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We discuss the structure of the NLO corrections to the chiral formulae for mesonic scattering
processes in mixed action simulations using Ginsparg-Wilson valence quarks and staggered sea
quarks. In particular, we show that the analytic contribution of the NLO chiral Lagrangian is the
same as in QCD. We also comment on how this result restricts the dependence of the amplitudes
on the unknown parameter CMix appearing in the chiral theory appropriate for these systems. We
conclude with some comments on the explicit scattering lengths.
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1. Introduction

In continuum quantum field theory in four dimensions, massless Dirac fermions respect chiral
symmetry. This symmetry is crucial for our understanding of low energy processes of QCD: since
the light quark masses are small compared to the QCD scale, one would expect to see signatures
of chiral symmetry in the spectrum. Since these signatures are not observed, we assume that QCD
dynamically breaks chiral symmetry at some scale Λχ ; this leads to concrete predictions which
are phenomenologically successful. Consequently, one would like latticized QCD to enjoy some
analogue of chiral symmetry. This is achieved if the quarks satisfy the Ginsparg-Wilson relation [1];
current realizations are domain wall fermions and overlap fermions. These quark discretizations
are collectively known as Ginsparg-Wilson (GW) quarks.

Unfortunately GW quarks come with a price. Simulations using GW quarks are slower [2] than
simulations with Wilson or staggered quarks. Staggered quarks, in particular, have been popular
recently due to the availability of the MILC lattices [3]. But this discretization scheme has its own
issues: staggered chiral perturbation theory [4, 5, 6] is theoretically complicated, as demonstrated,
for example, by the large number of operators in the NLO Lagrangian [7].1

A practical compromise between the GW and staggered discretization schemes is to use stag-
gered fermions for the sea quarks and GW fermions for the valence quarks[8]. This is particularly
attractive since one can employ the MILC lattices, but as we shall see, it is also theoretically clean.
Several recent simulations [9, 10, 11, 12, 13, 14] have utilized this kind of mixed action scheme,
so it is important to understand the chiral extrapolation appropriate to these simulations.

Nevertheless, these mixed action simulations face their own challenges. Chiral perturbation
theory for mixed action simulations (MAχPT) [15, 16] depends on a new, as yet undetermined
parameter, CMix. This parameter shifts the mass of mixed valence-sea mesons at tree level, so that
for a meson with valence quark v and sea quark s,

m2
vs = B(mv +ms)+a2

∆Mix, (1.1)

where ∆Mix = 16CMix/ f 2 and a is the lattice spacing. In addition, a mixed action theory violates
unitarity at any finite lattice spacing, so one must take the continuum limit before unitarity can be
restored, unlike a partially quenched theory. We will comment on these issues below.

Before we continue, let us introduce some notation. We shall denote our valence quarks as u,d
and s while our sea quarks are j, l and r. The leading order (LO) mass of a meson of quark content
a,b will be denoted mab. Meson masses which suffer a tree level lattice correction will be denoted
with a tilde; for example, the mass of a meson with quark content j, j is m̃2

j j = 2Bm j +a2∆I , where
a2∆I is the mass shift of a taste identity meson due to the staggered potential. The next-to-leading
order (NLO) pion mass will be denoted mπ and similarly for the kaon mass. The leading order
decay constant is denoted by f while the NLO pion and kaon decay constants are fπ and fK ,
respectively.

1We assume the validity of the fourth-root trick, though it has not been shown that the continuum limit of latticized
QCD with rooted-staggered quarks is in the same universality class as QCD.
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2. NLO Corrections

Recently, the ππ scattering length was computed [17] in mixed action chiral perturbation
theory (MAχPT) for GW valence quarks on a staggered sea. In terms of leading order parameters,
the scattering length is given by

a(0)
I=2 =− muu

8π f 2

{
1+

m2
uu

(4π f )2

[
4ln
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)
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)
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[
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+
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(4π f )2 l′a2(µ)

