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1. Introduction

Non-perturbative investigations of Higgs-Yukawa models using the lattice regularization be-
came subject of many investigations in the early 1990’s [1, 2, 3, 4, 5, 6]. These lattice studies were
initially motivated by the interest in a better understanding of the fermion mass generation via the
Higgs mechanism on a non-perturbative level and, in particular, in the determination of bounds on
the Yukawa couplings translating into bounds on the Higgs boson mass and the - at that time not yet
discovered - top quark mass. Furthermore, the fixed point structure of the theory received special
attention due to the question whether besides the Gaussian also a non-trivial fixed point might ex-
ist. However, these investigations were blocked, since the influence of unwanted fermion doublers
could not successfully be suppressed. Moreover, the models of these studies suffered the lack of
chiral symmetry. The latter, however, would be indispensable for a consistent lattice regularization
of chiral gauge theories like, for example, the standard model of electroweak interactions.

Here, we follow the proposition of Lüscher [7] for a chiral invariant lattice Higgs-Yukawa
model based on the Neuberger overlap operator [8]. As a first step we begin with an analytical in-
vestigation of its phase structure by means of 1/Nf -expansions following [9, 10] and the references
therein. We derive an expression for the effective potential at tree-level and present our preliminary
results for the corresponding phase diagram.

In chapter2 we briefly describe the considered model, before we present the largeNf results
at tree-level for small Yukawa couplingsyN ∝ 1/

√
Nf in chapter3. In the following chapter4 we

discuss a different largeNf -limit which becomes valid for non-vanishing Yukawa couplings. We
then end with a short outlook.

2. The model

The chiral invariant Higgs-Yukawa model, which we consider here, contains one four-component,
real Higgs fieldΦ andNf fermion doublets represented by eight-component spinorsψ(i), ψ̄(i) with
i = 1, ...,Nf . Furthermore, there are alsoNf auxiliary fermionic doubletsχ(i), χ̄(i) only introduced
to construct a chiral invariant Yukawa interaction term. The partition function can then be written
as

Z =
∫

DΦ
Nf

∏
i=1

[
Dψ

(i) Dψ̄
(i) Dχ

(i) Dχ̄
(i)
]

exp
(
−SΦ−Skin

F −SY

)
(2.1)

where the total action is decomposed into the Higgs actionSΦ, the kinetic fermion actionSkin
F , and

the Yukawa coupling termSY. It should be stressed that no gauge fields are considered here.

The kinetic fermion action describes the propagation of the physical fermion fieldsψ(i),ψ̄(i)

in the usual way according to

Skin
F =

Nf

∑
i=1

∑
n,m

ψ̄
(i)
n D

(ov)
n,m ψ

(i)
m −2ρχ̄

(i)
n 1n,mχ

(i)
m

where the coordinatesn,m as well as all field variables and coupling constants are given in lattice
units throughout this paper. The (doublet) Dirac operatorD (ov) = D̂ (ov)⊗ D̂ (ov) is given by the
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Neuberger overlap operator̂D (ov), which is related to the Wilson operatorD̂ (W) = γE
µ ∇µ − r∇µ∇µ

by

D̂ (ov) = ρ

{
1+

Â√
Â†Â

}
, Â = D̂ (W)−ρ, ρ ≥ 1 (2.2)

where∇µ denotes the symmetric difference quotient. It is well known that the eigenvaluesν±(p)
of D̂ (ov) with Im[ν±(p)] ≷ 0 form a circle in the complex plane, the radius of which is given by the
parameterρ. In momentum space withp∈P = [−π,π]⊗4 these eigenvalues are explicitly given
by

ν
±(p) = ρ +ρ · ±i

√
p̃2 + r p̂2−ρ√

p̃2 +(r p̂2−ρ)2
, p̃µ = sin(pµ), p̂µ = 2sin

( pµ

2

)
. (2.3)

The auxiliary fieldsχ(i) on the other hand do not propagate. They do not have a direct physi-
cal interpretation at all and their contribution to the action is only introduced to establish chiral
symmetry.

