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1. Background and Overview

The study of heavy-quark physics has progressed greatly since the discovery of heavy-quark
spin-flavor symmetry and the development of heavy-quark effective theory (HQET) to systemat-
ically deal with symmetry-breaking effects. HQET is based on a scale separation between the
physics of heavy and light quarks. It yields expressions for observables as expansions in in-
verse powers of the heavy-quark mass or, alternatively, inverse powers of the heavy-meson mass.
These expansions share a common set of HQET matrix elements which must be evaluated non-
perturbatively [1, 2].

One would like to determine these matrix elements on general principles and, more impor-
tantly, because they are needed to ascertain the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments via inclusive decay measurements [3, 4]. For example, the heavy-quark expansion for the
rate of the decay B→ Xc `ν is given by [5]
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where |Vcb| is the CKM matrix element of interest; MB is the B-meson mass; and, Λ̄, λ1, and
λ2 are scheme-dependent hadronic matrix elements defined in HQET. Currently, the HQET ma-
trix elements are determined by fitting measurements of various moments of heavy-meson decay
distributions to corresponding HQET expressions [5, 6, 4, 7].

In addition to using experimental measurements, one would like to calculate the HQET matrix
elements from first principles. In fact, because the same non-perturbative quantities appear in the
HQET expression for the meson mass, there exists a rather direct method for calculating them
using lattice QCD. This method was first proposed in Ref. [9], where the corresponding quenched
calculation was reported.

The HQET expression for the mass of a heavy-light meson is [2, 4, 8]

M = m+ Λ̄− λ1

2m
−dJ

zB λ2

2m
+O(1/m2), (1.2)

where J is the total meson angular momentum, and d0 = 3 and d1 = −1 for the pseudoscalar and
vector mesons respectively. The mass of the heavy-light meson is M and that of the heavy quark is
m. Working with the spin-averaged meson mass, M, the equation simplifies to

M−m = Λ̄− λ1

2m
+O(1/m2). (1.3)

Since a lattice calculation allows one to work at any heavy-quark mass desired, we can generate
data for a variety of heavy-light meson masses and then fit to Eq. (1.3) to determine Λ̄ and λ1.

The key is that the formalism of HQET applies to any underlying theory with the heavy-quark
spin-flavor symmetry, such as a lattice gauge theory with heavy Wilson quarks [10, 11]. The lattice
introduces another short distance, which can be treated perturbatively via the Wilson coefficients.
The resulting expression for the spin-averaged meson mass on the lattice is [10]

M1−m1 = Λ̄(a)− λ1(a)
2m2

+O(1/m2). (1.4)
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Here, the heavy-quark a dependence is absorbed into the rest mass m1 and the kinetic mass m2,
defined via the heavy-quark propagator [12]. Discretization effects of the gluons and light quarks
lead to a separate a dependence of the HQET matrix elements Λ̄ and λ1. M1 is the spin-averaged
rest mass on the lattice.

To arrive at Λ̄ and λ1 for B± and Bd we would need an expression for the (spin-averaged)
meson mass from chiral perturbation theory. Continuum HQET expressions exist in the litera-
ture [13]. The full expression including effects from staggered quarks and HQET is being derived
now. Because we can do simulations with light valence quarks near or at the strange-quark mass,
and because we find that the effect of sea quarks is mild, we obtain preliminary results for the
bottom quark mass, mb, using Λ̄ and λ1 from the Bs meson.

In the following, we first discuss the lattice calculation of meson and quark masses. We then
discuss how M1 −m1 (and hence Λ̄ and λ1) depends on sea and valence quark masses and the
lattice spacing. Finally, we calculate the binding energy for a spin-averaged Bs meson and use that
to arrive at a preliminary value for the bottom-quark mass.

2. Meson Masses, Quark Masses: Determining M, m1 and m2

We use the MILC unquenched gauge configurations [14] with 2+1 flavors of sea quarks and a
Symanzik-improved gluon action. We use three lattice spacings: a = 0.18,0.15, and 0.12 fm. Both
sea and light valence quarks use the “asqtad” staggered-fermion action [15]. Light valence quarks
have masses ranging from mq = 1.1ms to 0.1ms, where ms is the (physical) strange quark mass.
Masses of the two light sea quarks range from approximately 0.05ms to 0.1ms. For heavy quarks,
we use the Fermilab action [16]. In anticipation of the full calculation of Λ̄ and λ1, we use seven
or more heavy-quark masses at each lattice spacing. They range in mass from heavier-than-bottom
to lighter-than-charm.

Pseudoscalar and vector meson masses are obtained from two-point correlation function fits
done using multi-state, constrained curve fitting [17]. Both χ2 and fit stability are used to determine
the goodness of fit. The results are spin-averaged to obtain M1.

Equation (1.4) on its own does not specify the renormalization scheme for the masses and,
hence, Λ̄ and λ1. Although it is straightforward to obtain the pole rest and kinetic masses at the one-
loop level [12, 18], the perturbative expansion of the pole mass is marred by infrared effects [19]. It
is, therefore, better to introduce a short-distance mass. Because the MS mass does not run correctly
for renormalization scales below the heavy-quark mass scale, it is not appropriate. Several other
short-distance mass definitions are available in the literature. Here, we use the potential-subtracted
mass, mPS [20], which is based on the static quark potential and introduces a separation scale, µ f ,
where ΛQCD < µ f . 2 GeV.

For αs, we use the V-scheme; scale setting, q∗, is done via the Brodsky-Lepage-Mackenzie
(BLM) prescription [21]. The value of αs(q∗) is obtained from the average value of the plaquette
and the four-loop β -function as described in [22].

