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We introduce a D-dimensional Hamiltonian formalism for the study of Polyakov loop models of
finite temperature gauge theories in D+1 dimensions. Polyakov loop string tensions are obtained
from energy eigenstates of the Hamiltonian. For D=1, the gauge theory reduces to quantum
mechanics on the gauge group; for D>1, the Hamiltonian includes hopping terms that link sites on
the transverse lattice. The deconfined phase is associated with a ground state which breaks Z(N)
symmetry, and Svetitsky- Yaffe critical universality emerges naturally for D>1. A minimal model
is proposed which naturally reproduces approximate Casimir scaling for a range of couplings.
Different classes of potentials lead to different pictures of how confinement is realized. Such
potential energy terms also modify string tension scaling laws, as we demonstrate using two
potentials: one representing the perturbative thermal contributions from gluons, and the other

arising from magnetic monopoles in certain confining supersymmetric theories.
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1. Introduction

There is a substantial body of evidence from lattice simulations [1, 2, 3, 4, 5, 6, 7] that string
tensions in confining gauge theories obey scaling laws. One strong possibility is Casimir scaling,
where the ratio of string tensions obey Og//og = Cogr/Cag With Coi the quadratic Casimir for the
representation R. Another possible scaling law, suggested by string theory, is sine-law scaling,
in which the lowest string tension in each N-ality sector obeys oy/c; = sin(km/N) /sin(7m/N)
[8, 9]. We will explore string tension scaling using a class of Hamiltonian effective models for
Polyakov loops obtained from underlying D + 1-dimensional gauge theories using the same type of
arguments which lead to the Euclidean effective action for Polyakov loops [10]. These models are
defined on a D-dimensional space with one continuous dimension and D — 1 discrete directions.
The general form of the Hamiltonian may be written as

Jr

5 Y rixee+ xr ] (1.1

(Jk)

The first term is the kinetic term for each site j, given by the Casimir operator. Higher-order

H =} [kCyj+Vj]
7

terms may also be present. The second term is the potential on each site, V;, a Z(N)-invariant
class function of the group. The third term is a hopping term between nearest-neighbor sites,
and generalizes to include other representations and longer hops. H acts on wave functionals
which are class functions W [P] of Polyakov loops. The Hilbert space is spanned by products
of characters, with Haar measure providing the natual inner product. The integration over each
Polyakov loop need only be taken over the maximal Abelian subalgebra, so that each Polyakov
loop Pjmay be represented as P; = diag [¢!®'..e!%]. The ground state energy density Ey in the
Hamiltonian formalism is related to the free energy density f and the pressure p via B f = —fBp =
Ey.

A central question we address is naturalness: what class of potentials lead to Casimir scaling
or similar behavior? Many potentials have regions of parameter space which tend to localize wave
functions around N degenerate minima related by Z(N) symmetry. In such cases, Z(N) symmetry
can be maintained in the confined phase by tunneling. If we have an approximate wave function
@, (P) which is localized near one of the degenerate minima, we can construct a set of N wave
functions as

¥, (P) = \/INNZ; [62m'jk/Nq)0 (e—zmjk//vpﬂ (1.2)
-

It is easy to show that the string tension splitting in this case is determined by tunneling, giving a
scaling law of the form oy /o) = sin® (kzr/N) /sin? (x/N). Another, complementary limit localizes
the wave function around the unique set of eigenvalues left invariant by Z(N) symmetry. For SU(3),
this gives the matrix Py = diag [l,ez’”/ 3 e/ 3]. For any representation R with non-zero N-ality,
xr (Py) =0, so a configuration of Polyakov loops of the form g(x)Pyg~!(x) can be said to confine.
These limiting behaviors represent the extremes of the potentials we discuss below.

2. Mean Field Theory

In a Hamiltonian formalism, mean field theory is equivalent to the Hartree approximation. We
assume that the ground wave function is a product of uncorrelated site wave functions: W[P] =
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Figure 1: Lattice geometry for Hamiltonian formalism.

[Tvy; (Pj). Minimizing the energy and requiring self-consistency gives the Hamiltonian H; for the
site j:
Jrd . .
Hj = KCoj+ V= —= [2r; () + 5 ()] @1

In the confined phase, Z(N) symmetry requires (xr) = 0, and we are left with a Hamiltonian for
Z(N)-invariant quantum mechniacs on the group manifold:

[KCaj+ V| Win (Pj) = EnWjn (P;) (2.2)

As a first approximation, we associate the eigenvalues with string tensions via E,, — Ey = 0,,/T .