The Higgs field couples to the fermions according to the Yukawa coupling term

SY = yN ∑
n,m

Nf

∑
i=1

(ψ̄(i)
n + χ̄

(i)
n )
[
1n,m

(1− γ5)
2

φn +1n,m
(1+ γ5)

2
φ

†
n

]
︸ ︷︷ ︸

Bn,m

(ψ(i)
m + χ

(i)
m ) (2.4)

whereyN denotes the Yukawa coupling constant andBn,m will be referred to as Yukawa coupling
matrix. Here the Higgs fieldΦn is rewritten as a quaternionic, 2× 2 matrix φn = Φ0

n1− iΦ j
nτ j

(τ j : Pauli matrices) acting on the flavor index. Due to the chiral character of this model, left- and
right-handed fermions couple differently to the Higgs field, as can be seen from the appearance of
the projectors(1± γ5)/2 in the Yukawa term.

Finally, we use a slightly unusual notation for the Higgs actionSΦ given by

SΦ =−κN ∑
n,µ

Φ†
n

[
Φn+µ̂ +Φn−µ̂

]
+∑

n
Φ†

nΦn +λN ∑
n

(
Φ†

nΦn−Nf
)2

(2.5)

whereκN denotes the hopping parameter andλN is the quartic coupling. The usual notation is
reobtained by a trivial rescaling of the coupling constants and the Higgs field. The model then
obeys an exact, butlattice modifiedchiral symmetry recovering the actual chiral symmetry in the
continuum limit [7].

For the further analytical treatment of this model the fermionic degrees of freedom are in-
tegrated out leading to the effective actionSe f f[Φ], which can be written in terms of fermionic
determinants yielding

Se f f[Φ] = SΦ[Φ]−Nf · log
[
det
(

yNBD (ov)−2ρD (ov)−2ρyNB
)]

. (2.6)

3. Large Nf -limit for small yN

We now consider the limit of infinite fermion numberNf → ∞ with the coupling constants
scaling according to

yN =
ỹN√
Nf

, ỹN = const λN = λ̃N
Nf

, λ̃N = const κN = κ̃N, κ̃N = const (3.1)
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which justifies a semi-classical approach to the investigated model. We will therefore directly
evaluate the effective action (2.6), which is at least possible for the constant and the staggered
mode of the Higgs field. Since the Higgs field scales proportional to

√
Nf in the largeNf -limit, we

apply the ansatz

Φn = Φ̂ ·
√

Nf ·
(

m+s· (−1)
∑
µ

nµ

)
(3.2)

whereΦ̂ ∈ IR4 with |Φ̂|= 1 denotes a constant 4-dimensional unit vector. We will refer tom, s as
magnetization and staggered magnetization, respectively. For the actual evaluation of the effective
action we rewrite (2.6), neglecting all constant terms independent ofΦ in the following, as

Se f f[Φ] = SΦ[Φ]−Nf · log

[
det

(
1− yN

2ρ
·
(
D (ov)−2ρ

)
·
[
D (ov)

]−1
·B
)]

. (3.3)

For the effective potentialVe f f(m,s) at tree-level one then finally finds

1
Nf

Ve f f (m,s) = −κ̃N

(
m2−s2

)
+m2 +s2 + λ̃N

(
m4 +s4 +6m2s2−2

(
m2 +s2))

−
∫

p∈P

d4p
(2π)4 log

[(
1+
(

ỹN

2ρ

)2(
m2−s2) |ν(p)−2ρ|

|ν(p)|
· |ν(℘)−2ρ|

|ν(℘)|

)2

+ m2
(

ỹN

2ρ

)2( |ν(p)−2ρ|
|ν(p)|

− |ν(℘)−2ρ|
|ν(℘)|

)2
]

(3.4)

with the abbreviations℘µ = pµ +π.
The phase diagram can then be explored numerically by searching for the absolute minima of

the effective potentialVe f f(m,s) with respect tom ands. In general, four types of solutions can
be obtained. These are a symmetric (SYM:m= 0, s= 0), a ferromagnetic (FM:m 6= 0, s= 0),
an antiferromagnetic (AFM:m = 0, s 6= 0), and a ferrimagnetic phase (FI:m 6= 0, s 6= 0). The
corresponding phase diagram for the choiceλ̃N = 0.1 is shown in Figure1. Here, we only present
a qualitative plot of the phase structure, since the obtained results are preliminary. However, the
diagram reveals a rich phase structure. Especially, there is a ferrimagnetic phase, which was also
observed in Monte Carlo studies of earlier, not chiral invariant Higgs-Yukawa models, for example
in [11].

