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1. Introduction

Non-perturbative investigations of Higgs-Yukawa models using the lattice regularization be-
came subject of many investigations in the early 1990’23, 4, 5, 6]. These lattice studies were
initially motivated by the interest in a better understanding of the fermion mass generation via the
Higgs mechanism on a non-perturbative level and, in particular, in the determination of bounds on
the Yukawa couplings translating into bounds on the Higgs boson mass and the - at that time not yet
discovered - top quark mass. Furthermore, the fixed point structure of the theory received special
attention due to the question whether besides the Gaussian also a non-trivial fixed point might ex-
ist. However, these investigations were blocked, since the influence of unwanted fermion doublers
could not successfully be suppressed. Moreover, the models of these studies suffered the lack of
chiral symmetry. The latter, however, would be indispensable for a consistent lattice regularization
of chiral gauge theories like, for example, the standard model of electroweak interactions.

Here, we follow the proposition of Lischer][for a chiral invariant lattice Higgs-Yukawa
model based on the Neuberger overlap operador4s a first step we begin with an analytical in-
vestigation of its phase structure by means 0fii-expansions followingq, 10] and the references
therein. We derive an expression for the effective potential at tree-level and present our preliminary
results for the corresponding phase diagram.

In chapter2 we briefly describe the considered model, before we present theNargesults
at tree-level for small Yukawa couplingg [ 1/\/N>f in chapter3. In the following chapte# we
discuss a different largs;-limit which becomes valid for non-vanishing Yukawa couplings. We
then end with a short outlook.

2. The model

The chiral invariant Higgs-Yukawa model, which we consider here, contains one four-component,
real Higgs field® andN; fermion doublets represented by eight-component spigttsy!) with
i =1,...,N;. Furthermore, there are aldh auxiliary fermionic doublets(", ¥ only introduced
to construct a chiral invariant Yukawa interaction term. The partition function can then be written
as

zz/anFl {Dw(i)Dlﬁ(i)Dx(i) }exp( S-S, ) 2.1)

where the total action is decomposed into the Higgs a&igrthe kinetic fermion actiorﬁﬁéi”, and
the Yukawa coupling terrBy. It should be stressed that no gauge fields are considered here.

The kinetic fermion action describes the propagation of the physical fermion fiélgg)
in the usual way according to

. Nf
Sgn z Il’n -@n m Il/m —2pXn

i=1nm

D (i)

TnmXm

where the coordinatas m as well as all field variables and coupling constants are given in lattice
units throughout this paper. The (doublet) Dirac oper&@) = 2% @ 7 s given by the
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Neuberger overlap operaté}(o"), which is related to the Wilson opera@*w) = yED” —riy Uy
by

A
VATA
wherell, denotes the symmetric difference quotient. It is well known that the eigenvalugs
of Z(®) with Im[v*(p)] = 0 form a circle in the complex plane, the radius of which is given by the

@<°V>=P{1+ } A=W —p, p>1 (2.2)

parametep. In momentum space with € & = [—r, ]%* these eigenvalues are explicitly given
by
+i/P+rpP—p . . ) /P
vi(p)=p+p- , = sin(py), =2sin(£). 2.3
(P = pip s Pu=sinpu). By (%) @3

The auxiliary fieldsy") on the other hand do not propagate. They do not have a direct physi-
cal interpretation at all and their contribution to the action is only introduced to establish chiral
symmetry.

The Higgs field couples to the fermions according to the Yukawa coupling term

Ne . _ . .
S=we 3 S )+ 7)) |t ot 1m0l )2kl )

Bn‘m

whereyy denotes the Yukawa coupling constant d@agh will be referred to as Yukawa coupling
matrix. Here the Higgs fieldb, is rewritten as a quaternionic,>22 matrix ¢, = ®91 — i(D%r,-
(7j: Pauli matrices) acting on the flavor index. Due to the chiral character of this model, left- and
right-handed fermions couple differently to the Higgs field, as can be seen from the appearance of
the projectorg1+ y5)/2 in the Yukawa term.