}
, (2.1)

where ∆2
PQ = m̃2

j j−m2
π . This result simplifies considerably [17] if one rewrites the scattering length

in terms of the mass of the pion on the lattice and the decay constant of the pion measured on the
lattice (we refer to these as lattice-physical parameters.) Then the scattering length becomes

a(0)
I=2 =− mπ

8π f 2
π

{
1+

m2
π

(4π fπ)2

[
3ln
(

m2
π

µ2

)
−1+ lππ(µ)

]
− m2

π

(4π fπ)2

∆̃4
PQ

6m4
π

}
. (2.2)

It is worth commenting on some aspects of this simplification. In Eq. (2.2), the unknown coun-
terterm which must be determined on the lattice, lππ , is identical to the continuum, unquenched
counterterm at NLO, while in Eq. (2.1) there are additional unknown unphysical terms l′PQ and l′a2 .
These unphysical effects must somehow be removed in the analysis of the lattice data. The expres-
sion Eq. (2.1) depends on the masses of the mixed valence-sea meson, m̃ ju. This mass depends
on the unknown parameter CMix; therefore, this parameter must be determined if one wishes to
extrapolate using Eq. (2.1). The lattice-physical expression Eq. (2.2), however, does not depend on
this unknown parameter; in fact, the lattice-physical expression does not depend in any way on the
mixed valence-sea mesons, and only differs from the continuum, unquenched scattering length by
a known term which has its origin in the unitarity violating flavour neutral propagators. Our goal in
this section is to explain why these simplifications occur, and to what extent we may expect similar
simplifications in other mesonic processes.

To begin, let us consider the structure of the NLO Lagrangian of MAχPT. This Lagrangian
is determined by the symmetry structure of the underlying partially quenched, mixed action form
of QCD, supplemented by the assumption that chiral symmetry is spontaneously broken. Since
the theory has two sectors — the valence and sea sectors — it is worth considering the spurions
arising from these sectors separately. In the valence sector, the quarks satisfy the Ginsparg-Wilson
relation; therefore, they only explicitly violate chiral symmetry through the quark mass term. This
is the same as in continuum, unquenched QCD and therefore the purely valence sector of the
NLO chiral Lagrangian in the mixed action theory is the Gasser-Leutwyler Lagrangian. There
are additional sources of chiral symmetry violation in the sea sector. In particular, for staggered
sea quarks, there are additional spurions associated with taste symmetry violation at finite a. One
might expect that these spurions would lead to a dependent analytic terms in the NLO scattering
amplitudes; however, we will now show that this does not occur.

At NLO in the power counting scheme appropriate to current simulations, the NLO operators
in the chiral Lagrangian only contribute at tree level. Of course, all of the in and out states in a
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simulation involve valence quarks, so for the purposes of an NLO computation one can set the sea
quarks equal to zero in the NLO operators. Since the spurions arising from the sea sector go to zero
when the sea quarks go to zero, we see that at NLO the only relevant spurions are the purely valence
spurions. However, we have seen above that the NLO purely valence Lagrangian coincides with
the Gasser-Leutwyler Lagrangian, so no lattice spacing dependent analytic terms can arise in this
way. An exception to this argument occurs for double-trace operators; however, these operators can
only renormalize the parameters f and B occurring in the LO chiral Lagrangian. In lattice-physical
parameters we eliminate f and B in favour of the decay constant measured on the lattice and the
masses of the particles on the lattice; this removes any lattice spacing dependence arising from
double trace operators. We conclude that there can never be any lattice-spacing dependence arising
from NLO operators in mesonic scattering amplitudes, expressed in lattice-physical parameters, at
next-to-leading order.

