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1. Introduction

An open question in lattice QCD is the cause of the spontaneous breaking ®f/(Ne) @
SU(N¢) symmetry in the massless QCD Lagrangian. The order parameter of thissymraietry
breaking is the chiral condensate, proportional to the density of zeroveilyees of the Dirac
operator. It is likely that the near-zero eigenvectors are generateldebsnixing of “would be
zero modes,” topological objects with non-zero winding number. In Euclidpacestime, many
models of the topological vacuum have been suggested, including: poirgHdikbyper-spherical
instantons with integer topological charge, monopoles or calorons with frattibarge, vortexes,
higher dimensional membranes or perhaps some combination of the above. ciplpriwe can
eliminate some of these possibilities by searching for anti-self dual objects Ditthe operator,
and studying their size, shape, and correlation with the topological chargityl In practise, there
are numerous difficulties, caused by both identification of the structures fimamlattice spacing
effects, and from ultra-violet fluctuations.

We have to use a Dirac operator which respects chiral symmetry, suck asdtap opera-
tor [1]:

D= (1+p)+(1—p)yssign(ysDw), (1.2)

whereDyy is the Wilson Dirac operator with negative mass (we use a hopping paraknetér2),
and u is proportional to the bare quark mass. Studies in quenched QCD havetmobyeced
conclusive results. In the most recent studies, Horeatd. believe that they have identified long
range three dimensional membranes in the underlying gauge field, [2]; whitdb&vget al. have
found a different picture emerging if one only considers the lattice sites watlatiyest topolog-
ical charge density [3]; and Wareg al. [4] believe that the vacuum is dominated by instantons,
with Horvath incorrectly accounting for ultra-violet fluctuations. Howevercsithe fermion de-
terminant (at small masses) will suppress small eigenvalues of the Diraatopdt is likely that
dynamical effects will be important.

This study is a preliminary investigation of the topological structure of the QGIDwa in
full QCD (with overlap fermions). We are currently restricted to small lattiees] large quark
masses because of the costs of the Dynamical overlap simulations. In trehgdestudies it was
found that finite lattice spacing effects were important; we are not yet reachnform this in full
QCD: this is the most important limitation of our work as presented here.

In section 2 we describe the parameters used for our ensembles. In seatote3cribe our
method. In section 4 we give our results, and we conclude in section 5.

2. Setup

We generated our ensembles using the Hybrid Monte Carlo algorithm for pvertaions
described in [5, 6, 7]. We generated fivé38 ensembles, each with around 20 configurations,
at a lattice spacing of either 0.15fm or 0.1fm at pion masses ranging froMeN@o 1200MeV
(see table 1). We used the Tadpole-Improved Lischer Weisz gauge actidawo steps of stout
smearing at a parameterl0 Note that the ensembles at the two lowest masses had few small
eigenvalues of either the overlap or Wilson operator or many topologicafjeleanges. It is
likely that these two masses were too small to fit into the physical volume.
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Size f a (fm) u m; (MeV) ReR) Im(R) (Re(TrUpy)/3)
8332 8.35 0.143(5) ©®4 1166(150) 0.008(6) 0.004(12) 0.375(2)
8332 8.35 0.162(7) ©3 852(220) -0.016(10) -0.007(10) 0.379(1)
8332 8.45 0.101(7) @1 617(200) 0.037(15) -0.011(7) 0.363(1)
8332 8.45 0.109(15) 008 414(300) 0.029(8) -0.024(19) 0.363(1)

Table 1. Ensemble details, the size of the lattifl,quark mass, pion mass, Real and imaginary values of
the Polyakov loop, and average plaquette.

3. Method

We calculate the eigenvectdug;) (with eigenvalue); closest to 0) of the massless Hermitian
overlap operator. We define a scalar dengitfx) and pseudo-scalar densify(x)

Bix) =3 ()| () WP = 3 (U8l (). (3.2)
[3) (3

We use a topological charge density based on a constructibp,afising 1x 1, 2x 2 and 3x 3
Wilson loops [8, 9]. This gives an @) improved topological charge density, with the UV fluctu-
ations removed by an improved cooling method so that the total topological deangénteger to
better than 1%. We compare the eigenvectors with the topological chargéydsdsulated after
5,10,15,...40 cooling sweeps, with the hope that this will allow us to determine which strcture
we see are artifacts of the cooling and which were in the original gauge field.

