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1. Introduction and motivations

Lattice QCD calculations of semileptonic form factors provide valuable tests of lattice heavy-
quark actions as well as critical input into the unitarity triangle analysis [1]. In general,B- and
D-meson semileptonic decays aid in determining four CKM matrix elements; in particular, the
decayB → πlν allows a measurement of|Vub|.

The semileptonic decayB → πlν is parameterized by two form factors,f+(q2) and f0(q2):

〈π(pπ)|V µ |B(pB)〉 = f+(Eπ)
[

pB + pπ −
m2

B −m2
π

q2 q
]µ

+ f0(Eπ)
m2

B −m2
π

q2 qµ , (1.1)

whereq2 = m2
B + m2

π − 2EπmB is the squared momentum of the outgoing lepton and neutrino.
Experimenters measure the differential decay rate, which is related tof+(q2) as follows:

dΓ
dq2 =

G2
F |Vub|

2

192π3m3
B

[(m2
B + m2

π −q2)2−4m2
Bm2

π ]3/2| f+(q2)|2. (1.2)

Because experiments can only determine the product|Vub|
2| f+(q2)|2, lattice QCD calculations of

the form factor normalization are needed in order to extractthe CKM matrix element|Vub|.
In principle, the procedure to determine|Vub| is straightforward. In practice, however, ex-

periments measure the form factors most precisely at lowq2, whereas traditional lattice QCD can
only accurately calculate form factors at highq2 (low Eπ ). Thus the power of this method for de-
termining |Vub| is limited by the poor overlap inq2 of the lattice and experimental data. Various
strategies to address this problem appear in the literature. The most conservative approach accepts
the limitations of the available lattice techniques and only compares lattice and experiment in the
q2 region in which lattice data exists [2]. While certainly correct, this does not necessarily allow for
the most precise possible determination of|Vub|. The most common approach is to use an Ansatz
to extrapolate lattice data to the lowq2 region where the experimental data is best. The standard
functional form used in the literature is the BK parameterization [3]:

f+(q2) = f+(0)
(

1−q2/m2
B∗

)−1(

1−α q2/m2
B∗

)−1
. (1.3)

This function has the merits that correctly incorporates the B∗ pole and fits the data well. Never-
theless, it is difficult to quantify the systematic errors intheq2 extrapolation due to this particular
choice for how treat higher-order poles. A novel approach isto generate lattice data at lowerq2

using an alternative method such as Moving NRQCD [4]. This, however, requires further work as
well as the generation of additional lattice data.

Physical intuition suggests the correct shape of theB→ πlν form factors, whatever it is, will be
smooth. This intuition can be made quantitative through theuse of analyticity, crossing-symmetry,
and unitarity [5, 6]. It is well established that these general properties can be used to constrain the
shape of form factors. In this work we explore the potential of these model-independent constraints
to aid in lattice QCD calculations of theB → πlν semileptonic form factors.

2. Unitarity and heavy quark constraints on form factors

Generically, all form factors are analytic functions ofq2 except at physical poles and threshold
branch points. In the case of theB → πlν form factors,f (q2) is analytic below theBπ production
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B → πlν −0.34 <z < 0.22
D → πlν −0.17 <z < 0.16
D → Klν −0.04 <z < 0.06
B → Dlν −0.02 <z < 0.04

Table 1: Physical region in terms of the variablez for various semileptonic decays given the choicet0 =

0.65t−.

region except at the location of theB∗ pole. The fact that analytic functions can always be expressed
as convergent power series allows the form factors to be written in a particularly useful manner.

Consider mapping the variableq2 onto a new variable,z, in the following way:

z =

√

1−q2/t+ −
√

1− t0/t+
√

1−q2/t+ +
√

1− t0/t+
, (2.1)

wheret+ ≡ (mB +mπ)2, t−≡ (mB−mπ)2, andt0 is a free parameter. Although this mapping appears
complicated, it actually has a simple interpretation in terms ofq2; this transformation mapsq2 > t+
(the production region) onto|z| = 1 and mapsq2 < t+ (which includes the semileptonic region)
ontoz = [−1,1]. In terms ofz, the form factors have a simple form:

