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1. Introduction

An open question in lattice QCD is the cause of the spontaneous breaking of theSU(Nf )⊗
SU(Nf ) symmetry in the massless QCD Lagrangian. The order parameter of this chiralsymmetry
breaking is the chiral condensate, proportional to the density of zero eigenvalues of the Dirac
operator. It is likely that the near-zero eigenvectors are generated bythe mixing of “would be
zero modes,” topological objects with non-zero winding number. In Euclidean space time, many
models of the topological vacuum have been suggested, including: point-likeand hyper-spherical
instantons with integer topological charge, monopoles or calorons with fractional charge, vortexes,
higher dimensional membranes or perhaps some combination of the above. In principle, we can
eliminate some of these possibilities by searching for anti-self dual objects in theDirac operator,
and studying their size, shape, and correlation with the topological charge density. In practise, there
are numerous difficulties, caused by both identification of the structures, fromfinite lattice spacing
effects, and from ultra-violet fluctuations.

We have to use a Dirac operator which respects chiral symmetry, such as the overlap opera-
tor [1]:

D = (1+ µ)+(1−µ)γ5sign(γ5DW), (1.1)

whereDW is the Wilson Dirac operator with negative mass (we use a hopping parameterκ = 0.2),
andµ is proportional to the bare quark mass. Studies in quenched QCD have not yet produced
conclusive results. In the most recent studies, Horvathet al. believe that they have identified long
range three dimensional membranes in the underlying gauge field, [2]; while Weinberget al. have
found a different picture emerging if one only considers the lattice sites with the largest topolog-
ical charge density [3]; and Wanget al. [4] believe that the vacuum is dominated by instantons,
with Horvath incorrectly accounting for ultra-violet fluctuations. However, since the fermion de-
terminant (at small masses) will suppress small eigenvalues of the Dirac operator, it is likely that
dynamical effects will be important.

This study is a preliminary investigation of the topological structure of the QCD vacuum in
full QCD (with overlap fermions). We are currently restricted to small lattices,and large quark
masses because of the costs of the Dynamical overlap simulations. In the quenched studies it was
found that finite lattice spacing effects were important; we are not yet ready toconfirm this in full
QCD: this is the most important limitation of our work as presented here.

In section 2 we describe the parameters used for our ensembles. In section 3we describe our
method. In section 4 we give our results, and we conclude in section 5.

2. Setup

We generated our ensembles using the Hybrid Monte Carlo algorithm for overlap fermions
described in [5, 6, 7]. We generated five 8332 ensembles, each with around 20 configurations,
at a lattice spacing of either 0.15fm or 0.1fm at pion masses ranging from 400MeV to 1200MeV
(see table 1). We used the Tadpole-Improved Lüscher Weisz gauge actionand two steps of stout
smearing at a parameter 0.1. Note that the ensembles at the two lowest masses had few small
eigenvalues of either the overlap or Wilson operator or many topological charge changes. It is
likely that these two masses were too small to fit into the physical volume.
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Size β a (fm) µ mπ (MeV) Re(Pl ) Im(Pl ) 〈Re(TrUµν )/3〉
8332 8.35 0.143(5) 0.04 1166(150) 0.008(6) 0.004(12) 0.375(1)
8332 8.35 0.162(7) 0.03 852(220) -0.016(10) -0.007(10) 0.379(1)
8332 8.45 0.101(7) 0.01 617(200) 0.037(15) -0.011(7) 0.363(1)
8332 8.45 0.109(15) 0.008 414(300) 0.029(8) -0.024(19) 0.363(1)

Table 1: Ensemble details, the size of the lattice,β , quark mass, pion mass, Real and imaginary values of
the Polyakov loop, and average plaquette.

3. Method

We calculate the eigenvectors|ψi〉 (with eigenvalueλ i closest to 0) of the massless Hermitian
overlap operator. We define a scalar densityψi(x) and pseudo-scalar densityψ5

i (x)

ψi(x) =∑
c,s
〈ψi(x)|ψi(x)〉 ψ5

i (x) =∑
c,s
〈ψi(x)|γ5|ψi(x)〉. (3.1)

We use a topological charge density based on a construction ofFµν using 1×1, 2×2 and 3×3
Wilson loops [8, 9]. This gives an O(a4) improved topological charge density, with the UV fluctu-
ations removed by an improved cooling method so that the total topological chargeis an integer to
better than 1%. We compare the eigenvectors with the topological charge density calculated after
5,10,15, . . .40 cooling sweeps, with the hope that this will allow us to determine which structures
we see are artifacts of the cooling and which were in the original gauge field.