So that we can determine the nature of the underlying structures or objectssilgémvectors,
we must first isolate those structures so that we can investigate their shapandirmpological
charge. Finding connected regions with coherent chirality is not enotlgh gives us two struc-
tures covering all of the lattice (the two long range structures found byatloet al). We can
attempt to insert a cut-off, only considering a certain fraction of the lattice sitstiae high-
est (pseudo-)scalar density, but again this is not sufficient to sepheste large structures into
smaller objects without excluding a large proportion of the lattice. We can, resywegplit the
(pseudo-)scalar density and topological charge into several diffeteictures based on the gradi-
ent of i, Y or gq. The goal is to assign each lattice site to one particular structure. The fogowin
procedure is fory;, with the method forys® or Qg being analogous.

We start by identifying the lattice site with the highegt and we assign this lattice site to
the first structure, together with its nearest neighbours. Then for etlicie Isitex, adjacent to the
structure, we calculate the gradientffrom the 3 hypercube centred of. We map this gradient
vector onto the 8hypercube (by starting the vecorxtand multiplying by an appropriate scale
factor), and find the two lattice sites on the hypercube nearest to the maggzieng vector. If
either of these sites have already been assigned to the first structure glassignx, to the same
structure. If not, we leave it unassigned for the present time. We continepéatedly sweep
through the lattice until no more lattice sites can be assigned to the this structurear\Wake
the lattice site with the highegt which is not assigned to the first structure as a starting point for
the second structure, and repeat this procedure until no more lattice site$t amassigned. This
procedure generates numerous connected structures scatteresl taerdattice. It has its flaws,
most notably that it may be biased towards hyper-spherical structures @mensional ridge, for
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example, may be split between several structures); secondly, it cdndwea if ¢ is insufficiently
smooth. None the less, this method, though crude, is still effective, as veddndpmonstrate later.

Once we have individual structures, we need to determine their sizes,sbaplogical charge
and the correlation between the object and the topological charge. Totbeidgize and shape,
we here use a somewhat primitive method — we plot the scalar/pseudotsqaibngical charge
densities and examine them by eye. We are currently developing more saqbi$ticols.

We also construct straight line paths across the structures. For evelgttive sites within
the structure we can construct at least one path connecting these twavitze (he path is not
allowed to go outside the structure) which minimises the length of the path. Tredhthe possible
minimum-length paths in the structure we choose the one path which has the $aaas density
(or absolute value of the pseudo-scalar density) on the lattice sites alomqathaflhis gives us a
one-dimensional view across the most important lattice sites in the structurereaceh compare
the pseudo-scalar density and topological charge density along thisypaghsimply by plotting
them together. We can also determine information about the shape of thergtffucto the path.
Because we are choosing the path of maximum scalar density, then if thieisgrigan the form of
one or higher dimensional object, of (almost) constant scalar densityttitseshould be evident,
at least on some configurations, as we will either see a ridge of constadiopsealar density, or
(at least) two peaks as the path crosses the structure twice. If thertdeastawo hyper-spherical
peaks, then we should see both of them (at least most of the time). Only if tlduses are
generated by one hyper-spherical object would we universally sewke peak in the path.

To calculate the topological charge of the structures, we find a structure itoplological
charge density with its maximum located near (we chose to use those withiattice spacings
and only two lattice spacings distant in one direction) a maximum in the (pseodlay)slensity
structure, then summing g over the lattice sites assigned to the topological charge structure. For
the larger objects which we are interested in here, the topological charggaged by summing
gy over the lattice sites in the (pseudo-)scalar density structures was almasaliy close to
that obtained from the corresponding topological charge structuré¢hidrstudy, since we were
interested in the topological content of the eigenvectors, we only coesitlense structures which
appeared in all ofy, ¢° andgg.

