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The kaonB-parameter,BK, parameterizes the hadronic contribution toK0−K
0

mixing. It is
crucial in extracting information about the CKM matrix using experimental measurements of the
neutral kaon system. The dominant source of error in constraining the CKM matrix usingK0−K

0

mixing currently comes from the lattice determination ofBK .

Current calculations ofBK use either domain-wall quarks [1, 2] or improved staggered quarks
[3, 4], both of which have their advantages and disadvantages. For domain-wall quarks, the pres-
ence of good chiral symmetry significantly reduces the effects of operator mixing and thus makes
the renormalization procedure simpler, but the numerical cost currently makes it difficult to reach
very light quark masses. For staggered quarks, the case is the opposite: One can reach rather light
quark masses (down to≈ ms/10), yet the appearance of wrong-taste operators makes renormaliza-
tion complicated. Additionally, the use of the “fourth-root trick” is not without controversy due to
taste violations at finitea. Although the issue regarding the validity of this “fourth-root trick” is
far from resolved [6, 7, 8, 9, 10], there are strong indications that this technique is valid, and as
such we assume its validity in this work. For more details on the fourth-root trick, refer to Sharpe’s
plenary talk [5] and references therein. There have been numerous results using staggered quarks
that show excellent agreement with experimental results [11, 12, 13].

To make use of the advantages of both techniques while bypassing the disadvantages, one can
adopt a “mixed action” approach by using valence domain-wall quarks on top of a staggered sea.
By using staggered sea quarks and domain-wall valence quarks one can better approach the chiral
regime in the sea sector while minimizing operator mixing and allowing the use of nonperturba-
tive renormalization. Since the MILC staggered lattices with 2+1 flavors of dynamical quarks are
publicly available and offer a number of quark masses and lattice spacings [14, 15], mixed-action
simulations can be performed at the same cost as quenched domain-wall simulations. Mixed-action
simulations have already been successfully used to study quantities of interest to nuclear physics
(see, for example, Refs. [16, 17]); we expect that a similar method can be used to calculate the
weak matrix elementBK.

We present here a summary of our results for calculatingBK in mixed-action chiral perturba-
tion theory (χPT) with domain-wall valence and staggered sea quarks (a complete description of
the calculation ofBK with this approach can be found in Ref. [19]). The results we present here are
applicable to simulations with purely Ginsparg-Wilson (G-W) valence quarks with staggered sea
quarks, however a replacement ofmval → mval + mres, with mres the residual mass, will make our
results relevant for domain-wall quarks with a staggered sea.

The theoretical basis for mixed-actionχPT was first presented in Ref. [18]. We consider a
partially quenched theory with 2 G-W valence quarks (x,y) and 3 staggered sea quarks (u,d, and
s).1 Each staggered sea quark comes in four tastes, and each G-W valence quark has a correspond-
ing bosonic ghost partner to cancel its contribution to loopdiagrams. The mixed action theory has
an approximateSU(14|2)L ⊗SU(14|2)R graded chiral symmetry which becomes exact in the com-
bined massless quark and continuum limit. In analogy with QCD, we assume that chiral symmetry
spontaneously breaks to its vector subgroup,

SU(14|2)L ⊗SU(14|2)R → SU(14|2)V . (1)

1In Ref. [19], the more general case of an arbitrary number of sea and valence quarks is discussed.
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and gives rise to 255 pions.2 These pions can be packaged into the nonlinear fieldΣ = exp(2iΦ/ f ),
whereΦ contains the pions andf is normalized such thatfπ ≈ 131MeV. Under chiral symmetry
transformations,Σ → LΣR†, with L,R∈SU(14|2)L,R. We use the standard power-counting scheme:
ε ∼ p2 ∼ mq ∼ a2, so the lowest-order,O(ε), mixed action chiral Lagrangian is

L =
f 2

8
Str
(

∂µΣ∂µΣ†)−
µ f 2

4
Str
(

ΣM†+MΣ†)+a2(
US+U

′
S +UV

)

, (2)

where Str indicates a graded supertrace over both flavor and taste indices andµ is an undetermined
dimensionful parameter.US andU ′

S comprise the well-known staggered potential and come from
taste-symmetry breaking in the sea quark sector [20], andUV is a taste-symmetry breaking term
which mixes the sea and valence sectors [18]. Except for the contributions fromUS to the tree-level
mass splittings for the staggered mesons, we will not need these three terms in the Lagrangian.

The leading-order expression for the masses of the mesons are

(

mLO
xy

)2
= µ(mx +my) ,

(

mLO
f f ′,t

)2
= µ(mf +mf ′)+a2∆ f f ′

t , (3)

where f , f ′ are both sea quarks, and∆ f f ′
t depends on the tastet ∈ {P,V,A,T, I} of the meson (with

∆ f f ′

P = 0). Pions with one sea and one valence quark do not appear in this calculation.
The spurion analysis forBK in the mixed action case is similar to that in the continuum [21, 22].

