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1. Large-N limits of QCD

The idea behind theorientifold planar expansion is an old one. Because of its inherent non-
perturbative features, QCD is a very hard theory to solve. However, one can approximate QCD
with some other (possibly simpler) theory, in order to obtain analytical, if approximate, predictions.
Real QCD is anSU(3) gauge theory with six quarks in the fundamental representation, each one
with a well-defined non-zero mass. Therefore, theories thatapproximate real QCD can be built by
slightly changing some parameters. For instance, it is found that changing the number of colours
and studying the large-N (or planar) limit can lead to an acceptable approximation. One can also
change other parameters, like the masses of the up and down quarks, as the chiral limit is very
interesting to study.

In order to compute a large-N limit, one needs to define a multicoloured version of QCD.
Usually, one chooses anSU(N) gauge theory with quarks in the fundamental representation, where
the coupling constantg2 is replaced byλ/N. When the number of colours approaches infinity, this
theory becomes quenched, that is a pure gauge theory with quarks behaving as classical external
sources.

This is not the only way to generalise QCD to the case ofN colours. Consider the following
simple fact: the antifundamental representation ofSU(3) is the same as the antisymmetric one. In
fact, thanks to the invariance of the fully skew-symmetricεi jk tensor, a one-to-one map between
the two representations exists.

q̄i =
1
2

εi jkQ jk Q jk = ε i jkq̄i

q̄ →U∗q̄ iff Q →UQUT (1.1)

Thus, the multicoloured QCD can be alternatively defined as an SU(N) gauge theory with quarks
in the antisymmetric representation (the coupling constant g2 must be replaced byλ/N in this case,
too). In what follows, I will refer to this theory asorientifold QCD. Now the question is: what is
the planar limit of orientifold QCD?

In the case of one massless flavour (but this result can be extended to the case of more than one
flavours), Armoni, Shifman and Veneziano proposed that orientifold QCD is equivalent to super
Yang-Mills in the planar limit [1, 2, 3]. This conjecture in known asorientifold planar equivalence.

In the class of strong-interacting theories, the supersymmetric ones play a unique role. In
fact, thanks to supersymmetry, some non-perturbative quantities can be analytically computed. If
the orientifold planar equivalence holds, the corresponding quantities in QCD can be estimated
up to 1/N-corrections. This is the case, for example, of the chiral condensate in QCD, that can
be estimated from the gluino condensate in SYM, obtaining a value consistent with the numerical
simulations [4, 5].

At the present, the validity of the orientifold planar equivalence is matter of controversy. Ar-
moni, Shifman and Veneziano claimed to have provided a rigorous proof of this conjecture [6]. In
a recent work, Unsal and Yaffe assert that a dynamical condition was missing in the proof: the
equivalence holds if and only if the charge conjugation symmetry is not spontaneously broken in
orientifold QCD [7].

In the future, we could get hints from numerical simulationsabout the validity of the orientifold
planar equivalence. Computationally, this is a very hard problem. In fact, simulating a gauge theory
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with fermions in a two-indices representation (the dimension of the representation grows likeN2)
has a time cost growing roughly likeN6. (Whilst, for a pure gauge theory the simulation time grows
roughly likeN3.) Deferring this problem to future studies, it is interesting to understand what it is
possible to assert about orientifold planar equivalence between lattice-discretized theories.

In this paper, I will give a sketch of the proof of orientifoldplanar equivalence on the lattice in
the phase of strong coupling and large fermionic mass. A detailed version of this proof is available
in [8].

2. Planar equivalence on the lattice

Let us focus on the following two theories on the lattice:

AdjQCD. Gauge theory with one Majorana fermion of massm in the adjoint representation.

AsQCD. Gauge theory with one Dirac fermion of massm in the antisymmetric two-indices repre-
sentation.

In what follows, I use the Wilson discretization for the Dirac operator

Dxy = δxy −κ ∑
µ

{

(r0− γµ)R[Uµ̂(x)]δx+µ̂ ,y +(r0 + γµ)R[U−µ̂(x)]δx−µ̂ ,y
}

(2.1)

whereκ is the hopping parameter andR is the appropriate representation which the fermions belong
to. The Majorana fermion is defined by introducing the squareroot of the fermionic determinant in
the partition function. Thus the (not normalized) statistical weights of the gauge configurations are

ρAdj(U) DU = e−SW (U) detDAdj(U)
1
2 DU

ρAs(U) DU = e−SW (U) detDAs(U) DU (2.2)

for the two theories, whereSW (U) is the Wilson action for the gauge field.