So that we can determine the nature of the underlying structures or objects in the eigenvectors,
we must first isolate those structures so that we can investigate their shape, size and topological
charge. Finding connected regions with coherent chirality is not enough -this gives us two struc-
tures covering all of the lattice (the two long range structures found by Horvath et al). We can
attempt to insert a cut-off, only considering a certain fraction of the lattice sites with the high-
est (pseudo-)scalar density, but again this is not sufficient to separatethese large structures into
smaller objects without excluding a large proportion of the lattice. We can, however, split the
(pseudo-)scalar density and topological charge into several different structures based on the gradi-
ent ofψi , ψ5

i or qg. The goal is to assign each lattice site to one particular structure. The following
procedure is forψi , with the method forψ5

i or qg being analogous.
We start by identifying the lattice site with the highestψi , and we assign this lattice site to

the first structure, together with its nearest neighbours. Then for each lattice sitexn adjacent to the
structure, we calculate the gradient ofψi from the 34 hypercube centred onxn. We map this gradient
vector onto the 34 hypercube (by starting the vecor atxn and multiplying by an appropriate scale
factor), and find the two lattice sites on the hypercube nearest to the mapped gradient vector. If
either of these sites have already been assigned to the first structure, then we assignxn to the same
structure. If not, we leave it unassigned for the present time. We continue to repeatedly sweep
through the lattice until no more lattice sites can be assigned to the this structure. Wecan take
the lattice site with the highestψi which is not assigned to the first structure as a starting point for
the second structure, and repeat this procedure until no more lattice sites are left unassigned. This
procedure generates numerous connected structures scattered across the lattice. It has its flaws,
most notably that it may be biased towards hyper-spherical structures (a one dimensional ridge, for
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example, may be split between several structures); secondly, it can break down if ψi is insufficiently
smooth. None the less, this method, though crude, is still effective, as we hope to demonstrate later.

Once we have individual structures, we need to determine their size, shape, topological charge
and the correlation between the object and the topological charge. To studytheir size and shape,
we here use a somewhat primitive method — we plot the scalar/pseudo-scalar/topological charge
densities and examine them by eye. We are currently developing more sophisticated tools.

We also construct straight line paths across the structures. For every twolattice sites within
the structure we can construct at least one path connecting these two sites (where the path is not
allowed to go outside the structure) which minimises the length of the path. Then, of all the possible
minimum-length paths in the structure we choose the one path which has the largest scalar density
(or absolute value of the pseudo-scalar density) on the lattice sites along thatpath. This gives us a
one-dimensional view across the most important lattice sites in the structure; andwe can compare
the pseudo-scalar density and topological charge density along this path,most simply by plotting
them together. We can also determine information about the shape of the structure from the path.
Because we are choosing the path of maximum scalar density, then if the structure is in the form of
one or higher dimensional object, of (almost) constant scalar density, thenthis should be evident,
at least on some configurations, as we will either see a ridge of constant pseudo-scalar density, or
(at least) two peaks as the path crosses the structure twice. If there are at least two hyper-spherical
peaks, then we should see both of them (at least most of the time). Only if the structures are
generated by one hyper-spherical object would we universally see asingle peak in the path.

To calculate the topological charge of the structures, we find a structure in the topological
charge density with its maximum located near (we chose to use those within

√
6 lattice spacings

and only two lattice spacings distant in one direction) a maximum in the (pseudo-)scalar density
structure, then summing upqg over the lattice sites assigned to the topological charge structure. For
the larger objects which we are interested in here, the topological charge generated by summing
qg over the lattice sites in the (pseudo-)scalar density structures was almost invariably close to
that obtained from the corresponding topological charge structure. Inthis study, since we were
interested in the topological content of the eigenvectors, we only considered those structures which
appeared in all ofψ, ψ5 andqg.