Recall that〈K
0
|OK |K0〉 = 8

3m2
K f 2

KBK, with, at the quark level

OK = [yγµ(1− γ5)x][yγµ(1− γ5)x] . (4)

At leading order, we find that the chiral operator has precisely the same form as the continuum [19]

O
χ
K =

2
3

B0 f 4∑
µ

Str[Σ∂µΣ†Pyx]Str[Σ∂µΣ†Pyx] , (5)

with Pyx projecting out a valence kaon andB0 an unknown parameter (the value ofBK at tree level).
This operator is of orderO(p2), and so we must include possible terms ofO(mq) or O(a2). Terms
involving the mass are not allowed as they would not give riseto chiral operators transforming
correctly under the symmetry group. There could in principle be terms that violate the taste sym-
metry and thus arise atO(a2), but a simple analysis shows that these do not appear at this order in
the chiral expansion [19]. Thus,O

χ
K is the only operator which gives rise to one-loop non-analytic

terms forBK .
Next-to-leading order analytic contributions toBK come from tree-level matrix elements of

NLO, or O(ε2), operators. There are many such operators in the mixed-action chiral Lagrangian
which we will not enumerate here, since it is not necessary toseparate them in fits to numerical
lattice data. Using symmetry arguments, we can restrict theform of the analytic terms. Following
Ref. [22], we find there are only four possible terms that can appear:

(

BK

B0

)analytic

= c1a2m2
xy+c2m4

xy+c3(m
2
X −m2

Y)2 +c4m2
xy(m

2
UP

+m2
DP

+m2
SP

) . (6)

2We use the term “pion” to refer to any of the pseudo-Goldstonebosons.

3



P
o
S
(
L
A
T
2
0
0
6
)
0
7
9

Mixing kaons with mixed action chiral perturbation theory C. Aubin

The details of the calculation as well as the most general results for BK can be found in
Ref. [19]. Here we will just show the expression for 2+1 partially quenched theory in which
mu = md 6= ms in the sea sector. Above are the relevant analytic terms, andthe 1-loop expression is

(

BK

B0

)loop

= 1+
1

16π2 f 2
xym2

xy

[

−2m4
xy`

′(m2
xy)− `(m2

X)(m2
X +m2

xy)− `(m2
Y)(m2

Y +m2
xy)

+
1
3
(m2

X −m2
Y)2 ∂

∂m2
X

∂
∂m2

Y

{

∑
j

`(m2
j )
(

m2
xy+m2

j

)

R[3,2]
j ({M[3]

XY,I};{µ [2]
I })

}]

, (7)

with

{M[3]
XY,I} ≡ {mX,mY,mηI }, {µ [2]

I } ≡ {mDI ,mSI } . (8)

The chiral logarithms in a finite volume [23] are defined as

`(m2) = m2

(

ln
m2

Λ2
χ

+ δ FV
1 (mL)

)

, δ FV
1 (mL) =

4
mL ∑

~r 6=0

K1(|~r|mL)

|~r|
, (9)

where the difference between the finite and infinite volume result is given byδ FV
1 (mL), andK1 is a

modified Bessel function of imaginary argument. For the infinite volume result, one setsδ1 = 0. In
Eq. (8) the prime indicates derivative with respect to the argument. Finally, the residues in Eq. (7)
are defined to be

R[n,k]
j ({m},{µ}) ≡

∏k
a=1(µ2

a −m2
j )

∏i 6= j(m2
i −m2

j )
. (10)

The definition of the “full QCD” point, where the valence and sea pions have the same mass,
is ambiguous in the mixed theory since there are multiple pions in the sea sector one could match
the valence masses to. For the subsequent numerical discussion, we match the pseudoscalar taste
sea pion to the valence pion, and for simplicity we scale the valence quark masses so that they
are numerically the same as the sea quark masses at the full QCD point. This is to say that while
the input valence light mass ismval

0 , we plot our results as a function ofmval
l = ZDW

m

Zstag
m

(mval
0 + mres)

for ease of comparison. One merely needs to invert this expression to determine what the input
domain-wall mass would be in this case.

The NLO expression forBK in a mixed action theory with 2+1 flavors of sea quarks is given
in Eq. (7). Discretization errors lead to two contributions– the shift in the mass-squared of the
taste-singlet sea-sea meson that appears in the 1-loop disconnected contribution, and the analytic
term proportional toa2. The new mixed-action parameter (coming fromUV in the mixed-action
Lagrangian) does not arise in the NLO expression forBK . Since the taste-singlet splitting has
already been measured on the MILC lattices [15], this leavesonly one unknown parameter. We
stress, however, that this parameter does not only come fromtaste violations, and a similar term
would appear in a purely domain-wall expression.