In the next Section, I will prove that the expectation value of a product of Wilson loops has
the same large-N limit in the two theories, in the framework of large-coupling and large-mass
expansion. More precisely, if{Wi} are Wilson loops on the lattice, one has that

lim
N→∞

1
Nk 〈W1 · · ·Wk〉Adj = lim

N→∞

1
Nk 〈W1 · · ·Wk〉As (2.3)

where the equality holds for each term of the expansion of both the expectation values as a power
series inλ−1 andκ .

3. Planar limit in the strong-coupling and large-mass phase

As a first step, let us perform the hopping expansion of the fermionic effective action (for the
details, see [9]):

SF = − logdetD
N f
R = N f ∑

α∈C

κL(α)c(α)WR(α) (3.1)
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whereC is the set of all the closed paths linking nearest neighbourson the lattice,L(α) is the
length of the pathα , WR(α) is the Wilson loop along the pathα in the representationR, c(α) is a
representation-independent coefficient andN f is 1 for AsQCD or 1/2 for AdjQCD.

Using standard relations, Wilson loops in the adjoint and antisymmetric representations can
be written in terms of Wilson loops in the (anti-)fundamental representations:

1
2

trAdj(U) =
1
2

{

|trU |2−1
}

≃
1
2
|trU |2

trAs(U) =
1
2

{

(trU)2− trU2
}

≃
1
2

(trU)2 . (3.2)

Here, the approximations are valid in the planar limit.
Putting all together, the actions of the two theories can be written as:

SAdj(U) ≃
2N2

λ ∑
p

(

1−
1
N

RetrUp

)

+
1
2 ∑

α∈C

κL(α)c(α) |trW (α)|2

SAs(U) ≃
2N2

λ ∑
p

(

1−
1
N

RetrUp

)

+
1
2 ∑

α∈C

κL(α)c(α)(trW (α))2 (3.3)

whereW (α) is the Wilson loop alongα in the fundamental representation. It is clear that the
orientifold planar equivalence is based on the possibilityof reversing the orientation of one of the
two Wilson loops coming from the fermionic effective action. The full strong-coupling and large-
mass expansion of the statistical weights in (2.2) is obtained by expanding the exponentiale−S as a
power series.

In order to compute the partition function, one can replace the exponential in the integral with
its power series, and fully expand each of the terms. The partition function is finally obtained as a
sum of graphs.

Each graph is an integral over all the link variables of a product of some plaquettes (times
2N/λ ) coming from the Wilson action and some couples of Wilson loops (timesκL(α)c(α)/2)
coming from the fermionic effective action. It can be shown [10] that at leading order in 1/N the
effect of the integration over the gauge group is to perform Wick-contractions between couples of
U andU†:

Ui jU
∗
kl →

1
N

δikδ jl . (3.4)

As a consequence, we can use all the machinery developed for the usual perturbation theory.
For example, the expectation value of a Wilson loop is given by the sum of all the “connected
graphs” (times the appropriate combinatorial factor) withthe insertion of the Wilson loop. The
“connected graphs” are those which cannot be written as a product of two other graphs of the
theory.

A graph can be represented as a possibly disconnected surface bounded by Wilson loops and
tiled by plaquettes, that are sewn by Wick-contractions (see figure 1).

As in the usual ’t Hooft expansion [11], graphs are proportional to Nχ, whereχ is the Euler
characteristic of the surface:

χ = 2C−2H −B (3.5)

whereC is the number of connected components,H is the number of handles andB is the number
of boundaries.
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Figure 1: On the left, a graph of the expectation value of a WIlson loop for AdjQCD. On the right, a
similar graph for AsQCD. (1) Inserted Wilson loop. (2) Plaquette. (3)(trU)2 from a Wilson loop in the
antisymmetric representation (from the fermionic determinant). (4)|trU |2 from a Wilson loop in the adjoint
representation (from the fermionic determinant).