Let us consider some simple examples to help make these arguments more concrete. A list
of the NLO operators appearing in the staggered chiral Lagrangian is given in [7]. Each of these
operators also appears in the NLO Lagrangian describing mixed action chiral perturbation theory
with staggered sea quarks, with the rule that the taste matrices ξ of Ref. [7] are only non-zero on the
sea quark subspace; this is equivalent to replacing Σ → PsΣPs, where Ps is the projector to the sea
subspace, in spurions associated with taste violation. For example, one operator in the Lagrangian
is

O1 = a2str
[
∂µΣ

†
∂

µ
Σξ5PsΣ

†Psξ5PsΣPs
]
. (2.3)

We only want to use this operator at tree level, so we should take the sea quarks to vanish; this
sets PsΣPs → 0. Consequently, O1 does not contribute at NLO. For another example, consider the
double trace operator

O2 = a2str
[
∂µΣ

†
∂

µ
Σ
]

str
[
ξ5PsΣ

†Psξ5PsΣPs
]
. (2.4)

In this case, it helps to remember that Σ is given in terms of the matrix of mesons Φ by Σ =
exp[2iΦ/ f ], so when we set the sea quarks to zero the trace over the sea subspace is just a constant,
namely the number of sea quarks Ns. Thus, for the purposes of a next-to-leading order calculation
O2 reduces to

O2 → a2str
[
∂µΣ

†
∂

µ
Σ
]
. (2.5)

Notice that the effect of O2 is to introduce an a2 shift to the leading order parameter f .
A similar argument applies to potential counterterms involving sea quark masses. These are

associated with spurions arising from the sea sector and therefore they may not contribute to scat-
tering amplitudes except to renomalise the parameters f and B; this dependence is removed upon
switching to lattice-physical parameters. However, there is another, perhaps more physical, way
of seeing why the sea quark masses do not contribute to the scattering. To understand this, we
must digress briefly on ππ scattering in SU(3) chiral perturbation theory. Evidently, the strange
quark mass ms is a parameter of SU(3) χPT, and so one might think that the ππ scattering length
includes analytic terms involving ms. However, if we suppose that the strange quark is heavy and
integrate it out, we must then recover SU(2) χPT. Now, chiral symmetry forces any ms dependence
in the analytic terms of the ππ amplitude to occur in the form m2

πm2
K . But the only counterterm in

the on-shell SU(2) scattering amplitude (Eq. (2.2) with ∆̃PQ = 0) is proportional to m4
π . It is not
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possible to absorb m2
πm2

K into m4
π , so there can be no ms dependence in the SU(3) ππ scattering

amplitude. This is indeed the case [18].
Now, let us return to the situation with the valence-sea meson masses. For the purposes of

this discussion, we can ignore the flavour-neutral and ghost sectors, reducing our theory from an
SU(6|3) theory to an SU(6) theory. The sea quark dependence of this SU(6) chiral perturbation
theory is analogous to the ms dependence of SU(3) χPT. A similar decoupling argument tells us
that the sea quark masses cannot affect processes involving the valence sector provided one uses
the analogues of on-shell parameters which are the lattice-physical parameters. We conclude that
there can be no analytic dependence on the sea quark masses in a mesonic scattering amplitude.
These rather abstract arguments have been verified by explicit computation [19].

To conclude this section, we have shown so far that there can be no dependence on the lattice
spacing a or the sea quark masses arising from the NLO operators in the MAχPT Lagrangian at
next-to-leading order in the chiral power counting. However, the scattering amplitudes can still
depend on these quantities through loop corrections from the LO Lagrangian. Note that since there
is no counterterm available to absorb divergences proportional to the lattice spacing or the sea
quark masses; this is a restriction on the form of the loop corrections. In favourable cases this
restriction is strong enough to remove all dependence on the valence-sea mesons as occurred in the
ππ amplitude; this removes all dependence on the unknown parameter CMix. In the next section we
will discuss individual mesonic processes and their structure.

