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The transformation properties of strong penguin operators under the action of the flavor group
change when they are considered as operators in (partially) quenched QCD instead of the un-
guenched theory. An ambiguity arises, which is parameterized by new low-energy constants in
the effective theory describing non-leptonic kaon decays in the (partially) quenched setting. Here
we summarize results of the analysis for the complete set of three-flavor strong penguin operators,
consisting of products of two left-handed flavor currents, or a left- and a right-handed current. Our
results imply that (partially) quenched lattice computations ofthe 1/2 rule ande’ /e are both
affected by ambiguities intrinsic to the use of the quenched approximation at leading order in the
chiral expansion. The only exception is the partially quenched case with three light sea quarks,
consistent with general expectations. We also address the issue of quenched ambiguities in the
case of an active charm, correcting and extending that in Phys. Rev. D 74, 014509 (2006).
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1. A group theory exercise

In the theory where the charm quark has been integrated out penguin operators play an impor-
tant role. In particular, referring to a commonly used basis, the left-left (LL) penguin opérator
plays an important role in thal = 1/2 rule, while the left-right (LR) operatafs gives a major
contribution toe’ /¢ [2].

When one makes the transition from unquenched QCD to partially-quenched (PQ) QCD, the
theory is changed from the physical theory with three light quarks to a theorywitt valence
quarks andN light sea quarks. Fully quenched QCD is the special case Mith0. This im-
plies that the flavor symmetry group changes from the uSUgB), x SU(3)g to the graded group
SU(K + NJ|K). x SU(K +NJ|K)r [3]. In general, this implies that the classification of weak opera-
tors with respect to the flavor symmetry group also changes. In particular, what happens for strong
penguins is that the penguin operator which transformed as a component of one irreducible repre-
sentation (irrep) oBU(3). x SU(3)r (the octet representation) now splits into several parts, each
transforming in aifferentrepresentation of the PQ symmetry group. One of those is the “natural”
generalization of the original penguin operator to the PQ theory, whereas the other transforms in
a more complicated way und8tJ(K + N|K)_ x SU(K 4+ N|K)r. We will refer to these two parts
as the “singlet” and “adjoint" operators, respectively — for reasons that will become clear in the
next section. The problem reduces to a group theory exercise; the one of decomposing a given
operator in terms of irreducible representations of the partially quenched group. The task will be a
little more complicated in the LL case, but conceptually identical to the LR case and with similar
results.

2. Left-Right penguins in partially quenched QCD

We consider LR penguin operators of the forn4]

Openguin= (sd)_(Uu+dd+39R, (2.1)
where
(M%R)LR = hYuPLRG2 (2.2)
1
H—R = é(lq: ’}/5) )

and color contractions are not specified, so gdguincan represent both the color-mixed and un-
mixed QCD penguin®s andQg (seee.qg.ref. [6]). When we consider the LR penguin operator of

Eqg. 2.1) in the partially quenched theory, its representation content changes. A general realization
of PQ QCD containK valence quarks, each accompanied by on& afhost quarks with the

same mass in order to cancel the valence-quark determinani\ @ed quarks — the dynamical
qguarks — which can all have masses different from those of the valence quarks. The relevant flavor
symmetry group enlarges from the physigél(3), x SU(3)g to the graded groupU(K + N|K)_ x

SU(K +NI|K)r [3].1 Itis clear that thesd), factor in Eq. @.1) is still a component of the adjoint

1For a detailed analysis of the actual symmetry group in the euclidean lattice theory, we refer @. Réfe upshot
is that for our purposes, it is appropriate to consider the PQ symmetry groustd(Bet N|K) x SU(K + N|K)R [8].
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representation dBU(K -+ N|K)_, while the factoiu+ dd+359r no longer transforms as a singlet
of SU(K+N|K)r . Instead, the operator can now be written as

K
O penguin = N (GA)L(Qa)r + (GAQ)L(QADR
= % OPS 4 gPRA (2.3)
where we introduced the spurion fieldsandA with values

A = 83802, (2.4)

: K K
A = diag (1_N""’_N”"> .

The firstK diagonal elements df are equal tg1 — K /N) — corresponding to thié valence quarks
— and the lasN + K diagonal elements are equal(teK /N) — corresponding to thN sea quarks
and theK ghost quarks, both of which do not occurdiyenguin The quark fields are graded vectors
in flavor space, with fermionic components given by the valence and sea quarks, and bosonic
components by ghost quarks. The indicasd]j are graded flavor indices, and run over valence, sea
and ghost flavors. For the down (strange) quark we hav2 (i = 3). Notice that the decomposition
of Eq. 2.3 is singular in the completely quenched theasy, the theory withN = 0. ForN =K =
3 we regain the physical three-flavor theory.