Figure 2: Both graphs are related to AdjQCD. The graph in (a) is a planarone; its Euler characteristic is 1.
The graph in (b) is a subleading one; it contains a loop and itsEuler characteristic is−1.

Since graphs may be represented by disconnected surfaces, it may seem that the Euler charac-
teristic indefinitely rises by adding connected components. This is not the case. It can be shown
that one can add connected components without introducing subgraphs only by also adding bound-
aries, in such a way that the leading power ofN is not modified by the presence of the fermions.
In the planar limit, only graphs with the highest possible Euler characteristic survive. These are
graphs (as in figure 2a) without handles and without loops (like those in figure 2b).

At this point, we have developed all the tools we need to provethe orientifold planar equiva-
lence. Let us see it with an example. Consider the first graph in figure 3. Apart from the combina-
torial factor, its value is:

GAdj =
1
8

c1c2c3

〈

trU (E)
W

(1)
Adj W

(2)†
Adj W

(3)†
Adj P

(E,1)
P

(1,2,3)
P

(2)
P

(3)
〉

c
(3.6)

where〈·〉 represents the integration with respect to the Haar measure. In the planar limit,

GAdj ≃
1
8

c1c2c3

〈

trU (E)
P

(E,1) trU (1)
〉

〈

trU (1)† trU (2)† trU (3)†
P

(1,2,3)
〉 〈

trU (2)
P

(2)
〉 〈

trU (3)
P

(3)
〉

. (3.7)

Since the integration measure is invariant under the transformationU →U†, the following equali-
ties hold:

〈

trU (1)† trU (2)† trU (3)†
P

(1,2,3)
〉

=
〈

trU (1) trU (2) trU (3)
P

(1,2,3)†
〉

GAdj ≃
1
8

iJc1c2c3

〈

trU (E)
P

(E,1) trU (1)
〉

〈

trU (1) trU (2) trU (3)
P

(1,2,3)†
〉 〈

trU (2)
P

(2)
〉 〈

trU (3)
P

(3)
〉

(3.8)
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Figure 3: On the left, a graph of the expectation value of a WIlson loop for AdjQCD. On the right, a similar
graph for AsQCD. The latter can be obtained from the former, simply by reversing all the directions of the
link variables in the central connected component. The labels in the graphs refer to the Wilson loops.

the latter being equal to the planar limit of the following graph (represented in the right side of
figure 3) in AsQCD:

GAs = c1c2c3

〈

trU (E)
W

(1)
As W

(2)
As W

(3)
As P

(E,1)
P

(1,2,3)†
P

(2)
P

(3)
〉

c
. (3.9)

This mechanism does not work with subleading graphs. It is enough to see the graph in the
figure 2b to realize that no connected component can be consistently reversed to get a graph of
AsQCD.

This result has a general validity. Since the integration measure is invariant under the substi-
tutionU →U†, one can reverse all the directions in a connected component, without changing the
value of the graph. Since planar graphs do not contain loops,one can independently choose which
connected components to reverse. Reversing the directionsof some components is equivalent to
interchangingWAs ↔

1
2WAdj. In this way, one can change the representation of the fermion and in-

terchange Dirac with Majorana fermion. No change in the coefficientsc(α) is needed, because they
are representation-independent. In conclusion, planar equivalence comes from the graph-by-graph
equality of expectation values of the two theories.

4. Conclusions

The results obtained are based on the possibility of expanding the expectation values as power
series inλ−1 andκ . Of course, a phase transition can exist in the plane(λ ,κ). Thus, the present
work proves the orientifold planar equivalence only in the phase containing the pointλ = ∞ and
κ = 0.

It is known that pureSU(N) gauge theory in two dimensions on the lattice has a phase tran-
sition in the planar limit (also at a finite volume) between a strong-coupling and a weak-coupling
phase [12]. Moreover, Kiskis, Narayanan and Neuberger [13,14] showed numerically that such a
phase transition exists in four dimensions, too.

At the moment, the phase structure of gauge theories with fermions in a two-indices represen-
tation is not known.

Clearly, it is also conceivable that the strong-coupling and large-mass phase does not contain
the continuum limit (that is atλ = 0 andκ = ∞). In this case, no information can be inferred on
the validity of the orientifold planar equivalence betweenthe two theories on the continuum.
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