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B → K`+`− from Lattice QCD
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Figure 1: Penguin diagrams contributing to B → K`+`−

1. Introduction

The rare decay B → K`+`− is a flavor-changing neutral current process. Like other such
processes, it can provide important constraints on physics beyond the Standard Model. In par-
ticular, it may yield constraints which are complimentary to those provided by B → Xsγ , since it
probes additional operators. Its total branching fraction has recently been measured, and Belle
finds [1] that B(B → K`+`−) = (0.55± 0.08)× 10−6 , while BABAR finds [2] B(B → K`+`−) =

(0.34± 0.08)× 10−6 . A determination of the differential decay rate for this process, which is es-
sential for a precision comparison with SM theory, may soon be within the reach of the current
generation of B factories.

2. Continuum Theory

The leading-order contributions to the B → K`+`− rate come from the electroweak penguin
diagrams shown in Figure 1. Carrying out an operator product expansion yields effective hamilto-
nians for b → γs and b → Zs transitions given by [3]

Heff.
bZµs

= −i ∑
i=u,c,t

V ∗
ibVis

GF√
2

e
2π2 M2

Z tan(ΘW )FZ(xi)[b̄Lγ µsL] (2.1)

and

Heff.
bγµs

= −i ∑
i=u,c,t

V ∗
ibVis

GF√
2

e
8π2

{

Fγ(xi)[b̄L(q2γ µ −qµ/q)sR]

+F ′
γ (xi)[b̄L(imbσ µνqν)]sR

}

(2.2)

where the F(xi)’s are known functions of xi ≡m2
i /m2

W . Hence, the hadronic matrix elements needed
for B→ K`+`− are 〈B | b̄γ µs |K 〉 and 〈B | b̄σ µνqν s |K 〉. These have the standard parameterizations

〈B(p) | b̄γ µ s |K(k)〉 = f+(pµ + kµ − m2
B −m2

K

q2 qµ)+ f0
m2

B −m2
K

q2 qµ (2.3)
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and

〈B(p) | b̄σ µνqνs |K(k)〉 = i
fT

mB +mK

{

(p+ k)µq2 −qµ(m2
B −m2

K)
}

, (2.4)

where f+, f0, and fT are q2-dependent form factors for which we seek a lattice prediction.

3. Lattices and Actions

The results we present employ an ensemble of 460 MILC configurations with 2+1 flavors of
dynamical sea quarks. The light valence and sea quarks are simulated using the Asqtad action,
while for the b we use the Fermilab action. The Fermilab action is O(a) improved, while the
Asqtad and gauge field actions have errors starting at O(αsa2,a4). Within this formalism, the tree-
level O(Λqcd/mb) errors which appear in two-quark heavy-light current operators can be removed
through a simple spinor rotation of the heavy-quark field [4]. Results presented here are for a = 0.12
fm and κb = 0.086, with am` = 0.020 and ams = 0.050 for the sea quarks. For the valence quarks,
aml = 0.020, while ams = 0.0415.

4. Extracting Matrix Elements

We calculate the matrix elements introduced in Section 2 in the B meson rest frame at various
kaon momenta, p. In the calculation of three-point functions, the K was created at Tsource = 0 while
the B was destroyed at Tsink = 16. The relevant correlators can be written as

C2H(p; t) ≡ ∑
x

e−ip·x 〈

H†(0)H(x, t)
〉

= ∑
k

Z2
Hk

(p)e
−EHk

(p)t
+∑

l

(−1)t Z2
H′

l
(p)e

−E
H′

l
(p)t

(4.1)

where H is one of the interpolating fields B ≡ b̄γ5d or K ≡ s̄γ5d and

C3Γ(p; t,Tsink) ≡ ∑
x,y

e−ip·x 〈

K†(0) s̄(x, t)Γb(x, t)B(y,Tsink)
〉

= ∑
j

[

∑
k

A( jk)
Γ (p)e

−EKj
t
e
−EBk

(Tsink−t)
+∑

l

(−1)t B( jl)
Γ (p)e

−EKj
t
e
−EBl

(Tsink−t)

]

(4.2)

where Γ is one of either γ µ or σ µν and the summation indices j,k, and l run over the tower of
meson states which contribute to each correlation function. The appearance of oscillating terms
in the C2 and C3’s is due to the use of naive valence quarks [5]. Note that in our expansion of
the three-point functions, we have not yet included contributions coming from oscillating kaon
states as contributions from these states are found to be small in the K two-point functions. The
ground-state matrix elements of interest are given in terms of the above parameters according to

〈K(p) | s̄Γb |B(0)〉 = A00
Γ /(ZB0

ZK0
) . (4.3)

3



P
o
S
(
L
A
T
2
0
0
6
)
0
8
5

B → K`+`− from Lattice QCD

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20

t

B effective mass

data
3+3 state fit

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  5  10  15  20

t

K effective mass, p = (1, 0,0)

data
2+1 state fit

Figure 2: Fits to two-point correlators

5. Fitting procedure

The parameters Z, A, and B described above, as well as the energies of the various states are
extracted from lattice data through a simultaneous fit to two- and three- point correlators. We use a
constained curve fitting method with Bayesian priors.