Finally, we use a slightly unusual notation for the Higgs acBegrgiven by

So =~k Y Ph[Pnii+ O] + 5 PIdy+An Y (Ofdn—Ny)* (2.5)
ni n n

where ky denotes the hopping parameter angis the quartic coupling. The usual notation is
reobtained by a trivial rescaling of the coupling constants and the Higgs field. The model then
obeys an exact, buattice modifiecchiral symmetry recovering the actual chiral symmetry in the
continuum limit [7].

For the further analytical treatment of this model the fermionic degrees of freedom are in-
tegrated out leading to the effective actig¢[®], which can be written in terms of fermionic
determinants yielding

Set[®P] = So[®] — Nt -log [det(yN B2 —2p 7™ — 2pyy B)} : (2.6)

3. Large N;-limit for small yy

We now consider the limit of infinite fermion numbbk — oo with the coupling constants
scaling according to
N

)/NZ\/N—f

, Yn=const Ay = &I—’j, An =const Ky = Ky, Ky = const (3.1)
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which justifies a semi-classical approach to the investigated model. We will therefore directly
evaluate the effective actior2.@), which is at least possible for the constant and the staggered
mode of the Higgs field. Since the Higgs field scales proportion@J’E in the largeNs -limit, we

apply the ansatz

where® € R* with |®| = 1 denotes a constant 4-dimensional unit vector. We will refen,teas
magnetization and staggered magnetization, respectively. For the actual evaluation of the effective
action we rewrite 2.6), neglecting all constant terms independentdh the following, as
-1
Setf[®] = So[®] — Ny -log [det(]l - ;’; : (.@W - Zp) : [@W} -B)] . (33
For the effective potentidlet¢(m,s) at tree-level one then finally finds

’\vaeff(m,s) = —ch(mz—sZ) +mz+sz+5LN(m4+s4+6mzsz—2(mz+sz))

[ dp W\2 o o V(P = 2] [v(g) -~ 20l
p/} 2y (“(2:») (=)= Nmr vl )

I\ (v —20]  [v(p)—2pl\°
it (z) (e e )] 54

with the abbreviationgy, = p, + 7.

The phase diagram can then be explored numerically by searching for the absolute minima of
the effective potentiaVzt¢(m,s) with respect tam ands. In general, four types of solutions can
be obtained. These are a symmetric (SYil= 0, s= 0), a ferromagnetic (FMm # 0, s= 0),
an antiferromagnetic (AFMm = 0, s # 0), and a ferrimagnetic phase (Fh# 0, s# 0). The
corresponding phase diagram for the chtﬁge: 0.1 is shown in Figurd.. Here, we only present
a qualitative plot of the phase structure, since the obtained results are preliminary. However, the
diagram reveals a rich phase structure. Especially, there is a ferrimagnetic phase, which was also
observed in Monte Carlo studies of earlier, not chiral invariant Higgs-Yukawa models, for example
in[11].

4. Large N;-limit for finite yyn

We now consider a different limit of large fermion numbers where the coupling constants scale
according to

L o N .
YN =N, Y =const Ay = ﬁ—’j, AN = const  ky = N—';', &N = const (4.1)

Again, the Higgs field scales proportional\;éWf allowing to expand the effective action in powers
of 1/(yn|®|). In this largeN¢-limit the power series expansion

Ser[®] = —N; - (Tr log[B] — i Zkk (Bﬁ“)kTr [@<°") (.@(0") —ZP)lB‘l} k)

k=1
+ So[®] (4.2)
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Figure 1: Qualitative phase d~iagram with respect to the Yukawa couplinand the hopping parametgy;
for a constant quartic couplingy = 0.1.

of the logarithm in equation3(3) can therefore be cut off after the first non-vanishing term. The
first summandk = 1) is identical to zero and the second tefkn= 2) is the first non-vanishing
contribution. Cutting off the power series lat= 2, the model then becomes an effecti@4)-
symmetric spin model

