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elements are calculated and renormalized in the RI/MOM scheme. We have tried using leading-
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1. Introduction and Motivation

The creation of a new generation of computer hardware and software has given us deeper
insight into challenging problems, such as CP violation. Based on the recent analysis of the CP
violating weak decay processK → ππ on quenched lattices[1, 2], we are conducting a comparable
research program on the latest 2+1 flavor dynamical lattices.

CalculatingRe(ε ′/ε) requires evaluating the weak matrix elementsA2 =
〈
ππ

∣∣O∆I=3/2
∣∣K

〉

andA0 =
〈
ππ

∣∣O∆I=1/2
∣∣K

〉
, whereO∆I=3/2 andO∆I=1/2 are the low-energy four-quark operators

with quantum number∆S= 1. On the lattice, it is often easier to use chiral perturbation theory
(χPT) to relate theK → ππ matrix elements to simplerK → π andK → vacuummatrix elements.

2. Operators

In 3-flavor QCD, we can expand the weak Hamiltonian responsible forK → ππ decay into
10 low-energy four-quark operators. And we can further divide them into a∆I = 3/2 part and a

∆I = 1/2 part. There are 6 operators that have a∆I = 3/2 part:
{

O
(3/2)
i

∣∣∣ i = 1,2,7,8,9,10
}

. In this

set, 4 operators are all proportional to a single operatorO(27,1)(3/2), thatO(27,1)(3/2) = 3O
(3/2)
1,2 =

2O
(3/2)
9,10 . By definition,

O(27,1)(3/2) ≡ (s̄αdα)L

(
ūβ uβ

)
L +(s̄αuα)L

(
ūβ dβ

)
L− (s̄αdα)L

(
d̄β dβ

)
L (2.1)

whereα andβ are color indices. The two remaining operators are

O
(3/2)
7 ≡(s̄αdα)L

(
ūβ uβ

)
R+(s̄αuα)L

(
ūβ dβ

)
R− (s̄αdα)L

(
d̄β dβ

)
R (2.2)

O
(3/2)
8 ≡(

s̄αdβ
)

L

(
ūβ uα

)
R+

(
s̄αuβ

)
L

(
ūβ dα

)
R−

(
s̄αdβ

)
L

(
d̄β dα

)
R (2.3)

For these∆I = 3/2 operators, fromχPT, evaluating theirK → π matrix elements is sufficient to
determine theirK → ππ matrix elements to leading order in mass and momentum.

3. Simulation Details

We have measured our matrix elements on the RBC/UKQCD 2+1 flavor dynamical lattices,
using the Iwasaki gauge action withβ = 2.13 and domain wall fermions withLs = 16. The lattice
spacing isa−1 = 1.60(3)GeV and the residual massmres∼ 0.003in lattice units.

We have setms,sea= 0.04 and we have three choices for the light sea quark masses, which
aremu,sea= md,sea∈ {0.01, 0.02, 0.03}. Thus we have generated three independent ensembles. On
each ensemble we have collected 75 configurations, each separated by40trajectories. And we have
5 choices for valance quark masses, which aremq,val ∈ {0.01, 0.02, 0.03, 0.04, 0.05}.

4. Evaluation of K → π Matrix Elements

4.1 Matrix Elements from Green’s Functions

To evaluate theK → π matrix elements, we put wall sources attK = 5 andtπ = 27, and take
the ratio of the wall-wall three-point Green’s functionGπOK (t; tK , tπ) with wall-point two-point
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Green’s functionsGπ (t; tπ) andGK (t; tK) [1]:

lim
tπÀtÀtK

GπOK (t; tK , tπ)
Gπ (t; tπ)GK (t; tK)

→ 〈π+ |O|K+〉
〈π+ |Pπ− |0〉〈0|PK+ |K+〉 (4.1)

wherePπ− (x)≡ [iūγ5d] (x) andPK+ (x)≡ [is̄γ5u] (x).
Then, to remove the denominator, we make use of the wall-point two-point functions together

with the wall-wall two-point functions:

lim
tπÀt

GWP
π =

1
2mπ

〈
0|χπ+ |π+〉〈

π+ |Pπ− |0
〉

e−mπ (tπ−t) (4.2)

lim
tπÀt

GWW
π =

1
2mπ

∣∣〈0|χπ+ |π+〉∣∣2e−mπ (tπ−t) (4.3)

where〈0|χπ+ |π+〉 is the normalization factor of the wall source, and〈π+ |Pπ− |0〉 is that of the
point source. With simultaneous fitting, we can calculate the required matrix elements from Eq
(4.1), (4.2) and (4.3).