4. Large Nf -limit for finite yN

We now consider a different limit of large fermion numbers where the coupling constants scale
according to

yN = ỹN, ỹN = const λN = λ̃N
Nf

, λ̃N = const κN =
κ̃N

Nf
, κ̃N = const. (4.1)

Again, the Higgs field scales proportional to
√

Nf allowing to expand the effective action in powers
of 1/(yN|Φ|). In this largeNf -limit the power series expansion

Se f f[Φ] = −Nf ·

(
Tr log[B]−

∞

∑
k=1

2k

k

(
ρ

yN

)k

Tr

[
D (ov)

(
D (ov)−2ρ

)−1
B−1

]k
)

+ SΦ[Φ] (4.2)
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Figure 1: Qualitative phase diagram with respect to the Yukawa coupling ˜yN and the hopping parameterκ̃N

for a constant quartic coupling̃λN = 0.1.

of the logarithm in equation (3.3) can therefore be cut off after the first non-vanishing term. The
first summand(k = 1) is identical to zero and the second term(k = 2) is the first non-vanishing
contribution. Cutting off the power series atk = 2, the model then becomes an effective,O(4)-
symmetric spin model

Se f f[Φ] = SΦ[Φ]−4Nf ·

(
∑
n

log
(
|Φn|2

)
+

(2ρ)2

y2
N

∑
n,m

Φµ
n

|Φn|2
·Kµν(∆x) · Φν

m

|Φm|2

)
(4.3)

where∆x = n−m and the non-local coupling matrixKµν(∆x) = δµ,ν · |Γ(∆x)|2 with |.| denoting
the 4-vector norm is explicitly given by the momentum integral

IR 3 Γµ(∆x) =
∫

p∈P

d4p
(2π)4eip∆x · ν+(p)

ν+(p)−2ρ
·

p̃µ√
p̃2

, (4.4)

which can be computed numerically. One then finds that the square-norm of the coupling matrix,
|K(∆x)|= |Γ(∆x)|2, decays exponentially with increasing distance|∆x| as shown in Figure2. In a
field-theoretical sense the effective spin model therefore remains a locally interacting model.

For the evaluation of the corresponding phase diagram of this effective spin model we make
the ansatz

Φn =
√

Nf ·ϕ0 ·σn, σn ∈ IR4, |σn|= 1, IR 3 ϕ0 = const (4.5)

for the Higgs field. Considering only the leading power in 1/Nf of the tree-level effective action
Se f f[Φ], the amplitudeϕ0 can be fixed according to

0 =−4· 1

ϕ2
0

+1+2λ̃N ·
(
ϕ

2
0−1

)
. (4.6)

Including the next to leading order terms in 1/Nf , the model effectively becomes anO(4)-symmetric
non-linearσ -model

Se f f[Φ] = −∑
n,m

κ
e f f
n,m ·σn ·σm, with (4.7)

κ
e f f
n,m =

16ρ2

ỹ2
Nϕ2

0

· |Γ(∆x)|2 + κ̃N ·ϕ2
0 ·

±4

∑
µ=±1

δn,m+µ̂ , (4.8)
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the phase structure of which is again accessable to an 1/N-expansion. Here,N denotes the number
of components of the Higgs fieldΦ, i.e. eventuallyN = 4. As usual, the constraint|σn| = 1 is
removed by the introduction of an auxiliary fieldλn according to

Z =
∫

Dλ

N

∏
i=1

[
Dσ

i] exp[−S[σ ,λ ]] , (4.9)