P(t)φ(t, t0) f (t) =
∞

∑
k=0

ak(t0)z(t, t0)
k, (2.2)

whereP(t) is a function that vanishes at subthreshold (e.g. B∗) poles andφ(t, t0) is an “arbitrary"
analytic function whose choice only affects the particularvalues of the series coefficients (ak ’s).
Given the choices forP andφ used in Ref. [6], unitarity constrains the size of the seriescoefficients:

N

∑
k=0

a2
K ≤ 1, (2.3)

where this constraint holds for any value of N.
The free parametert0 can be chosen to make the maximum value of|z| as small as possible in

the semileptonic region; we chooset0 = 0.65t− as in Ref. [6]. ForB → πlν semileptonic decays
this maps the physical region onto:

0 < t < t− → −0.34< z < 0.22.

The correspondingz-region for other decays is given in Table 1. The constraint on the size of the
coefficients in thez-expansion in combination with the small numerical values of |z| in the physical
region ensures that, using the series expansion inz, one needs only a handful of parameters to
obtain the form factors to a high degree of accuracy.

3. Strategy to combine lattice QCD and experiment

As shown in Figure 1, after remapping fromq2 to z there is no visible curvature in the
BABAR B → πlν experimental data [7]. This indicates that the curvature inthe data is due to
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Figure 1: Experimental data for theB → π lν form factor f+ from the BABAR collaboration [7]. Figure (a)
shows the form factor versusq2 while (b) showsPφ times the form factor versus the new variablez.

well-understood QCD effects (i.e., the functionsP andφ in Eq. (2.2)). Consequently the experi-
mental data should be well described by a normalization and aslope. The fact that, when expressed
in terms ofz, the form factor data is determined by only two parameters suggests the following ap-
proach for determining|Vub| from the decayB → πlν :

1. Fit both experimental and lattice data in terms of thez expansion

2. Determine and compare the slopes inz

3. Compare the normalizations to extract|Vub|

4. Look for curvature

This approach has many positive features. It is practical because it requires a limited number of fit
parameters. One can first quantify the agreement between thelattice QCD results and experimental
data using the value of the slope before combining them to determine|Vub|. Because the series in
z is convergent, and because the sizes of the series coefficients are bounded by Eq. (2.3), thisq2

extrapolation approach is well-suited to the method of constrained curve-fitting. One can constrain
each coefficient with a prior, perform a fit to the data with more terms in the series than seems
necessary, and simply let the data determine as many parameters as they can. The “extra" param-
eters will absorb the effects of the higher-order terms thathave been omitted. Thus this method
is systematically improvable – as the data become more precise they will reduce the error bars on
the lower-order coefficients and begin to constrain additional higher-order coefficients. It is this
quality that leads us to describe this method asmodel-independent.

4. Preliminary analysis of lattice QCD data

We now illustrate the method of extrapolating lattice QCD form factor data inq2 using the
z-expansion, Eq. (2.2). We use the same functionsP andφ and the same value oft0 = 0.65t− as in
Ref. [6]. We use Bayesian priors to impose the unitarity constraints on the size of the coefficients
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Figure 2: Figure (a) shows our preliminary lattice form factor data multiplied by Pφ plotted versusz. These
same data are shown in all subsequent plots. Figure (b) showsthe q2 extrapolation of our data using a 3-
parameterz-expansion (blue solid) and a 5-parameterz-expansion (red dashed). Also shown are the resulting
bootstrap errors in the extrapolated value off+(0).

in the z-expansion and calculate bootstrap errors in the resultingfit parameters. We emphasize
that the work shown in these proceedings is exploratory: we have used data at only a single lattice
spacing,a = 0.12 fm, and for a single quark mass,amu,d = 0.02 andams = 0.05. Furthermore,
we do not include any estimate of systematic errors. In principle, we should perform a chiral and
continuum extrapolation using the appropriate staggered chiral perturbation theory expressions [8]
before extrapolating inq2, and we will add this in the upcoming paper.