5. Non-Perturbative Renormalization

To renormalize theK → π matrix elements, we follow the Rome-Southampton RI/MOM pre-
scription described in [1], with api = 2πni

Li
. On our lattices,Lx = Ly = Lz = 16 andLt = 32. And

the value of momenta is:nx,ny ∈ {−2,−1,0,1,2}, nz∈ {0,1,2} andnt ∈ {0,1,2,3,4}.
If O i is a four-quark operator, andE j is a combination of external quark fields with definite

spin and color structure, and Fourier transformed into momentum space,

E j
αβγδ = f j,abcdqa

α (p1) q̄b
β (p2)qc

γ (p1) q̄d
δ (p2) (5.1)

the renormalization condition betweenO i andE j is:

Z−2
q ZkiP j {Λi, j} = Fk j (5.2)

whereΛi, j is the amputated Green’s function with operatorO i connected with the external quark
fields in E j . And P j is a suitable projector, which corresponds to the spin structure ofE j . The
quantityFk j is the tree-level counterpart ofP j

{
Λi, j

}
evaluated in the free-field limit. Note there is

no sum onj in the above equation. The momentum are chosen such thatp2
1 = p2

2 = |p1− p2|2 =
µ2. After getting the value ofZ−2

q Zki at certain momentum scaleµ and quark massmq, we then
multiply it by Z2

q, obtained by NPR of axial current, with the method detailed in [3], to get the final
renormalization matrixZki.

5.1 Non-Perturbative Renormalization forO(27,1)(3/2)

On DWF lattices, chirality is approximately conserved (mres¿ ΛQCD), soO(27,1)(3/2) doesn’t
mix with the operators of different chirality, and we can neglect the mixing coefficients, keeping
only the diagonal element,

O
(27,1)(3/2)
ren = Z(27,1)(3/2)O

(27,1)(3/2)
lat (5.3)
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Figure 1: Renormalization factorsZ(27,1)(3/2) (left) and individual elements ofZ(8,8)(3/2) (right) at several
momentum scaleµ.

Table 1: Renormalization factorsZ(27,1)(3/2) and individual elements ofZ(8,8)(3/2) at several momentum
scaleµ .

p2
latt µ(GeV) Z(27,1)(3/2) Z77 Z78 Z87 Z88

0.617 1.257 0.510(12) 0.575(16) 0.133(14) 0.0310(52) 0.257(20)
1.234 1.777 0.5392(65) 0.6139(67) 0.1021(52) 0.0326(30) 0.400(11)
1.542 1.987 0.5298(60) 0.6167(58) 0.1021(47) 0.0453(27) 0.430(11)
2.467 2.513 0.5474(58) 0.6400(66) 0.1053(54) 0.0579(34) 0.5040(80)

After quadratic fitting in quark masses, the quantityZ(27,1)(3/2) in the massless limit and for
several values ofµ is plotted in Fig1 and listed in Table1. One should note that the renormalization
constantZ(27,1)(3/2) is related to the renormalization constant forBK . By definition,ZBK = ZLL/Z2

A,
whereZLL is the same asZ(27,1)(3/2) if we change the choice of momentum in Eq (5.1) into p1 = p2,
which we have verified.

5.2 Non-Perturbative Renormalization forO(3/2)
7 and O

(3/2)
8

Different from the case ofO(27,1)(3/2), these two operators mix with each other on lattice. So
their renormalization coefficients form a2×2 matrixZ(8,8)(3/2),


O

(3/2)
7,ren

O
(3/2)
8,ren


 =

(
Z77 Z78

Z87 Z88

)
O

(3/2)
7,lat

O
(3/2)
8,lat


 (5.4)

Following the same prescription as in Section5.1, we can calculate the mixing matrixZ(8,8)(3/2)

at various external momentum scale. The individual elements ofZ(8,8)(3/2) are also plotted in Fig1
and listed in Table1.

Now we can renormalize the matrix elements
〈
π+

∣∣O(27,1)(3/2)
∣∣K+

〉
,
〈

π+
∣∣∣O(3/2)

7

∣∣∣K+
〉

and〈
π+

∣∣∣O(3/2)
8

∣∣∣K+
〉

. Their values at one scaleµ = 1.99GeV are listed in Table2.
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Table 2: RI/MOM renormalized matrix elements〈π+|O(27,1)(3/2)|K+〉, 〈π+|O(3/2)
7 |K+〉 and

〈π+|O(3/2)
8 |K+〉, at µ = 1.99GeV, in lattice units.

msea mval O(27,1)(3/2) O
(3/2)
7 O

(3/2)
8

0.01/0.04 0.01/0.01 3.70(18)×10−4 -1.171(57)×10−2 -1.724(86)×10−2

0.02/0.04 0.02/0.02 8.37(36)×10−4 -1.471(69)×10−2 -2.138(96)×10−2

0.03/0.04 0.03/0.03 1.514(58)×10−3 -1.817(72)×10−2 -2.60(12)×10−2
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Figure 2: A fit of the renormalized matrix elements〈π+|O(27,1)(3/2)|K+〉 (left) and〈π+|O(3/2)
7,8 |K+〉 (right)

to leading-orderχPT. The data points are from quarks with massesmd,val = ms,val = md,sea.

