t = 0.00625, for the masses= 0.03 and 012 and 024. The
level of reversibility seems satisfactory. As we incredse mass, it improves significantly only
atm= 0.24, as we also observed fér = 0.005. Our current results do not hint at any positive
Lyapunov exponent, though this cannot be considered ceinelyet.
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We tested théocality in the usual way [15],
by applyingDeyHr ON a unit source)y and mea- i
suring the decay of the function ol

0.001 T T T T T T T

f(r) = m)?X {DovHExyrly ‘ “Z:L‘XIJ _y“’ - r} ’ g M)G? %'/;ﬁ B L Fo- f -

(4.1) T e A
We first consider the free case and demonstrate “"F % ' 3
) . [ m= .0% --8--
that this decay is much faster for the overlap- - . . . o %ﬁi%ﬁt’%’
le-07
HF Operator than for the Neuberger Operator’ " mi;nber (sziteps ()?size 5730: 0006355 "

see Fig. 4 (on the left). On the right we show
that the decay is still exponential for our dy_Figure 3: The _reversibility precision with respect to
namically generated configurations, which corj'¢ 9auge action for a variable number of steps of

. . ..., dengthdt = 0.00625. We show the results for our
firms the.locahty (and therefore the SenSIbIIIt)qightest mass and the two heaviest masses. We do not
of our Dirac operator.

In the range that W&ee an obvious indication for a positive Lyapunov ex-
considered, the mass has practically no inflysonent.

ence on this decay rate. A previous quenched

re-weighted study revealed that the overlap-HF

operator has a much higher degree of locality than the stdrmlgerlap operatoby [12]. This

is observed here as well, sinBg,4r at B = 5 is still far more local than even the fré&x. We
repeat that improved locality also holds for the overlapiHEuenched QCD [6], and it enables
the installation of chiral fermions on coarser latticestkize use oDy.
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Figure 4. The locality of the overlap Dirac operators, tested by theagteof the function (4.1), against
the taxi driver distance in lattice units. On the left we c@mpour overlap-HF operator to the standard
Neuberger operator (withl = y5(Dw — 1)) in the free case. The plot on the right shows the exponential
decay of(f(r)) based on our overlap-HF simulations with various fermiosses af§ = 5.

At last we address thehiral condensatgit has been studied in the 1-flavour Schwinger model
with quenched configurations in Refs. [16]. For our case ofdegenerate flavoufsanalytic pre-
dictions were obtained fom <« 1/\/3 at low energy [18, 19]. This is realised in our settings,
perhaps up to the case= 0.24. In particular, Ref. [19] predic®(m) = — () ~ 0.388m/B)1/3
based on bosonisation, while Ref. [18] arrived at a slighlyer coefficient~ 0.37. Both predic-
tions are marked in Fig. 5 (below, on the right).

8For related work in QCD with dynamical overlap fermions anat 2 flavours, see Refs. [17].
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m | oo03 0.06 0.09 0.12 0.24
# of confs. 205 235 221 458 100
# of confs. atv =0 0 79 0 325 1
# of confs. afv| =1 205 156 220 133 46
# of top. transitions 0 1 2 3 5
(Av—o) 0.129(3) 0.108(2)
(A1) 0.171(2)| 0.173(2) | 0.171(2)| 0.165(3) | 0.169(4)
z 0.110°3% 011230

Table 1: An overview of our statistics at different masses and inedéht topological sectors. Below we
display our results for the leading non-zero eigenvaluef Dg\)}HF (with jack-knife errors). The values of

>(m) were obtained based on the ratio betwéghin the topological sectors witlv| =0 and 1.
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Figure 5: Above: histories (left) and cumulative densities (rightttte leading non-zero Dirac eigenvalue
A at different masses and in different topological sectorslo® on the left: the chiral condensaieas a
function of the ratigA,—1) / (Av=0), according to Random Matrix Theory [21]. Below on the riglet show
theX values that we measured at two masses, cf. Table 1, and tthietpyas of Refs. [18, 19].