The spurions\ and A both transform in the adjoint representationStJ(K + N|K), as can
be seen from the fact that both have a vanishing supertrace $str)The operatoro"?S thus
transforms in théadjoint , 1r), while the operato’"Q* transforms in théadjoing , adjointy). The
appearance of the latter operator is an artifact of the partially quenched setting. The adjoint operator
0PQA now contains only terms involving either sea or ghost quarks, and it is rather straightforward
to see that their contributions to physical matrix elemeng¢s ¢(hose with only valence quarks on
the external lines) vanishes because of cancellation between sea-quark and ghost-quark loops. For
this cancellation to happen, valence masses and sea masses should be chosen equal.

In order to disentangle how this operator ambiguity affects kaon matrix elements, the effective
low-energy realization o&7"?S and ¢"?” is needed. The bosonization 6?5 and ¢"** leads
straightforwardly to the following operators appearing at leading order in ChPT

0P — o™ str(ALuLy) + 0> str(AX, ) (2.5)
OPA s 12 088 str(AZAZT) | (2.6)

where
Ly =iZ9,2", Xy =2By(zMT+MzT), (2.7)

with M the quark-mass matrio the parameteBy of ref. [13], £ = exp(2i®/f) the unitary field
describing the partially quenched Goldstone-meson multiplet,faheé bare pion-decay constant
normalized such thaf; = 132 MeV. Thea'’s are the corresponding LECs. A striking result is that
OPQA unlike 0798, is of orderp?, due to the fact that the right-handed currentii®* is not a
partially quenched singletf{ electro-magnetic penguifis However, the new operatar”?” does

2In fact, 0PQAis a component of the same irrep as the electro-magnetic penguin, exciiptfor4].
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not contribute at tree level to matrix elements with only valence quarks on external lines, since the
matrix A is effectively proportional to the unit matrix in the valence sector. This is no longer true at
next-to-leading-ordei,e., at orderp?, where one-loop contributions froi"?” to valence-quark
matrix elements are non-zero and of the same chiral order as the leading (tree-level) contribution
from ¢PQS[4]. In the quenched case, the low-energy constdff) (which for N = 0 is denoted
asaN9) has found to be numerically largéq, 11].

3. Left-Left penguins in partially qguenched QCD

The other type of strong penguin operators is made by the product of two left-handed currents:

01 = (sd)L(Tu)L — (su)L(Ud)L 3.1
= (Sedo)L (UBUB +d[;dﬁ +Sﬁ5ﬁ)|_ — (Sd ) ( Ug +dg dﬁ +Sﬁ5a)
0> = (sd)L(Uu)L + (SU)L(Ud)L +2(3d)(dd+ 39,
= (Sedy)L(T UgUg -l-dﬁdﬁ-l-SﬁSﬁ)L—l-( ) (uﬁua+d dﬁ-l-SﬁSa)
We have made the color indices 8 explicit, where needed. Both operatars, are linear com-
binations of color un-mixed and color mixed terms, and transform in the octet representation of
SU(3)., while, trivially, in the singlet representation 81J(3)gr. Together with the LR operator in
Eqg. 2.1), they are part of a basis of irreducible representations of the chiral group that ar@ZLPS [
invariant and with definite isospin= 1/2 andl = 3/2 [2]. This basis is especially convenient for
working out group theoretical properties. The relation with the frequently used basis @ the
operators §] can be found in Appendix A of Ref1H]. Within SU(K + N|K)_ x SU(K + N|K)gr
the LL operators can now be written as

Or = % oPS L oA (3.2)

K
02 = § OBy o7

05 = (U, Nda)L(Tp0p)L £ (UGB )L (TGl -
i (Ao )L (AAGs )L £ (0o \GE )L (Ap AL -

transform as the product representation of two adjoint irreps, and

This time the operatore’? "

they are thus reducible.

The corresponding decomposition OﬁQA is accomplished by (anti-)symmetrization in co-
variant and contravariant indices, and by “removing" supertraces on pairs of covariant and con-
travariant indices, much as is done in the casBW(N) [9]. Here we take the quark fieldg as co-
variant, and the anti-quark fieldsas contravariant. It turns out that the operatﬁfégA ando"®
(07" and 67?3 are already symmetric (anti-symmetric) in both their two covariant and their two
contravariant flavor indices — see Rei4] for details. A supertraceless linear combination ex-
ists, given byo Y%+ 2/(£N - 2) 6527, with 6127 = (9,AAG)L(Ts0p )L + (T NAGE )L (Tp 0 )L
The singularity in the decomposition into wreps@fQA for N = 2, tells that the representation in
which 79" transforms is not fully reducible for this value of the number of sea quidrk¥he
bosonization of7.?" leads to the termiZ* in the lagrangian of Eq4(1) below.
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4. The effective lagrangian

The construction of the low-energy bosonized effective lagrangian for the opetaters
the PQ theory follows the same lines as the LR case. The less straightforward aspects are related
to the decomposition of the operators in terms of irreps of the PQ group. To each independent
representation of the group is associated a low-energy constant in the effective lagrangian. To
lowest order in the chiral expansion, with theintegrated out (and making use of CPS invariance)