(a) The fit forO(27,1)(3/2) shows the leading-order theory is not sufficient (χ2/d.o. f ∼ 30). (b)The
phenomenological fit forO7 andO8 takes an inexact “chiral limit” sincems,sea= 0.04+ mres re-
mains non-zero, and thus the value at that limit has an unknown systematic error.

6. Chiral Extrapolation

6.1 Chiral Fit for O(27,1)(3/2)

When we use degenerate valance quarksmd,val = ms,val, the leading order term in theχPT
formula for

〈
π+

∣∣O(27,1)(3/2)
∣∣K+

〉
reduces to a linear form which goes through the origin [1, 4],

〈
π+

∣∣∣O(27,1)(3/2)
∣∣∣K+

〉
LO

=− 4
f 2 α(27,1)B0mval (6.1)

Here we just show that this leading order approximation is not sufficient (Fig2). We have used
the data points wheremd,val = ms,val = md,sea, and they have a large deviation from a straight line
(χ2/d.o. f ∼ 30), showing some quadratic behavior (note that the NLO term is expected to be a
quadratic term ofm2

val plus a chiral log term). The work to include the NLO terms is underway.

6.2 Chiral Fit for O
(3/2)
7 and O

(3/2)
8

Since these two operators are in (8,8) representation of theSU(3)L ⊗ SU(3)R group, the
leading-order term for these operators is a constant,

〈
π+

∣∣∣O(8,8)(3/2)
∣∣∣K+

〉
LO

=
4
f 2 α(8,8) (6.2)
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Table 3: Leading-order LECs forO(8,8)(3/2) operators in physical units: GeV6.

α(8,8)
i µ = 1.26GeV µ = 1.78GeV µ = 1.99GeV µ = 2.51GeV

7 −1.97(26)×10−4 −1.84(23)×10−4 −1.85(23)×10−4 −1.91(24)×10−4

8 −1.71(22)×10−4 −2.62(31)×10−4 −2.84(34)×10−4 −3.33(40)×10−4

Table 4: Matrix elements〈π+π−|O(8,8)(3/2)
i |K0〉 in physical units: GeV3.

〈π+π−|O(8,8),(3/2)
i |K0〉 µ = 1.26GeV µ = 1.78GeV µ = 1.99GeV µ = 2.51GeV

7 0.289(38) 0.269(34) 0.270(34) 0.279(35)
8 0.251(33) 0.384(46) 0.416(49) 0.488(58)

At present,there is no publication on NLO partially quenched chiral perturbation theory
(PQχPT) for O(8,8) with non-degenerate sea quark masses. Thus, we retreat to phenomenolog-
ical approach and from the distribution of the data points (Fig2), and experiences on quenched
lattices[1], we try to fit a straight line through the data points to extrapolate to chiral limit.

We should note that the “chiral limit” we extrapolate to is not the exact chiral limit ofPQχPT
(where allmq = 0). The reason is our 2+1 flavor ensemble has a fixedms,sea= 0.04+ mres and
cannot be extrapolated to zero. Therefore the extrapolated result at our “chiral limit” would have
an unknown systematic error, which, again, could only be removed by NLOPQχPT.

Finally we find the LECα(8,8)
i ,{i = 7,8}, as listed in Table3. We use the leading-orderχPT

formula, Eq (6.3) [4], to calculateK → ππ matrix elements forO(8,8)
i , as in Table4.

〈
π+π−

∣∣∣O(8,8)(3/2)
∣∣∣K0

〉
LO

=− 4i
fK f 2

π
α(8,8) (6.3)

7. Comparison with Quenched Results

In Fig 3, we have a preliminary comparison with the earlier RBC results[1] for the matrix ele-

ments
〈

π+π−
∣∣∣O(3/2)

i

∣∣∣K0
〉

, i ∈ {7,8}. Please note that the 2+1 flavor values are very preliminary
results and still need to be thoroughly checked by independent calculations. So this comparison is
not conclusive.

8. Conclusion and Outlook

Using RBC/UKQCD 2+1 flavor dynamical lattices of size163×32we have evaluatedK → π
matrix elements with the operatorsO(27,1)(3/2), O

(3/2)
7 andO

(3/2)
8 , and have calculated the rele-

vant renormalization constants in the RI/MOM scheme. All of these matrix elements need further
theoretical input fromPQχPT.

The work on this project is continuing. We will also calculate the∆I = 1/2 matrix elements
and gather more physical results, such as∆I = 1/2 rule andRe(ε ′/ε).
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Figure 3: Comparison of matrix elements
〈

π+π−
∣∣∣O(3/2)

7

∣∣∣K0
〉

(left) and
〈

π+π−
∣∣∣O(3/2)

8

∣∣∣K0
〉

(right) with

earlier RBC quenched results. The values are in physical units GeV3. The squares are the preliminary
leading order value on 2+1 flavor lattice, and the triangles are the numbers in the RBC paper[1]. Note there
is an unknown systematic error involved in 2+1 flavor value, due to the absense of NLOPQχPT, that cannot
be plotted.
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