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Quantum fluctuations of k-strings: A case study.
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K strings in Yang-Mills theory can be considered as bound states of k elementary confining strings
carrying one unit of colour flux. Current estimates of k-string tension σk are very sensitive to
the leading corrections due to quantum fluctuations of the string. In this study we address this
problem by comparing Polyakov-Polyakov correlators in the fundamental representation (k = 1)
with the corresponding ones with k = 2 in the confining phase of a Z4 gauge theory in three
dimensions. Highly efficient simulation techniques are available in this case. Although the k = 1
Polyakov-Polyakov correlator matches nicely with the expected bosonic string effects up to the
Next-to-Leading-Order, the k = 2 Polyakov-Polyakov correlators show large deviations. This is
an important source of potential systematic errors in the current estimates of σk.
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1. Introduction

Significant effort has been invested recently in studies of the flux tubes induced by color
sources in higher representations of SU(N), built up of j copies of quarks in the fundamental
representation. The long-distance properties of the flux tube should depend only on its N−ality
k ≡ j (modN), since all representations with the same k can be converted into each other by the
emission of an appropriate number of soft gluons. As a consequence, the heavier strings of given
N-ality k are expected to decay into the string with smallest string tension. The corresponding
string is usually referred to as a k-string. If its tension σk for any allowed k satisfies the inequality
σk1+k2 < σk1 +σk2 , the k−string is stable against decay into two strings of lower N-ality.

Stable k strings are expected to belong to the antisymmetric representation with k quarks. This
fact can be simply understood in terms of Casimir scaling, i.e. the hypothesis that the string tension
for a given representation is proportional to the quadratic Casimir operator [1, 2]: within the set of
all representations of N−ality k the antisymmetric one corresponds to the minimum of the Casimir
eigenvalues, suggesting

σ (c)
k = σ

k(N − k)
N −1

. (1.1)

Another competing hypothesis is the sine law:

σ (s)
k = σ

sin(kπ/N)

sin(π/N)
, (1.2)

which has been derived in the large N limit of N = 2 supersymmetric SU(N) gauge theory softly
broken to N = 1 [3], in the M theory description of N = 1 supersymmetric SU(N) gauge theory
[4] and, more recently, in the AdS/CFT correspondence [5]. In some cases this formula is expected
to be exact, while in others the calculated values of σk turn out to be slightly smaller than σ (s)

k .
Lattice calculations in pure SU(N) gauge models for N = 6 [6] and N = 4,5,6,8 [7, 8] in

D = 3 + 1 point to the k−string tensions lying partway between the Casimir scaling and the sine
law, however there is no complete consensus and some dedicated studies favour the sine formula
[9].

These calculations extract the string tensions σk from Polyakov correlators at a finite temper-
ature T assuming the free string prediction [10]

σk(T ) = σk −
(D−2)πT 2

6
+O(T 4) , (1.3)

There is good evidence that this is a very accurate approximation to k = 1 strings in all confining
gauge theories irrespective of the gauge group once T is small enough [6, 11, 12], but there is no
evidence that this can be also extended for k > 1. Actually we show in this work that for k > 1
Eq.(1.3) is not adequate and needs corrections.

Our starting point was the observation that the effective string description, at least in the case
k = 1, is believed to be universal, that is to hold for all confining gauge theories. On the other
hand in order to check the validity of Eq.(1.3) it is important to do a much more accurate finite
volume study than any currently available for SU(N) k−strings. Hence we decided to study a
three-dimensional Z4 gauge theory, which is the simplest model supporting a k = 2 string. Using
a duality transformation1 it is possible to map this model into the symmetric Ashkin-Teller (AT)

1See the talk of S. Lottini at this conference.
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model, where very high precision can be achieved on large lattices, through a non-local cluster
algorithm. The outcome of this analysis is uncontroversial: though at low temperature the tension
of the fundamental string fits nicely with Eq.(1.3) even at Next-to-Leading-Order (NLO), we find
a clear mismatch for the 2-string in the same temperature range, suggesting the need of corrections
to Eq.(1.3).