3. Meson meson scattering

In a forthcoming work [19] we present explicit expressions for the KK and Kπ scattering
amplitudes at threshold. Here, we will restrict our comments to the dependence of these amplitudes
on the valence-sea mesons. First, let us introduce some notation. It is useful to quantify the partial
quenching in the mesonic sector with the parameters

∆
2
ju = m̃2

j j −m2
π = 2B(m j −mu)+a2

∆I (3.1)

∆
2
rs = m̃2

rr −m2
ss = 2B(mr −ms)+a2

∆I. (3.2)

It is common to consider quantum theories which have unitary low energy sectors but which violate
unitarity above some cutoff Λ. For example, φ 4 theory with a Pauli-Villars regulator is simply
a theory or a light self-interacting scalar with a heavy ghost field which violates unitarity. The
parameters ∆ which we have introduced are measures of unitarity violation in the low-energy sector
of QCD; when these parameters are zero, for example, the effective theory in Minkowski space has
cuts at the points expected by the optical theorem. From the point of view of the low energy theory,
one would like to tune these parameters to zero to remove as much of the unitarity violation as
possible. 2 Note that this involves tuning the sea quarks to be lighter than the valence quarks; the
high energy theory of quarks is non unitary but this is only seen above the non-perturbative scale
of QCD, when perturbative computations are possible. With these ideas in hand, let us consider the
mesonic scattering amplitudes.

2At higher orders, the ∆ parameters will receive further corrections, but can generally be defined as the difference
between lattice-physical sea-sea meson masses and lattice-physical valence-valence masses.
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The KK scattering amplitude in lattice-physical parameters does not depend on the valence-
sea mesons and hence the unknown parameter CMix. When ∆rs = 0 the expression for the scattering
amplitude is

M = − 4m2
K

f 2
K

+
56m4

K

9(4π)2 f 4
K
− 8m4

K

(4π)2 f 4
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(
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)
+
(
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K
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π
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K
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(
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(
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π
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K
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X
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+
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+
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(4π)2 f 4
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(
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π
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,
m2

K
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+
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(
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, (3.3)

where the functions Fi are known functions [19]. Note that the counterterm `GL(µ) in this expres-
sion is the same as the counterterm in the physical scattering amplitude in on-shell parameters as
we expect from the discussion above.

The Kπ scattering amplitude has a more complicated form than either the ππ or KK scattering
amplitudes. This arises from the fact that the π and K meson masses are not equal, which induces
a net momentum flow through loop propagators in the u-channel. Consequently, in this case the
scattering amplitude does depend on the valence-sea mesons and therefore on CMix. The part of the
Kπ amplitude which depends on the sea quarks F = j, l,r is

Mvs =
1

(4π f 2)2 mKmπ ∑
F

(
CFd log

m̃2
Fd

µ2 −CFs log
m̃2

Fs

µ2 −2mKmπJ(m̃2
Fd)+4mKmπ

)
(3.4)

where

CFd =
4mKm2

π − m̃2
Fd(mK +mπ)

mK −mπ

(3.5)

CFs =
4m2

Kmπ − m̃2
Fs(mK +mπ)

mK −mπ

(3.6)

and

J(m) = 4

√
m2−m2

π

mK −mπ

arctan

[
(mK −mπ)

√
m2−m2

π

m2 +mKmπ −m2
π

]
. (3.7)

Although the amplitude does depend on the valence sea-mesons, it is straightforward to check that
the µ dependence of the amplitude does not depend on the these mesons, in agreement with our
comments above. Of course, the counterterm in the full Kπ amplitude in lattice-physical parameters
is given by the QCD expression in on-shell parameters.

4. Conclusions

It is well-known that simulations with Ginsparg-Wilson valence quarks have no lattice spacing
dependence at tree level of chiral perturbation theory as a consequence of the chiral properties of
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GW quarks. We have shown that this persists at next-to-leading order in the chiral expansion
for mesonic scattering processes, expressed in lattice-physical parameters, in the sense that the
unknown analytic term which must be determined from the lattice, does not depend on the lattice
spacing. In addition, we have shown that there is no unknown analytic terms involving the sea
meson masses. This situation is favourable because it simplifies the extraction of the interesting
physical information from a lattice simulation of these processes: in principle, one need only use
one lattice spacing, for example.

In addition, we have commented on the dependence of the KK and Kπ scattering amplitudes
on the unknown parameter CMix which appears in the leading order chiral Lagrangian describing
mixed action processes. The KK scattering amplitude does not depend on this parameter, but
the Kπ amplitude does; therefore, correct chiral extrapolation of Kπ scattering data requires the
determination of this parameter.
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