4. Results

In figure 1 we plot the pseudo-scalar density for the eigenvector with thikestneigenvalue
in the u = 0.03 ensemble. We see that the pseudo-scalar density is dominated by tworestuctu
one with positive®, the other with negativg/®; and that both of these objects are approximately
hyper-spherical (in the sense that around the peak the pseudo-deasity falls off at the same
rate in every direction): we certainly do not see 3D membranes of roughbtardensity. We
can separate the two structures using the gradient method, and we hitwd thle pseudo-scalar
density of one of them in 2 (the other is similar). After 5 cooling sweeps the tgalbcharges
of these two objects were -0.937 and 0.851; after 10 cooling sweeps -4n@10.958. We can
confirm that we are seeing the same structures in both the topological dwargity and pseudo-
scalar density by plottingy and @° along the path of maximurjy®| (see figure 3). While the
gauge field is not very smooth, since it was calculated after only 5 cooling swiéépclear that
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Figure 1. The distribution ofy® on the lattice for the smallest eigenvalue of fne- 0.03 ensemble. The
x-axis contains the X and T coordinates of the original d¢attk = Lx T + X); the y-axis the Y and Z. A
dark colour indicates a large negative value, a yellow aofolarge positive value, and a red colour a value
around zero.
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Figure 2: The same plot as in figure 1, but restricted to just the straatith the largest topological charge.
A light colour indicates a large value ¢f°, a dark colour a value close to zero.
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Figure 3: The pseudo-scalar density for the smallest eigenvectdregi = 0.03 ensemble and the topolog-
ical charge density (calculated after 5 cooling sweeps)gtbe path with the maximumys|. gg has been
scaled by a factor of 10.

the same structure is seen in both the gauge field and the eigenvector. Sinigetiveaor was
calculated on the uncooled gauge field, it is clear that this structure is ndifaotaf cooling. The
third and fourth structures igy® both had topological charges around -0.4 (if we summed up the
charges of the sites in the pseudo-scalar density structures), neithérabf was well correlated

to the topological charge density; indeed a structurggiwith charge -1.2 was split across these
two eigenvector structures (and others). It thus seems highly likely thagrthadl eigenvector of
the Dirac operator was created by the mixing of two hyper-spherical tshy@te of charge +1, the
other of charge -1.

That was one eigenvector on one configuration on one ensemble. Now wayedb perform
the rather tedious task of repeating this procedure for the remaining eaersjeconfigurations,
and ensembles. We see four distinct classes of eigenvectors. Thelasar@g eigenvectors which
contain (at least) two structures of topological charge one, as in the éxamspussed above (all
structures with charges between 0.8 and 1.2 were determined to be chtrgeelstructures were
generally stable under cooling). Class (b) eigenvectors had one topall@yiarge 1 structure
and a number of structures with topological charges around 0.5. Clasigérvectors had a
single topological charge one structure, and class (d) eigenvectbrohzbvious correlation with
the topological charge (according to this method). Our results are sumtharitable 2 for the
smallest non-zero eigenvectors for each configurations. Op thd®.03 andu = 0.04 ensembles
the eigenvectors are mostly class (a), with the occasional class (b) érofchhe smaller masses,
where we had no small eigenvalues, we saw only class (c) and clasgddyectors. The number
of class (a) eigenvectors on the= 0.03 andu = 0.04 ensembles decreased as we moved to
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M @ (B (@

0.04 70% 20% 10% 0%
0.03 60% 25% 15% 0%
0.01 10% 0% 30% 60%
0.008 0% 0% 50% 50%

Table2: The percentage of configurations where the smallest nametgenvector (counting only structures
seen iny, Y° andqg) belonged to one of the four classes defined in the text.

higher eigenvalues - there was generally considerably less correlatiaedye structures in the
eigenvector and the topological charge.

5. Conclusions

In contrast to the quenched study of [2] we find that the small eigenvalties Dirac operator
are dominated by hyper-spherical structures with topological chargeahd 1. This discrepancy
could be caused by a number of factors; firstly the presence of dynamioabhs; secondly that
our study was carried out on smaller volumes and with a larger lattice spabindly because
it is possible that our cooling method of measuring the topological charge irtesdh bias into
the method. Further study is needed to investigate which of these is the cahsedifcrepancy.
Our results are not inconsistent with a picture in which the dominant causgotaneous chiral
symmetry breaking is some remnant of instanton/anti-instanton pairs.
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