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The kaonB-parameterBx, parameterizes the hadronic contributiorkid— K° mixing. It is
crucial in extracting information about the CKM matrix ugiexperimental measurements of the
neutral kaon system. The dominant source of error in canstgathe CKM matrix using<® K°
mixing currently comes from the lattice determinatiorBaf.

Current calculations dBx use either domain-wall quarks [1, 2] or improved staggensatkp
[3, 4], both of which have their advantages and disadvastager domain-wall quarks, the pres-
ence of good chiral symmetry significantly reduces the &fe€ operator mixing and thus makes
the renormalization procedure simpler, but the numerioat currently makes it difficult to reach
very light quark masses. For staggered quarks, the case apffosite: One can reach rather light
quark masses (down te ms/10), yet the appearance of wrong-taste operators makesmwaliza-
tion complicated. Additionally, the use of the “fourth-tdack” is not without controversy due to
taste violations at finita. Although the issue regarding the validity of this “fouribwt trick” is
far from resolved [6, 7, 8, 9, 10], there are strong indigadithat this technique is valid, and as
such we assume its validity in this work. For more detailstenfourth-root trick, refer to Sharpe’s
plenary talk [5] and references therein. There have beererum results using staggered quarks
that show excellent agreement with experimental results12, 13].

To make use of the advantages of both techniques while biygaibe disadvantages, one can
adopt a “mixed action” approach by using valence domair-w#rks on top of a staggered sea.
By using staggered sea quarks and domain-wall valence sjoakk can better approach the chiral
regime in the sea sector while minimizing operator mixing allowing the use of nonperturba-
tive renormalization. Since the MILC staggered latticeth2i+1 flavors of dynamical quarks are
publicly available and offer a number of quark masses aniddaspacings [14, 15], mixed-action
simulations can be performed at the same cost as quencheadrdarall simulations. Mixed-action
simulations have already been successfully used to studstijes of interest to nuclear physics
(see, for example, Refs. [16, 17]); we expect that a similathod can be used to calculate the
weak matrix elemenBg.

We present here a summary of our results for calculaBingn mixed-action chiral perturba-
tion theory PT) with domain-wall valence and staggered sea quarks (pletendescription of
the calculation 0By with this approach can be found in Ref. [19]). The results vesent here are
applicable to simulations with purely Ginsparg-Wilson {@-valence quarks with staggered sea
quarks, however a replacementrof? — m‘@ + myes, with mes the residual mass, will make our
results relevant for domain-wall quarks with a staggered se

The theoretical basis for mixed-actidfPT was first presented in Ref. [18]. We consider a
partially quenched theory with 2 G-W valence quarkg/ and 3 staggered sea quarksd, and
9).! Each staggered sea quark comes in four tastes, and each GWe/guark has a correspond-
ing bosonic ghost partner to cancel its contribution to Id@grams. The mixed action theory has
an approximat&U(14|2), ® SU(14|2)r graded chiral symmetry which becomes exact in the com-
bined massless quark and continuum limit. In analogy witlbQ@e assume that chiral symmetry
spontaneously breaks to its vector subgroup,

SU(14)2), ® SU(1412)g — SU(14]2)y . (1)

1In Ref. [19], the more general case of an arbitrary numbeeafand valence quarks is discussed.
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and gives rise to 255 piorfsThese pions can be packaged into the nonlinear Xieldexp(2i®/ ),
where® contains the pions antlis normalized such that; ~ 131 MeV. Under chiral symmetry
transformationsy — LZRT, with L, R€ SU(14/2), . We use the standard power-counting scheme:
€ ~ p? ~ my ~ @2, so the lowest-order; (), mixed action chiral Lagrangian is
2 L t st g2 /

£ = §Str(du2c9u2 )—TStr(ZM + M) +a (Us+ Us+ W) )
where Str indicates a graded supertrace over both flavoraatelindices angd is an undetermined
dimensionful parameterZs and %< comprise the well-known staggered potential and come from
taste-symmetry breaking in the sea quark sector [20],74nds a taste-symmetry breaking term
which mixes the sea and valence sectors [18]. Except foradh&ibutions fromsto the tree-level

mass splittings for the staggered mesons, we will not neesktthree terms in the Lagrangian.
The leading-order expression for the masses of the mesens ar

2 !
(nty)zzu(rm—i_n‘)’)? (mlf?’,t> :“(mf+mf/)+az ff , (3)

wheref, f’ are both sea quarks, aﬂqﬁf/ depends on the tastec {P,V,A,T,|} of the meson (with
A,fjf/ = 0). Pions with one sea and one valence quark do not appeads icetloulation.