3. Sea Quark, Valence Quark and Lattice Spacing Dependencies

The value of the meson binding energy, M1−m1,PS, depends upon the sea quark masses, the
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Figure 1: (a) M1 −m1,PS vs 1/2m2,PS for three values of light sea quark masses; the valence quark mass
mq = ms and a = 0.125 fm. (b) M1 −m1,PS vs 1/2m2,PS for several valence quark masses, mq. Here,
a = 0.125 fm and mu,d = 0.18ms.

Bottom and charm quarks have values of 1/2m2,PS = 0.13 and 0.58GeV−1, respectively.

light valence quark masses (mq) and the lattice spacing. We will discuss each of these dependencies
in turn and estimate numerically how they affect our results for the Bs system.

We begin with the effects of the 2+1 sea quarks. Figure 1(a) is a plot of M1−m1,PS vs 1/2m2,PS

for three values of sea-quark mass ratios mu,d/ms. For each graph, Λ̄ is the intercept and λ1 is the
slope, while the curvature is related to a combination of HQET matrix elements at O(1/m2) [9].
Figure 1(a) allows one to view the dependence of these quantities on the sea quarks. One can
see that varying the light sea-quark mass has only a small effect on M1−m1,PS (or Λ̄ and λ1). In
evaluating M1−m1,PS for Bs we used, at each value of a, the ensemble with the lightest available
mu,d sea quarks, and used the variation from different ensembles in our estimate of the systematic
error.

Figure 1(b) is a plot of M1 −m1,PS vs 1/2m2,PS for several light valence quark masses. As
expected, the meson mass depends strongly on the value of the light valence quark mass. For the
numerical results reported below, we will consider only mesons with a strange valence quark. To
arrive at M1−m1,PS for Bs, we use the mq = 1.06ms result and allow an uncertainty based on the
value at mq = 0.77ms.

Figure 2 is a plot of M1−m1,PS vs 1/2m2,PS for three lattice spacings: 0.125,0.15 and 0.18 fm.
Results for the coarsest lattice spacing fall between the two finer spacings; the error bars shown,
however, are statistical only. Discretization errors appear from two sources. The first is from the
light quarks and gluons. These errors first appear at O(αs a2), O(a4). The second is from the trun-
cation of the perturbative series for the heavy-quark masses m1 and m2. Because the origins of the
discretization effects from each sector are isolated, we can analyze their contributions separately.
Nevertheless, over the range of masses and lattice spacings we are working with, the two uncer-
tainties are of comparable size, so the behavior of the total discretization error is non-trivial. It is
expected that the inclusion of two-loop effects would clarify the results shown here. To estimate
the error due to truncation, we take the 2-loop contribution to be a factor of α smaller than that of
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Figure 2: M1−m1,PS vs 1/2m2,PS for three lattice spacings: 0.125,0.15 and 0.18 fm. For all cases mq = ms.
Error bars are statistical only. Bottom and charm quarks have values of 1/2m2,PS = 0.13 and 0.58GeV−1

respectively.

the 1-loop contribution. Results from extrapolations of M1−m1,PS in a2 and a4 were used to assign
a systematic error for the discretization of light quarks and gluons. Our final error budget includes
an uncertainty in the determination of a itself.

4. Result for the b-quark mass

Focusing on mb, we calculate the binding energy of a (spin-averaged) Bs meson, by averaging
the results at the a = 0.125 fm and 0.15 fm spacings. Our result is 0.99(18) GeV in the potential-
subtracted scheme with a factorization scale of µ f = 2.0 GeV. Using this value of the binding
energy, we can make a preliminary estimate of the value of the bottom-quark mass.

mb = Mexp− (M1−m1,PS) (4.1)

where Mexp is the experimentally measured, and spin-averaged, value of the Bs mass; we use the
value of 5.402(2) GeV from values from the Particle Data Group [23]. This yields a preliminary
value mb,PS = 4.41(18) GeV. We do not quote a result in the MS scheme at this time. For com-
parison, a QCD sum rule calculation [24] obtains, mb,PS = 4.52(6) GeV at µ f = 2.0 GeV and
mb,MS = 4.19(6) GeV.

Table 1 provides a preliminary budget of the uncertainties in this calculation. The two largest
are the uncertainty due to truncation of the QCD perturbation theory for the quark masses and the
uncertainty due to the continuum extrapolation. All uncertainties are added in quadrature to arrive
at the total.

5. Summary and Outlook

We report a preliminary calculation of the bottom quark mass using a (lattice) HQET calcu-
lation of the spin-averaged Bs binding energy. We use lattice QCD with 2+1 flavors of staggered
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Source GeV
statistical 0.005
inputs (a, κb, κcrit, u0) 0.041
sea-quark mass dependence 0.04
strange-quark mass tuning 0.025
perturbation theory (heavy quark discretization) 0.10
light quark and gluon discretization 0.14
total 0.18

Table 1: Uncertainties in the quantity M1−m1,PS for a spin-averaged Bs meson.

sea quarks. Heavy-light mesons are constructed from a staggered valence and Fermilab heavy
quark. We find mb,PS = 4.41(18) GeV in the potential-subtracted scheme with a factorization scale
of µ f = 2.0 GeV. The dominant uncertainties in this calculation can be reduced by the inclusion
of 2-loop effects in the perturbative expansions for m1 and m2, and with improved understanding
of light quark and gluon discretization effects. Future work will include the calculation of HQET
matrix elements Λ̄ and λ1 for B± and Bd , which can be used in the determination of CKM matrix
elements from their inclusive, semileptonic decays.
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