Fig. 5 (above) shows examples for HMC histories (left, iltatng the level of de-correlation),
and cumulative densities (right), of the leading non-zeim®eigenvalues .” For our evaluation
of the chiral condensate we made use of a formula given in [R&f.(for the e-regime), which
expresse&(m) as a function of the ratio betwegh) in the sectors with topological charge =0
and 1. For the masses considered, these functions aredpilottég. 5 (below, left). We read off
for the eigenvalue ratios that we measurediat 0.06 andm= 0.12, see Table 1. Fig. 5 (below,
right) illustrates our results, which agree with the prédits of Ref. [18, 19] within the errors.

"We used the eigenvalues Bff,)HF, stereographically projected on the imaginary axis, wherdake the absolute
value. This treatment worked well also in quenched QCD [20].
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Conclusions: We tested a force preconditioned HMC algorithm for the satiah of dynam-
ical overlap fermions. It is applicable for the overlap-BEt not for the standard overlap fermion,
since it is designed for the case that the overlap kernehidasi to the overlap operator. In the
2-flavour Schwinger model we obtained a useful acceptaneearal a decent precision of the re-
versibility. A high level of locality is confirmed. We meaguarthe chiral condensate at two fermion
masses, and we obtained values3om) consistent with analytic predictions at low energy.

Since the way to evaluatepresented here leads to relatively large errors — the slopte
functions shown in Fig. 5 (below, on the left) tend to be steepve are now going to consider
different methods for this purpose, along with an enlargatissics.

We thank M. Hasenbusch for helpful advice, and S. Diirr, A.néety and J. Verbaarschot for comments.
J.V. was supported by the “Deutsche Forschungsgemeirt$¢b&G). The computations were performed
on the IBM p690 clusters of the “Norddeutscher Verbund fiicktaund Hochstleistungsrechnen” (HLRN).
References

[1] P. Hasenfratz, V. Laliena and F. Niedermayer, Phys..IB21P7 (1998) 125.

[2] H. Neuberger, Phys. LetB417 (1998) 141; Phys. LetB427 (1998) 353.

[3] M. Luscher, Phys. LetiB428 (1998) 342.

[4] N. Cundy, Nucl. Phys. (Proc. SuppB)153 (2006) 54. S. Schaefer, these proceedings.

[5] W. Bietenholz, Eur. Phys. £6 (1999) 537.

[6] W. Bietenholz, Nucl. PhysB644 (2002) 223. S. Shcheredin, Ph.D. Thesis, Berlin (2004)
[hep-lat/0502001]. W. Bietenholz and S. Shcheredin, NRiols.B754 (2006) 17.

[7] S. Shcheredin and E. Laermann, hep-1at/0609029.

[8] W. Bietenholz and U.-J. Wiese, Phys. L&8126 (1998) 114.
E. Laermann, C. DeTar, O. Kaczmarek and F. Karsch, Nucl. RRysc. Suppl.Y3 (1999) 447.
S. Wissel, E. Laermann, S. Shcheredin, S. Datta and F. KaPs$(LAT2005)164.

[9] A.Bode, U.M. Heller, R.G. Edwards and R. Narayanan, Fef8912043.
[10] W. Bietenholz and U.-J. Wiese, Nucl. Ph{164 (1996) 319.

[11] W. Bietenholz, R. Brower, S. Chandrasekharan and Widse, Nucl. Phys. (Proc. SuppBp3
(1997) 921.

[12] W. Bietenholz and I. Hip, Nucl. Phy8570 (2000) 423.

[13] N. Christian, K. Jansen, K.-I. Nagai and B. Pollakow$S(LAT2005) 239.
[14] J.C. Sexton and D.H. Weingarten, Nucl. Ph$380 (1992) 665.

[15] P. Hernandez, K. Jansen and M. Lischer, Nucl. PB$52 (1999) 363.

[16] S. Dirrand C. Hoelbling, Phys. ReD71 (2005) 054501.
P.H. Damgaard, U.M. Heller, R. Narayanan and B. SvetitskysPRevD71 (2005) 114503.

[17] T. DeGrand et al., hep-th/0605147, hep-lat/0608019.

[18] J.E. Hetrick, Y. Hosotani and S. Iso, Phys. L&B50 (1995) 92.
[19] A.V. Smilga, Phys. RevD55 (1997) 443.

[20] W. Bietenholz, K. Jansen and S. Shcheredin, JG& (2003) 033.
[21] T. Wilke, T. Guhr and T. Wettig, Phys. ReD57 (1998) 6486.