The spurion analysis fdy in the mixed action case is similar to that in the continuudy 2].
Recall that(K°| 0k |K°) = &m? f2B, with, at the quark level

Ok = [YYu(1— v6)X|[Yyu(1— y5)X] . 4)

At leading order, we find that the chiral operator has prégibe same form as the continuum [19]

X = %Bof"' Y St{zd,Z RxSt{zd,5 Ry, (5)
[

with Ry projecting out a valence kaon aBg an unknown parameter (the valueB¥ at tree level).
This operator is of ordef(p?), and so we must include possible termgxiing) or &(a?). Terms
involving the mass are not allowed as they would not give tisehiral operators transforming
correctly under the symmetry group. There could in prireipé terms that violate the taste sym-
metry and thus arise @t(a?), but a simple analysis shows that these do not appear atrttés io
the chiral expansion [19]. Thuﬁ,’,)(( is the only operator which gives rise to one-loop non-amalyt
terms forBk.

Next-to-leading order analytic contributions By come from tree-level matrix elements of
NLO, or €'(£2?), operators. There are many such operators in the mixeoractiiral Lagrangian
which we will not enumerate here, since it is not necessaiseparate them in fits to numerical
lattice data. Using symmetry arguments, we can restrictdim of the analytic terms. Following
Ref. [22], we find there are only four possible terms that qarear:

analytic
(E—E) = c1a’my, -+ camiy, + ca(mk — mg)? + camie, (MG, + B, + m&,) - ©)

2We use the term “pion” to refer to any of the pseudo-Goldstoreons.
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The details of the calculation as well as the most generallteefor Bx can be found in
Ref. [19]. Here we will just show the expression for 2+1 @lyi quenched theory in which
m, = My # Mg in the sea sector. Above are the relevant analytic termsthent-loop expression is

By loop 1
- =14+
Bo 162 fxzy y

mi m%——{ze ) (mEy+m?) R <{MXY.}{u.[2}>}],(7)

—2mf 1" (M) — £(mG) (M + 1) — £(mig) (i + i)

omg oy

with
M) = {memy,my d. {12} = {mp,,mg ) . 8)

The chiral logarithms in a finite volume [23] are defined as

Ka(|F[mL)
7]

((m?) = m? (InA—anréfV(mL)) , &FV(mL) mL ; , (9)

X

where the difference between the finite and infinite volunseltés given byd! (mL), andK; is a
modified Bessel function of imaginary argument. For the itdimolume result, one seg = 0. In
Eq. (8) the prime indicates derivative with respect to tlguarent. Finally, the residues in Eq. (7)
are defined to be

n,K I—la 1(“a mZ)
R ({m},{u}) = m (10)

The definition of the “full QCD” point, where the valence are@hgions have the same mass,
is ambiguous in the mixed theory since there are multiplagia the sea sector one could match
the valence masses to. For the subsequent numerical d@tuse match the pseudoscalar taste
sea pion to the valence pion, and for simplicity we scale thlence quark masses so that they
are numerically the same as the sea quark masses at the DlpQiGt. This is to say that while
the input valence light mass i85, we plot our results as a function of? = %(n%al + Myes)
for ease of comparison. One merely needs to invert this exme to determine what the input
domain-wall mass would be in this case.

The NLO expression foBk in a mixed action theory with 2 1 flavors of sea quarks is given
in Eq. (7). Discretization errors lead to two contributionshe shift in the mass-squared of the
taste-singlet sea-sea meson that appears in the 1-loagndiscted contribution, and the analytic
term proportional t@?. The new mixed-action parameter (coming fré# in the mixed-action
Lagrangian) does not arise in the NLO expressionBgr Since the taste-singlet splitting has
already been measured on the MILC lattices [15], this leavdg one unknown parameter. We
stress, however, that this parameter does not only come thsta violations, and a similar term
would appear in a purely domain-wall expression.

For our numerical analysis, we will neglegt, since we do not know the value of thig(a?)
term. We choose to study discretization errors using thamaters on tha ~ 0.125 fm “coarse"
MILC lattices since taste violations will be more pronouthtiean on the finer lattices. In particular,
we use the parameters of the ensemble with the lightest uglewvd sea quark masses on the
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smaller volume I(/a = 20); this ensemble has a light quark massuwf°®= 0.007 and a strange
quark mass o&nt®@= 0.05.