Figure 2(a) shows our lattice QCD data multiplied by the functionsP andφ and plotted versus
the new variablez. Like the experimental data, it appears to be linear. We therefore expect to be
able to fit the latticef+ data well using only 2-3 parameters, and an attempt to fit the data including
more parameters should only lead to the higher-order parameters being poorly-determined. This
is exactly what we observe. Figure 2(b) shows the results of both a 3-parameter and 5-parameter
fit to f+(q2) and the resulting bootstrap errors on the extrapolated value of f+(0). The resulting
coefficients are

a0 = 0.026±0.003, a1 = 0.020±0.068, a2 = 0.152±0.41 (4.1)

for the 3-parameter fit and

a0 = 0.026±0.003, a1 = 0.020±0.068, a2 = 0.148±0.45,

a3 = −0.031±0.98, a4 = 0.004±1

for the 5-parameter fit. The normalization (a0) and slope (a1) are consistent between fits; the
curvature (a2) is consistent with zero, and the higher-order coefficientsare not constrained by the
data.
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Figure 3: Figure (a) shows theq2 extrapolation in which the kinematic constraintf+(0) = f0(0) is imposed
(blue solid) and in which it is not (red dashed). Both extrapolations use a 3-parameterz-expansion for the
form factors. Figure (b) shows the 3-parameter, kinematically-constrainedq2 extrapolation for three different
bounds on the size of the coefficients in thez-expansion. The blue solid curve comes from a loose bound, the
red dashed curve comes from the unitarity bound, and the magenta dot-dashed curve comes from the heavy
quark bound.

Because lattice simulations can calculate bothB → πlν form factors, theq2 extrapolation of
f+ in Fig. 2 only uses part of the available lattice data. Kinematics constrain the two form factors
to be equal at zeroq2, i.e. f+(0) = f0(0); thus one can in principle extrapolate bothf+ and f0
simultaneously while imposing the above kinematic constraint to improve the extrapolation error.
This procedure is shown in Fig. 3(a). As expected, combiningthe f+ and f0 data reduces the error
bars in the extrapolated value off+(0).

The unitarity bound on the size of the coefficients in thez-expansion, Eq. (2.3) comes from fact
that the decay rate to the exclusive channelB → πlν must be less than the inclusiveB-meson decay
rate. It is observed, however, that the coefficients are actually much smaller than what is predicted
by the unitarity constraint alone. Becher and Hill explained the size of the series coefficients using
heavy-quark power-counting arguments in Ref. [9]. The factthat, as the mass ofB-meson increases,
its branching fraction to any particular exclusive channeldecreases, allowed them to calculate the
branching fraction for the semileptonic decayB → πlν as a power ofΛQCD/mB. They used this
result derive an even tighter bound on the size of the coefficients of the form factorz-expansion:

N

∑
k=0

a2
K ≤

(

Λ
mB

)3

, (4.2)

where they estimate thatΛ/mB ∼ 0.1. Using this estimate, one should need only 3-4 parameters
to describe the form factors of the processes given in Table 1to 1% accuracy. Figure 3(b) shows
the 3-parameterq2 extrapolation off+ and f0 using three different constraints on the numerical
size of the coefficients: a loose constraint, the unitarity constraint, and the heavy quark constraint
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(where we have allowedΛ/mB to be larger than the estimate in Ref. [9]). The three fits all have an
acceptableχ2/d.o.f. and are consistent within 95% confidence level error bars.

One might notice that, in Fig. 3(b), the central value off+(0) drifts downward as the con-
straints on the coefficients are tightened. There is nothingin principle wrong with this trend since
tightening the constraints adds new physics information. Nevertheless, this trend could also be due
to an unaccounted-for systematic error. A possible culpritis momentum-dependent discretization
errors∝ a2p2

π in the lattice data, which, when included, should cause the size of the error bars to
increase from right to left in Fig. 3(b). These errors shouldbe incorporatedbefore performing the
q2 extrapolation, and we are in the process of doing so.

5. Summary

Lattice QCD calculations of theB → πlν semileptonic form factors are important for deter-
mining the CKM matrix element|Vub|. They are hindered, however, by the inability to accurately
calculate form factors at lowq2. This is typically dealt with by using a model to restrict theshape
of f (q2) vs. q2, thereby introducing a source of systematic error that is difficult to quantify. Ana-
lyticity, unitarity, and heavy quark physics can be combined to constrain the shape of semileptonic
form factors in a model-independent way using only a small number of fit parameters. We have
studied the effect of these constraints on theq2 extrapolation using data from a single ensemble
and the results look promising. We will integrate continuumand chiral extrapolations and other
systematic errors in the near future. Using this method, we can obtain theB → πlν semileptonic
form factors to improved accuracy using the lattice QCD datathat we already have.
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