We first fit the two-point data alone in order to extract energy and overlap parameters for the
various meson states. Next, for each Γ we performed simultaneous fits to the two-and three-point
functions checking where possible that fit parameters remained consistent with the individual two-
point fits. Typically, the energy and overlap parameters of the meson states were unchanged to
within less than one sigma.

Examples of our fit results are shown in Figures 2 and 3. On the left in Figure 2 is a 3+3 state
fit (3 "regular" states and 3 oscillators) to the B meson propagtor at zero momentum, while on the
right is a 2+1 state fit to the K propagator at lattice momentum p = (1,0,0). The fit range in our
two-point fits was chosen to be 2 < t < 15 giving χ 2’s typically of about 0.5.

In Figure 3 we see fits to the three-point functions with the leading exponential time-dependence
factored out. On the left is a fit to the C3V 4(pK = 0,0,0) correlator including contributions from 2
regular B states, 2 B oscillators, and a single regular kaon state (a "2+2+1" state fit). On the right is
a 2+2+2 state fit to the C3σ14(pK = 1,0,0) correlator. The typical fit range was 5 < t < 14. Work on
determining the optimal fitting strategy for this calculation is still in progress. With better statistics
and the inclusion of more states in our fits, we plan to study in more detail the fit systematics with
the hope of increasing the range in t over which we can fit.

6. From Matrix Elements to Form Factors

The matrix elements calculated from lattice correlators are related to their continuum coun-
terparts through current renormalization. Following [6], we factor this renormalization into two
parts:

J cont.
Γ ≡ ( s̄Γb)cont. =

√

Zhh
V Zll

V ρΓJ lat.
Γ (6.1)
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Figure 3: Fits to three-point correlators

where Zhh
V and Zll

V are non-perturbative renormalization factors which are being calculated within
our collaboration. The vector current ρ’s have been calculated [7] and are very close to unity, while
the ρσ ’s remain to be computed. In this work, we use the values Zhh

V = 2.995 and Z ll
V = 0.884 [8],

while for simplicity we take each ρ = 1.

The form factors introduced in Section 2 can then be related to these matrix elements accord-
ing to

f0(q
2) =

1
m2

B −m2
K

[

(mB −E)〈K |V 4 |B〉+
3

∑
i=1

(E2 −m2
K)

〈K |V i |B〉
pi

]

, (6.2)

f+(q2) =
1

2mB

[

〈K |V 4 |B〉+(mB−E)
〈K |V i |B〉

pi

]

(6.3)

and

fT (q2) = −i
mB +mK

2mBq2

[

〈K |
3

∑
j=i

σ 4 j p j |B〉+(mB−E)
3

∑
j=1

〈K | ∑µ 6= j σ jµ pµ |B〉
p j

]

. (6.4)

For the kaon energy, E , we use the fitted rest mass, mK , and the continuum dispersion relationship
E2 = m2

K + p2, while for the B-meson mass we use the measured value from the PDG.

7. Results

The results obtained for the form factors f0 and f+ introduced in section 2 are shown in Fig-
ure 4. The analysis needed to extract fT is still a work in progress. It should be emphasized that
these results are preliminary as we have not yet finalized our fitting procedure or quantified the
systematic uncertainties therein. Errorbars represent statistical errors alone, extracted through a
jacknife analysis of the lattice data.
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Figure 4: Form factors contributing to B → K`+`−

8. Conclusion and Outlook

We have presented preliminary results for two of the form factors for B → K`+`− from lattice
QCD and are in the process of computing the third. The first step in improving our analysis will
be to study the systematic errors introduced by fitting. We plan to study in detail the robustness of
our procedure, as well as to explore alternate methods such as fitting to a ratio of correlators as has
been done elsewhere in our collaboration. It is hoped that by using multiple time-sources, as well
as combining smeared and unsmeared data, we can reduce statistical errors, allowing us to better
constrain excited states and to improve the quality of our fits. Additionally, we plan to compute
the perturbative corrections to the tensor current operators at one-loop. Finally, this analysis will
also need to be repeated on other MILC ensembles so that we can study the lattices spacing and
light-quark mass dependence of our results.
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