In order to estimate the size of discretization errorByn we calculate the percent difference
between the 1-loop contributions By with and without taste-breaking:

Bi—loop(mvak a2A\ )— Bi—loop(mvak 0)
] :
Bi OOD(mlvaI, 0)

In this expression we have set the heavier valence bare guask to be equal to the sea strange
bare quark mass so thatis a function of the light valence quark mas#’,a', and the taste-singlet
splitting, a%A,. The taste singlet meson is the heaviest of all of the steggsea-sea mesons,
anda?l is approximately(450 MeV)? on the coarse lattices. Because the only sea-sea mesons
that contribute to th®x at 1-loop in the mixed action theory are taste-singlets, lnige splitting
makes the effective sea quark mass considerably largerah@minal light sea quark mass of
ms/10 orms/7 would suggest. On the fine lattices this splitting is muds |dy a factor of 9, so it

is necessary to approach the continuum limit in order to@goghr the chiral limit in the sea sector.

Fig. 1(a) shows the percent difference, Eq. (11), as a fonatf valence quark mass, wighA,
set to be the value measured in MILC simulations on the cdatees [15]. In this plot the star is
the full QCD point defined by setting the valence and sea goeagses to be equal (as discussed
above), while the vertical line shows the location of the gibgl value of the average up/down
quark massm,physm ms/27. For larger valence light massegsrapidly vanishes as expected, since
the difference between the masses of the valence and seasnedloultimately be neglible for
sufficiently large quark masses. At quark masses near owligle full QCD point,n begins to
diverge rapidly asn,"a' — 0. Note, however, that this does not begin to happen untdvib¢he
physical mass, so in the region of interest the error comiom ftaste violations is never higher
than 05%.

We now repeat the above analysis, focussing on errors due finite size of the lattice. Such
finite volume effects can be quite noticeable at the lighgdeatquark masses available on the MILC
configurations. Since partially quenched pathologiesrbegiappear whem?@ < me2 and the
relevant sea mass is that of the (rather large) taste-sipigle mass, these finite volume effects are
larger than one would naively expect as one decreases thieceainass.

In analogy with Eq. (11), we defingry to be the percent difference between the 1-loop
contribution toBy in the mixed theory at finite volume ari8k in the mixed theory at infinite
volume, both including discretization errors:

(11)

r’:

Bl—loop,FV(mlva|7a2A| ’ L) N B]k_IOOp(mval,azAl) .

val 2 _ =K
r’FV(m| ’aA|)_ Bi—loop(mlval’azAl) (12)

We evaluate the above expression at a spatial lattice size-020; the remaining parameters are
the same as in the previous analyisis. In Fig. 1(b) we showctwees — the dashed curve shows the
percent difference in Eq. (12) for the continuum Iimjt;v(m"a',O), while the solid curve shows
the same percent difference wih/, set to its value on the coarse MILC lattices. Again, the star
corresponds to the full QCD point and the vertical line iadigs the physical light quark mass.
One can see that, for the full QCD point and larger massesgriioe associated with finite
volume effects, while not negligible, is quite small,@{1%) or less. It is when we drop below the
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Figurel: (a)n as a function of valence light mass. @py as a function of valence light mass. The dashed
line is forA; = 0 and the solid line is with this splitting set to the value ba MILC coarse lattices.
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full QCD point where the difference between the continuurh famte a cases becomes rather large.
The error for the finitex case becomes unreasonably large almost immediately uposading the
valence mass below the full QCD point, up to 15% at the phygioat. This could be a source of
worry theoretically, but practically this is not a problem. actual simulations, as the masses are
lowered, the volume eventually increases, so as to alwaydathe right of the “wall” in Fig. 1(b).
For example, the MILC ensemble with a light sea quark masspt®= 0.005 has a spatial length
of L = 24 as opposed to 20 at the heavier masses. Thus, as long @amaieg in the region where
the errors are small (near or above the full QCD point in tlg) pthey can easily be accounted for
and should not introduce large systematic errors.

In this work we have calculated the expression Barin a mixed action lattice theory with
Ginsparg-Wilson valence quarks and staggered sea quarextdgo-leading order in chiral per-
turbation theory. We have discussed in some detail how teneixthe continuum calculation to
the mixed action case, and we have provided expressions 2stlgpartially quenched theory
(my = my # mg), both of which reduce to the corresponding partially qirecQCD expressions
in the continuum limit. We have also performed a numericallysis to study the taste-violating
and finite volume effects and found that the errors for botthete effects are small enough to
be under control in a numerical simulation. This calculatghows that a lattice calculation of
Bk using a mixed action approach is rather similar to a puretpaio-wall approach, and as in the
domain-wall case, the expression B8 in chiral perturbation theory is strikingly similar to the
continuum.
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