P
St1[P] = Sp[P] — 4N - (Z'OQ |®n[%) zm 5 - Ky (8X) - |¢,m|2> (4.3)
whereAx = n—mand the non-local coupling matri,, (Ax) = &, v - M (Ax)|? with |.| denoting
the 4-vector norm is explicitly given by the momentum integral

d*p . VI(P) B
R>T,(AX) = / 2ny pA 'v+(p)—2p'\/%2’

pe

(4.4)

which can be computed numerically. One then finds that the square-norm of the coupling matrix,
IK(Ax)| = |I'(Ax)|?, decays exponentially with increasing distaffsel as shown in Figuré. In a
field-theoretical sense the effective spin model therefore remains a locally interacting model.
For the evaluation of the corresponding phase diagram of this effective spin model we make
the ansatz
Pn=/Ni-@o-0n, on€R* |on|=1 R 3> ¢@=const (4.5)

for the Higgs field. Considering only the leading power N1 of the tree-level effective action
S1¢[P], the amplitudepy can be fixed according to

0=—4. q)1+1+2)LN (9 -1). (4.6)
0

Including the next to leading order terms ifiNk;, the model effectively becomes &t4)-symmetric
non-linearc-model

Serf[®] = —Z;ceﬁnf On- Om, With (4.7)
16p PR +4
kS = AT+ K95 S Sameis (4.8)
""" R &,
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the phase structure of which is again accessable tg/ldrekpansion. Here\l denotes the number
of components of the Higgs field, i.e. eventuallyN = 4. As usual, the constraift,| = 1 is
removed by the introduction of an auxiliary field according to

z— / Dz o' expl-Sa.A]], 4.9)

So,A { Z—Kﬁﬁnf o) - G,i-n—i-Z)Ln- [.i(qﬁ)z— ]} (4.10)

Integrating out théN — 1 components2,... N one obtains the reduced acti§fo?, 1] depending
only on the fieldst, andor} given by

_ Z keff. F ol am+zzn = [(o,})z—]

1
+ é(N-l)Trn,mlog[ KSH + Andnm] - (4.11)

The newly introduced parametiy is necessary to perform the larfyelimit, which will be done

for iy =ty - N = const. Here, we are actually interested in the ¢ase 1 andN = 4. We therefore
choosely = 4. Again, we consider the magnetization and a possible staggered magnetization for
the o1 field and assume the auxiliafy, field to be constant leading to the ansatz

1_ 2 _
oy =m+s-(—1)"  andA,=A. (4.12)
Minimizing é{cl,/l} with respect tan, s, andA will then yield the three gap equations
16p2
0=m- [JL <81<N(p0 + q(O))] (4.13)
YN Po
6p2

0=s: [l < 8KN(p0+yz P q(n,n,n,n))] (4.14)

0
-1

B tN 1 d*k - 5 8p? A
m+s =1— 4(1— N)k/J 1) [_KN%;COS(k“)_Vﬁ(pgq(k)Jr > (4.15)
e&

whereq(k) denotes the eigenvalues|6fAx)|* corresponding to plane waves and is given by
(k) _ / d4p V+(p) . V+(JO) . ﬁté
- r)*v(p)—20 vH(P)—20 /- /P

For the ferromagnetic phasee. m= 0 ands = 0, one obtains a self-consistent determination
equation fom? > 0 according to

q o =k—p. (4.16)

~ 4 2 -1

O<m?=1- t%(1— %) / (gﬂ'; [fcmp&% (1—cogky)) + %)(pg (q(0)—q(k))| (4.17)

ke 7

An analogous relation holds for the antiferromagnetic phase (AFM). These relations can be treated
numerically. The resulting phase diagram is shown in Figurégain, we present a qualitative
diagram only, since our results are preliminary. The appearance of three different phases, namely a
symmetric, a ferromagnetic and an antiferromagnetic phase, can be observed. The presented phase

diagram is in qualitative agreement with earlier results, using non-chiral fermions, seg.e.g. [
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Figure 2: Left: Square-norm of the coupling matrik(Ax) versus the square-norm of the distadcein
lattice units. Right: Qualitative phase diagram with respect to the Yukawa coypiing I and the hopping
parameteky for a constant quartic couplingy = 0.1.

5. Summary and outlook

In this paper we have studied the phase structure of a chiral invariant lattice Higgs-Yukawa
model, originally proposed by Lischer, by means of analytid;texpansions at tree-level. This
was possible for small and for large values of the Yukawa coupling. Symmetric, ferromagnetic,
and antiferromagnetic phases have been observed in both regimes of the Yukawa coupling con-
stant. Additionally, a ferrimagnetic phase was found in the first regime. A next step would be the
comparison of our analytical results with corresponding Monte Carlo data.
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