The Hamiltonian formalism is capable of reproducing the behavior of the deconfinement
phase transition revealed by familiar models based on an effective action [10]. In the case of
SU(2), assume for simplicity a potential V; = —hyxa; and a trial wave function of the form
Woj = V1 —A2—B?>+Ayj+ Bxrj where A and B can be taken to be real. The order parame-
ter for the deconfinement transition is the expected value of the Polyakov loop in the fundamental
representation () =m(A,B) =2B (A +V1-A%— Bz) . The ground state energy density is given
by the minimum of

Eyur = K (CAA> +CpB?) — (D — 1) Jpm?* (A, B) — hy (A* +2A + B?) (2.3)

The low-temperature, confined phase occurs when the term in E,,, proportional to k¥ dominates,
and E,,is minimized when B = 0. If h, is non-zero, A will be non-zero, and () will have a
non-zero expectation value at all temperatures. As the temperature grows, the hopping parameter
Jr grows as well. When the coefficient of B? in E,,, becomes negative, there is a second-order
phase transition to the deconfined phase where B # 0 and Z(2) symmetry is spontaneously broken.
Note that the /4 potential term causes the critical temperature to change, but not the order of the
transition.

In the case of SU (3), we take a trial wave function of the form yy; = /1 —A? —2B*B+Axa;+
B*)rj+ By ; and the order parameter is given by (xr;) =m(A,B) = 2B (A +v1-A2— 23*B> +

(B*)z. The variational estimate of the ground state energy density is given by
Evar = & (CAA> +CpB*) — (D — 1) Jr [m (A, B)|* — ha (24> +2A 4 2B"B) (2.4)

The new feature in SU (3)is the occurrence of a term proportional to J (B3 +B*3). Such a term is
permitted by Z(3) symmetry and makes the deconfining transition first order.
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Figure 2: String tension ratios for thermal gluon potential.
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Figure 3: Effective Masses for thermal gluon potential.

3. Potentials

Particle loop effects contribute to the potential terms in the effective Hamiltonian. The one-
loop contribution of the massless gauge bosons to V' is
Y (P G.1)
o XA .
n=1
with A = 27*/x2. This potential is minimized at the elements of Z(N), and yields the familiar
black-body formula for the free energy density at those points. We have calculated the string



String tension scaling in models of the confined phase Michael C. Ogilvie

o0 — Casimir Scaling (V=0)
[ Monopole b=1 A/k=1
r — Monopole b=1 AM/k=10
15 B
10 —
st
0 I | 1 1 1 1
0 10 20 30 40
Figure 4: String tension ratios for W at B = 1.
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Figure 5: String tension ratios for W at B = 10.

tensions for this potential by diagonalizing the quantum-mechanical SU (3) Hamiltonian on a finite
basis, using as a basis all representations up to eight columns wide in the Young tableaux. In figure
2 we compare the sorted string tension ratios og/0p for A /k = 1 with Casimir scaling. Although
there are systematic deviations, they are most apparent for larger representations. We can define
an effective mass associated with the exponential decay of each representation as a function of
the scaled time T = (E| — Ep)t. Figure 3 shows substantial mixing between representations, as
evidenced by the rapid approach of effective masses to the lowest mass.

Topological excitations also contribute to the potential. For example, the one-loop calculation
in SU(2) of caloron contributions to the functional integral in SU(2) at finite temperature indicates
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Figure 6: Effective Mass Ratios at b = 1.
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Figure 7: Effective Mass Ratios at b = 10

an instability of the deconfined plasma phase at sufficiently low temperature [11]. In certain su-
persymmetric SU(N) gauge theories on S! x R?, confinement can be understoood as arising from
magnetic monopole effects [11, 12]. The superpotential W, regarded as a function of the Polyakov
loop eigenvalues, is the affine Toda potential, and is minimized at Py. In the case of SU(3), the
superpotential can be written in the form

W = A |e061=6) 4 ,—b(62-65) | ,—b(21—61+63) (3.2)

where b = 47 /g*. The eigenvalues are taken to lie in the first Weyl chamber, where the eigenvalues
are ordered as 6; > 6, > 6. We will use W as an example of a potential that is minimized at Fy.



String tension scaling in models of the confined phase Michael C. Ogilvie

Figure 4 shows that the deviation from Casimir scaling increases with the strength of the po-
tential A as expected. In comparison, figure 5 indicates that at fixed A, Casimir scaling is recovered
in the limit of large b. As b increases, V is effectively zero except near the boundary between Weyl
chambers, where two or more Polyakov loop eigenvalues coincide. Because Haar measure leads to
eigenvalue repulsion, the wave function naturally vanishes when two eigenvalues coincide, and for
large b, W has little effect on the wave functions.

The effective masses, shown in figures 6 and 7, show longer plateaus at larger b. This is par-
ticularly noticeable for smaller representations. This is consistent with the wave functions for large
b approaching the V = 0 wave functions. Thus increasing b decreases mixing between representa-
tions of the same N-ality.
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