Theoretically, there is something one can say about the origin of these corrections. k−strings
can be viewed as bound states of k fundamental strings. Accordingly, we expect that besides the
mechanical vibration modes whose quantum contributions yield exactly Eq.(1.3), there should be
breathing modes related to the internal degrees of freedom of the k constituent strings.

2. The effective string model

The infrared description of any confining gauge theory is well described by an effective string
model. A particularly simple string action is the Nambu-Goto one, where the correlation function
of two Polyakov loops at a temperature T = 1/L and at a distance R can be calculated at the NLO
[13, 14], yielding

〈P(0)P†(R)〉 ∝
e−cL−σ RL+ (D−2)π2LE(τ)

1152σ R3 +O(1/R5)

η(τ)D−2 ; τ ≡ iL
2R

; E = 2E4 −E2
2 , (2.1)

where η is the Dedekind eta function and En(τ) are the Eisenstein functions (see e.g. [14] for
detailed definitions). There is strong evidence that at this order this formula is universal, i.e. it
holds in whatever confining gauge theory [15, 16, 17].

3. Algorithm

We work directly in the dual form of the 3d Z4 gauge model, i.e. a symmetric Ashkin-Teller
(AT) model. It is described in terms of two coupled, ferromagnetic, Ising systems through the
two-parameter action

S = −∑
〈xy〉

β (σxσy + τxτy)+α σxσyτxτy, (3.1)

where σx and τx are the Ising variables (σx,τx = ±1). The global Z4 symmetry of the action is
generated by the transformation σ →−τ, τ → σ . An independent Z2 symmetry is generated by
the transformation σ ↔ τ , which is related to the charge conjugation of the corresponding dual
model.

The great advantage of studying the 3d AT model instead of the original 3d Z4 gauge theory is
that a non-local cluster updating algorithm [18] can be used. Of course, in the AT model we have
two spin variables, so it is necessary to extend the original method. The idea is the following: we
take the two site variables σ and τ as if they belonged to two distinct lattices Rσ and Rτ ; we freeze
the lattice Rσ and apply the Swendsen-Wang algorithm to the variables τ so obtaining a new lattice
R′

τ . At this point we freeze the lattice R′
τ and we update the variables σ , and so on.

It is possible to show that in this statistical system the expectation value of the Wilson loop of
the gauge model 〈Wγ〉gauge is given by:

〈Wγ〉gauge =
Z∗

AT
ZAT

,
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where ZAT is the partition function of the AT model and Z∗
AT is that modified by a suitable twist of

the couplings. In particular, in order to determine the 〈Wγ〉gauge in the fundamental representation
(k = 1) it suffices to flip the couplings of σ or τ just in the links orthogonal to an arbitrary surface Σ
encircled by γ = ∂ Σ. Similarly, flipping the signs of both couplings of σ and τ in the same surface,
we get the Wilson loop in the k = 2 representation.

Actually, since we have a model written in terms of Ising variables we can use a very powerful
method to estimate the expectation value of the Wilson loop based only on the topological linking
properties of the Fortuin-Kasteleyn (FK) clusters [19]. For each FK configuration one looks for
paths in the clusters and then applies the following rule:

• Wγ = 1 if there is no path linked with the loop γ or if the winding number modulo 2 is zero,

• Wγ = 0 otherwise.

Note that using such a definition, the value of Wγ does not change if dangling ends or bridges
between closed path are added or removed [20].

In the AT model we apply the above rules separately for the two variables σ and τ , therefore
we have, for each configuration, a value W σ and a value W τ , each of them corresponds to the value
of the Wilson loop in the fundamental representation; the product W σW τ corresponds to the value
of Wilson loop in the k = 2 representation.