4. Results

In figure 1 we plot the pseudo-scalar density for the eigenvector with the smallest eigenvalue
in the µ = 0.03 ensemble. We see that the pseudo-scalar density is dominated by two structures:
one with positiveψ5, the other with negativeψ5; and that both of these objects are approximately
hyper-spherical (in the sense that around the peak the pseudo-scalar density falls off at the same
rate in every direction): we certainly do not see 3D membranes of roughly constant density. We
can separate the two structures using the gradient method, and we have plotted the pseudo-scalar
density of one of them in 2 (the other is similar). After 5 cooling sweeps the topological charges
of these two objects were -0.937 and 0.851; after 10 cooling sweeps -1.019and 0.958. We can
confirm that we are seeing the same structures in both the topological chargedensity and pseudo-
scalar density by plottingqg andψ5 along the path of maximum|ψ5| (see figure 3). While the
gauge field is not very smooth, since it was calculated after only 5 cooling sweeps, it is clear that
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Figure 1: The distribution ofψ5 on the lattice for the smallest eigenvalue of theµ = 0.03 ensemble. The
x-axis contains the X and T coordinates of the original lattice (x = LXT + X); the y-axis the Y and Z. A
dark colour indicates a large negative value, a yellow colour a large positive value, and a red colour a value
around zero.
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Figure 2: The same plot as in figure 1, but restricted to just the structure with the largest topological charge.
A light colour indicates a large value ofψ5, a dark colour a value close to zero.
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Figure 3: The pseudo-scalar density for the smallest eigenvector of theµ = 0.03 ensemble and the topolog-
ical charge density (calculated after 5 cooling sweeps) along the path with the maximum|ψ5|. qg has been
scaled by a factor of 10.

the same structure is seen in both the gauge field and the eigenvector. Since the eigenvector was
calculated on the uncooled gauge field, it is clear that this structure is not an artifact of cooling. The
third and fourth structures inψ5 both had topological charges around -0.4 (if we summed up the
charges of the sites in the pseudo-scalar density structures), neither of which was well correlated
to the topological charge density; indeed a structure inqg with charge -1.2 was split across these
two eigenvector structures (and others). It thus seems highly likely that thissmall eigenvector of
the Dirac operator was created by the mixing of two hyper-spherical objects, one of charge +1, the
other of charge -1.

That was one eigenvector on one configuration on one ensemble. Now we justhave to perform
the rather tedious task of repeating this procedure for the remaining eigenvectors, configurations,
and ensembles. We see four distinct classes of eigenvectors. There are class (a) eigenvectors which
contain (at least) two structures of topological charge one, as in the example discussed above (all
structures with charges between 0.8 and 1.2 were determined to be charge 1; these structures were
generally stable under cooling). Class (b) eigenvectors had one topological charge 1 structure
and a number of structures with topological charges around 0.5. Class (c)eigenvectors had a
single topological charge one structure, and class (d) eigenvectors had no obvious correlation with
the topological charge (according to this method). Our results are summarised in table 2 for the
smallest non-zero eigenvectors for each configurations. On theµ = 0.03 andµ = 0.04 ensembles
the eigenvectors are mostly class (a), with the occasional class (b) or (c).For the smaller masses,
where we had no small eigenvalues, we saw only class (c) and class (d) eigenvectors. The number
of class (a) eigenvectors on theµ = 0.03 andµ = 0.04 ensembles decreased as we moved to
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µ (a) (b) (c) (d)

0.04 70% 20% 10% 0%
0.03 60% 25% 15% 0%
0.01 10% 0% 30% 60%
0.008 0% 0% 50% 50%

Table 2: The percentage of configurations where the smallest non-zero eigenvector (counting only structures
seen inψ, ψ5 andqg) belonged to one of the four classes defined in the text.

higher eigenvalues - there was generally considerably less correlation between structures in the
eigenvector and the topological charge.

5. Conclusions

In contrast to the quenched study of [2] we find that the small eigenvalues of the Dirac operator
are dominated by hyper-spherical structures with topological charge ofaround 1. This discrepancy
could be caused by a number of factors; firstly the presence of dynamical fermions; secondly that
our study was carried out on smaller volumes and with a larger lattice spacing;thirdly because
it is possible that our cooling method of measuring the topological charge introduces a bias into
the method. Further study is needed to investigate which of these is the cause ofthe discrepancy.
Our results are not inconsistent with a picture in which the dominant cause ofspontaneous chiral
symmetry breaking is some remnant of instanton/anti-instanton pairs.
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