S[σ ,λ ] =
1
tN
·

{
∑
n,m

N

∑
i=1

−κ
e f f
n,m ·σ i

n ·σ i
m+∑

n
λn ·

[
N

∑
i=1

(
σ

i
n

)2−1

]}
. (4.10)

Integrating out theN−1 componentsσ2,...,σN one obtains the reduced actionŜ[σ1,λ ] depending
only on the fieldsλn andσ1

n given by

Ŝ[σ1,λ ] = −∑
n,m

κ
e f f
n,m ·

1
tN
·σ1

n ·σ1
m+∑

n
λn ·

1
tN
·
[(

σ
1
n

)2−1
]

+
1
2
(N−1)Trn,m log

[
−κ

e f f
n,m +λnδn,m

]
. (4.11)

The newly introduced parametertN is necessary to perform the largeN-limit, which will be done
for t̃N ≡ tN ·N = const. Here, we are actually interested in the casetN = 1 andN = 4. We therefore
choosẽtN = 4. Again, we consider the magnetization and a possible staggered magnetization for
theσ1

n field and assume the auxiliaryλn field to be constant leading to the ansatz

σ
1
n ≡m+s· (−1)

∑
µ

nµ

and λn≡ λ . (4.12)

Minimizing Ŝ[σ1,λ ] with respect tom, s, andλ will then yield the three gap equations

0 = m·
[

λ −
(

8κ̃Nϕ
2
0 +

16ρ2

ỹ2
Nϕ2

0

·q(0)
)]

(4.13)

0 = s·
[

λ −
(
−8κ̃Nϕ

2
0 +

16ρ2

ỹ2
Nϕ2

0

·q(π,π,π,π)
)]

(4.14)

m2 +s2 = 1−
˜tN
4

(1− 1
N

)
∫

k∈P

d4k
(2π)4

[
−κ̃Nϕ

2
0 ∑

µ

cos(kµ)− 8ρ2

ỹ2
Nϕ2

0

q(k)+
λ

2

]−1

(4.15)

whereq(k) denotes the eigenvalues of|Γ(∆x)|2 corresponding to plane waves and is given by

q(k) =
∫

p∈P

d4p
(2π)4

ν+(p)
ν+(p)−2ρ

· ν+(℘)
ν+(℘)−2ρ

· p̃·℘̃√
p̃2 ·
√

℘̃2
, ℘= k− p. (4.16)

For the ferromagnetic phase,i.e. m 6= 0 ands = 0, one obtains a self-consistent determination
equation form2 > 0 according to

0 < m2 = 1−
˜tN
4

(1− 1
N

)
∫

k∈P

d4k
(2π)4

[
κ̃Nϕ

2
0 ∑

µ

(
1−cos(kµ)

)
+

8ρ2

ỹ2
Nϕ2

0

(q(0)−q(k))

]−1

.(4.17)

An analogous relation holds for the antiferromagnetic phase (AFM). These relations can be treated
numerically. The resulting phase diagram is shown in Figure2. Again, we present a qualitative
diagram only, since our results are preliminary. The appearance of three different phases, namely a
symmetric, a ferromagnetic and an antiferromagnetic phase, can be observed. The presented phase
diagram is in qualitative agreement with earlier results, using non-chiral fermions, see e.g. [9].
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Figure 2: Left: Square-norm of the coupling matrixK(∆x) versus the square-norm of the distance∆x in
lattice units. Right: Qualitative phase diagram with respect to the Yukawa coupling ˜yN � 1 and the hopping
parameter̃κN for a constant quartic coupling̃λN = 0.1.

5. Summary and outlook

In this paper we have studied the phase structure of a chiral invariant lattice Higgs-Yukawa
model, originally proposed by Lüscher, by means of analytic 1/Nf -expansions at tree-level. This
was possible for small and for large values of the Yukawa coupling. Symmetric, ferromagnetic,
and antiferromagnetic phases have been observed in both regimes of the Yukawa coupling con-
stant. Additionally, a ferrimagnetic phase was found in the first regime. A next step would be the
comparison of our analytical results with corresponding Monte Carlo data.
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