For our numerical analysis, we will neglectc1, since we do not know the value of thisO(a2)

term. We choose to study discretization errors using the parameters on thea≈ 0.125 fm “coarse"
MILC lattices since taste violations will be more pronounced than on the finer lattices. In particular,
we use the parameters of the ensemble with the lightest up anddown sea quark masses on the
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smaller volume (L/a = 20); this ensemble has a light quark mass ofamsea
l = 0.007 and a strange

quark mass ofamsea
s = 0.05.

In order to estimate the size of discretization errors inBK , we calculate the percent difference
between the 1-loop contributions toBK with and without taste-breaking:

η =
B1−loop

K (mval
l ,a2∆I)−B1−loop

K (mval
l ,0)

B1−loop
K (mval

l ,0)
. (11)

In this expression we have set the heavier valence bare quarkmass to be equal to the sea strange
bare quark mass so thatη is a function of the light valence quark mass,mval

l , and the taste-singlet
splitting, a2∆I . The taste singlet meson is the heaviest of all of the staggered sea-sea mesons,
anda2∆I is approximately(450 MeV)2 on the coarse lattices. Because the only sea-sea mesons
that contribute to theBK at 1-loop in the mixed action theory are taste-singlets, this large splitting
makes the effective sea quark mass considerably larger thana nominal light sea quark mass of
ms/10 orms/7 would suggest. On the fine lattices this splitting is much less, by a factor of 9, so it
is necessary to approach the continuum limit in order to approach the chiral limit in the sea sector.

Fig. 1(a) shows the percent difference, Eq. (11), as a function of valence quark mass, witha2∆I

set to be the value measured in MILC simulations on the coarselattices [15]. In this plot the star is
the full QCD point defined by setting the valence and sea quarkmasses to be equal (as discussed
above), while the vertical line shows the location of the physical value of the average up/down
quark mass,mphys

l ≈ ms/27. For larger valence light masses,η rapidly vanishes as expected, since
the difference between the masses of the valence and sea mesons will ultimately be neglible for
sufficiently large quark masses. At quark masses near or below the full QCD point,η begins to
diverge rapidly asmval

l → 0. Note, however, that this does not begin to happen until below the
physical mass, so in the region of interest the error coming from taste violations is never higher
than 0.5%.

We now repeat the above analysis, focussing on errors due to the finite size of the lattice. Such
finite volume effects can be quite noticeable at the lightestsea quark masses available on the MILC
configurations. Since partially quenched pathologies begin to appear whenmval

π < msea
π , and the

relevant sea mass is that of the (rather large) taste-singlet pion mass, these finite volume effects are
larger than one would naively expect as one decreases the valence mass.

In analogy with Eq. (11), we defineηFV to be the percent difference between the 1-loop
contribution toBK in the mixed theory at finite volume andBK in the mixed theory at infinite
volume, both including discretization errors:

ηFV(mval
l ,a2∆I) =

B1−loop,FV
K (mval

l ,a2∆I ,L)−B1−loop
K (mval

l ,a2∆I)

B1−loop
K (mval

l ,a2∆I )
. (12)

We evaluate the above expression at a spatial lattice size ofL = 20; the remaining parameters are
the same as in the previous analyisis. In Fig. 1(b) we show twocurves – the dashed curve shows the
percent difference in Eq. (12) for the continuum limit,ηFV(mval

l ,0), while the solid curve shows
the same percent difference witha2∆I set to its value on the coarse MILC lattices. Again, the star
corresponds to the full QCD point and the vertical line indicates the physical light quark mass.

One can see that, for the full QCD point and larger masses, theerror associated with finite
volume effects, while not negligible, is quite small, ofO(1%) or less. It is when we drop below the
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Figure 1: (a)η as a function of valence light mass. (b)ηFV as a function of valence light mass. The dashed
line is for∆I = 0 and the solid line is with this splitting set to the value on the MILC coarse lattices.

full QCD point where the difference between the continuum and finitea cases becomes rather large.
The error for the finitea case becomes unreasonably large almost immediately upon decreasing the
valence mass below the full QCD point, up to 15% at the physical point. This could be a source of
worry theoretically, but practically this is not a problem.In actual simulations, as the masses are
lowered, the volume eventually increases, so as to always stay to the right of the “wall” in Fig. 1(b).
For example, the MILC ensemble with a light sea quark mass ofamsea

l = 0.005 has a spatial length
of L = 24 as opposed to 20 at the heavier masses. Thus, as long as one remains in the region where
the errors are small (near or above the full QCD point in the plot), they can easily be accounted for
and should not introduce large systematic errors.