OFP s P8 = o (LR + 2P + om0+ gt 2 (4.1)
with
P = str(AL,) str(AL,) , (4.2)
L = str(AL,AL,) ,
28 = str(AAL,L,) ,
(

The bosonization rules that lead to E4.1) rely on the decomposition @VEQA into irreps. De-

tails can be found in Refl1f]. We have explicitly indicated the dependence of the LECs on the
operator through the superscrigtsbecause they refer to different representations of the PQ flavor
group. We conclude that the transition from the unquenched theory to the PQ theory leads to the
introduction of three new LECs for each of the two operat@eysnd 0,. These operators do con-
tribute already at leading chiral order kK — vacuum K+ — 7t andK — 2z matrix elements.

We also find that the one-loop corrections for the adjoint operators, calculated inlBefiffer

from those of the singlet operators, calculated in R&f. [n other words, the singlet and adjoint
LECs do not occur in some fixed, given linear combinations in physical matrix elements beyond
tree level. Our conclusions for the fully quenched case=(0), for which the relevant symmetry
group isSU(K|K) are very similar, although the group-theoretical details are different from those
of the PQ N # 0) case §, 14].

5. TheAl =1/2rule and ¢'/¢

Our results show that quenching ambiguities do affect, already at the leading chiral order, those
AS= 1 weak matrix elements that receive contributions from LR and LL penguin operators. We
emphasize that the new adjoint operat6f§&A andﬁiQA occurring in the PQ theory are genuinely
new operators, and one thus expects that one-loop corrections in ChPT for matrix elements of these
operators differ from those of the singlet operators. We find that this is indeed theldhde the
case of LR penguins, the enhancement of the adjoint operators leads to the appearance of chiral
logarithms already at leading order in ChRT. [

The quenching ambiguity affecting the LR penguin oper&gthas dramatic consequences
for the quenched lattice determination &f'e [15], and may provide an explanation for earlier
quenched lattice resultd§, 17]. The quenching ambiguity in LL penguin operators also directly
affects theAl = 1/2 rule for which the dominant contributions come from the current-current oper-
atorsQ; andQy, whereQ, = 1/201+1/100,+1/1503+ 1/304 andQ, = —1/201 + 1/100 +
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1/1503 +1/30,.2 In addition, quenching ambiguities in LL penguin operators can in principle
also affect a lattice determination &f/e through the operatdp, becaus&, = —1/20,+ 1/205.

This can be relevant in the presence of a large cancellation of the dominant contributior@sfrom
and the electroweak penguin operaf@r[15].

6. The theory with active charm

A natural setting for a lattice investigation of non-leptonic kaon weak matrix elements is the
three-flavor effective theory, where the light quarks, sare kept dynamical. However, the lattice
implementation of a 4-flavor theory, where the charm is active at its physical mass, has various
advantages: less operator mixing, the GIM mechanism is at work, and the short- to long-distance
matching scalet > m. is comfortably high for a perturbative RG evolution of the Wilson coeffi-
cients. It is thus relevant to understand how (partial) quenching modifies the 4-flavor theory, and
more specifically, if and how the quenching ambiguities of the 3-flavor penguin operators survive
in the 4-flavor theory. What matters for the appearance of the ambiguity is the existence of penguin
operators in the first place. This is a consequence of the fact that what matters are the transfor-
mation properties of the given operators under the flavor chiral group. Again, it is a group theory
exercise: it does not depend on the relative energy scales involved, nor on the largeness of chiral
symmetry breaking induced by mass terms. Once the charm is active, the chiral flavor group is
SU(4)L x SU(4)r, and one needs to consider the classification of the weak effective hamiltonian
under (the PQ generalization of) this group.

At this point the way penguins enter in physical matrix elements is different for the CP con-
servingAl = 1/2 rule and for the CP violating parametgye. The GIM mechanism ensures that
the Wilson coefficient (i) —i.e. those contributing to CP conserving amplitudes — of penguin
operatoré are zero in the five- and four-flavor theory., until the thresholdt < m. is crossed. As
a result, penguins i8U(4) do not contribute to thAl = 1/2 ratio, and this leads to the conclusion
that no quenched ambiguity arises for this caJéis conclusion corrects the observation made by
the authors in Ref.14].

The situation is different in the case of/e, where the penguin operatog, i = 3,4,5,6
(seee.g.Ref. [6] for a derivation of the effectivdS= 1 hamiltonian in the four-flavor theory) do
contribute toe’/e. The operator€);, i = 3,4,5,6 are now theSU(4) extension of theilSU(3)
counterpartsi.e., now y qq = uu+ dd+5s+ cc. The way (partial) quenching effects (the singlet
bilinears in) penguin operators 8U(4) is analogous to th8U(3) case. It must be concluded that
a quenching ambiguity does effect LR and LL penguin contributiors$ealso in the four-flavor
theory with an active charm quark.
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