The same ideas do apply to measure the Polyakov-Polyakov correlator 〈P(0)P†(R)〉.

4. Numerical results

In this paper we discuss data obtained by simulating the AT model in one point of the parameter
space (α = 0.05,β = 0.207), where our best estimate for string tensions are σ1 = 0.02084(5) and
σ2 = 0.0323(5). In this case, the tension ratio is σ2/σ1 ' 1.55, while the values predicted by the
sine or Casimir scaling for N = 4 and k = 2 are

√
2 ' 1.41 and 4/3, respectively.

We performed 106 measurements for both σ1 and σ2 on a lattice 642 ×L. The value of L has
been determined in such a way that T ' Tc/2 using the relation Tc/

√
σ ' 1.1.

In order to check whether the functional relation (2.1) is an accurate description of the Polyakov-
Polyakov correlator two conditions are needed: the fitting parameters (in particular σk) should be
stable at large R and the estimated value of σk should not depend on T since Eq.(2.1) should ac-
count for the T dependence.

In Fig. 1a it is possible to see the σ f value2 fitted by the Leading-Order (LO) approximation
(i.e. neglecting the E term in (2.1)) in a range [Rmin,18] (where Rmin is the value that appears on the
x-axes); albeit for large values of Rmin it seems to appear a plateau, there are three different values
of σ f , therefore the functional relation (FR) used is not sufficiently accurate to determine it.

Fig. 1b is similar to Fig. 1a, but in this case we have used the same FR to determine the value
of σ f f ; also in this case we can apply the previous considerations and the FR is not correct.

Then, in Fig. 2, we fitted the value of σ f to two different FRs, one obtained by a LO approx-
imation and the other one by NLO; the value of σ f increases significantly and the plateau appears
for a smaller value of Rmin.

2In this Section σ f ≡ σ1 and σ f f ≡ σ2.
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Figure 1: σ f and σ f f vs Rmin for three different T at LO

In order to shed some light on the difficulty in determining a string tension that is free of
systematic errors, in Fig. 3 we plot the values of χ2/d.o. f . for fits which appear in Fig. 2; note that
for Rmin ≥ 11 there is no difference in χ2/d.o. f . between LO and NLO, even if the values of σ f in
the same range (see Fig. 2) are different. It is interesting to note that in NLO case also the value of
χ2/d.o. f . shows a plateau for Rmin ≥ 9, therefore this FR better describes what happens at small
values of R.

Fig. 4 is similar to Fig. 1a but now we use FRs obtained with a NLO approximation; now the
FR is actually correct: the value of σ f is stable also for small values of Rmin and there is only one
value of it for three different values of L (i.e. different values of T ).

Finally, in Fig. 5a and Fig. 5b we interpolate the value of σ f f with NLO approximation with
two different hypotheses: in Fig. 5a the two strings are stuck together and fluctuate as a single
string (we put D=3 in (2.1)); in Fig. 5b the two strings are assumed to fluctuate independently
(this is equivalent to putting D=4 in (2.1)). It is clear that in this case the FR does not describe
accurately σ f f : in both cases a plateau does not appear for σ f f and there are different values for
different values of T . This indicates that the current estimates of σk are affected by systematic
errors.
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β=0.207

Figure 2: σ f vs Rmin for LO and NLO
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Figure 3: χ2
σ f

/d.o.f vs Rmin for LO and NLO
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Figure 4: σ f vs Rmin for three different T at NLO

5. Conclusions

The functional relations which are very accurate to fit data related to fundamental string tension
are not adequate to describe 2-string tension.

An accurate estimate of the k-string tension is rather problematic: from a numerical point of
view our analysis shows that a blind application of the usual formulas for the Polyakov-Polyakov
correlators introduces strong systematic errors. From a theoretical point of view it is necessary to
face the problem of determining the correct functional relation of Polyakov-Polyakov correlator for
higher representations, which is presently unknown.
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