In this work we have calculated the expression forBK in a mixed action lattice theory with
Ginsparg-Wilson valence quarks and staggered sea quarks tonext-to-leading order in chiral per-
turbation theory. We have discussed in some detail how to extend the continuum calculation to
the mixed action case, and we have provided expressions for a2+1 partially quenched theory
(mu = md 6= ms), both of which reduce to the corresponding partially quenched QCD expressions
in the continuum limit. We have also performed a numerical analysis to study the taste-violating
and finite volume effects and found that the errors for both ofthese effects are small enough to
be under control in a numerical simulation. This calculation shows that a lattice calculation of
BK using a mixed action approach is rather similar to a purely domain-wall approach, and as in the
domain-wall case, the expression forBK in chiral perturbation theory is strikingly similar to the
continuum.

References

[1] S. D. Cohen,Preliminary study of BK on 2+1 flavor DWF lattices from QCDOC, PoSLAT2005
(2005) 346, [hep-lat/0602020].

[2] S. D. Cohen. these proceedings.

[3] HPQCD Collaboration, E. Gamizet al., Unquenched determination of the kaon parameter BK from
improved staggered fermions, hep-lat/0603023.

6



P
o
S
(
L
A
T
2
0
0
6
)
0
7
9

Mixing kaons with mixed action chiral perturbation theory C. Aubin

[4] J. Kim, T. Bae, and W. Lee,Calculating BK using a mixed action, PoSLAT2005 (2005) 338,
[hep-lat/0510007].

[5] S. R. Sharpe. these proceedings.

[6] M. Creutz,Flavor extrapolations and staggered fermions, hep-lat/0603020.

[7] C. Bernard, M. Golterman, Y. Shamir, and S. R. Sharpe,Comment on ’Flavor extrapolations and
staggered fermions’, hep-lat/0603027.

[8] C. Bernard, M. Golterman, and Y. Shamir,Observations on staggered fermions at non-zero lattice
spacing, hep-lat/0604017.

[9] Y. Shamir,Renormalization-group analysis of the validity of staggered-fermion qcd with the
fourth-root recipe, hep-lat/0607007.

[10] C. Bernard,Staggered chiral perturbation theory and the fourth-root trick, Phys. Rev.D73 (2006)
114503, [hep-lat/0603011].

[11] HPQCD, Fermilab, MILC, andUKQCD Collaborations, C. T. H. Davieset al., High-precision
lattice QCD confronts experiment, Phys. Rev. Lett.92 (2004) 022001, [hep-lat/0304004].

[12] MILC Collaboration, C. Aubinet al., Light pseudoscalar decay constants, quark masses, and low
energy constants from three-flavor lattice QCD, Phys. Rev.D70 (2004) 114501,
[hep-lat/0407028].

[13] HPQCD Collaboration, I. F. Allisonet al., Mass of the Bc meson in three-flavor lattice QCD, Phys.
Rev. Lett.94 (2005) 172001, [hep-lat/0411027].

[14] C. W. Bernardet al., The QCD spectrum with three quark flavors, Phys. Rev.D64 (2001) 054506,
[hep-lat/0104002].

[15] C. Aubinet al., Light hadrons with improved staggered quarks: Approachingthe continuum limit,
Phys. Rev.D70 (2004) 094505, [hep-lat/0402030].

[16] Lattice Hadron Physics Collaboration, B. Bistrovicet al., Understanding hadron structure from
lattice QCD in the SciDAC era, J. Phys. Conf. Ser.16 (2005) 150–159.

[17] NPLQCD Collaboration, S. R. Beane, P. F. Bedaque, K. Orginos, and M.J. Savage,I = 2 pi pi
scattering from fully-dynamical mixed-action lattice QCD, Phys. Rev.D73 (2006) 054503,
[hep-lat/0506013].

[18] O. Bär, C. Bernard, G. Rupak, and N. Shoresh,Chiral perturbation theory for staggered sea quarks
and Ginsparg-Wilson valence quarks, Phys. Rev.D72 (2005) 054502, [hep-lat/0503009].

[19] C. Aubin, J. Laiho, and R. S. Van de Water,The kaon b-parameter in mixed action chiral perturbation
theory, hep-lat/0609009.

[20] C. Aubin and C. Bernard,Pion and kaon masses in staggered chiral perturbation theory, Phys. Rev.
D68 (2003) 034014, [hep-lat/0304014].

[21] J. Bijnens, H. Sonoda, and M. B. Wise,On the validity of chiral perturbation theory for K0 anti-K0

mixing, Phys. Rev. Lett.53 (1984) 2367.

[22] R. S. Van de Water and S. R. Sharpe,BK in staggered chiral perturbation theory,
hep-lat/0507012.

[23] MILC Collaboration, C. Bernard,Chiral logs in the presence of staggered flavor symmetry breaking,
Phys. Rev.D65 (2002) 054031, [hep-lat/0111051].

7


