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We construct the S-wave part of the electromagnetic vector annihilation current toO(αsv2), where

v is the non-relativistic quark velocity, for heavy quarks whose dynamics are described by the

NRQCD action on the lattice. The NRQCD vector current forQQ̄ annihilation is expressed as a

linear combination of lattice operators with quantum numbersL = 0,JP = 1−, and the coefficients

are determined by matching to the corresponding continuum current in QCD toO(v2) at one-

loop. The annihilation channel gives a complex amplitude with Coulomb-exchange and infrared

singularities, making a careful choice for the contours of integration and infrared subtraction

functions in the numerical integration necessary. An automated vertex generation program written

in Python is employed, allowing us to use a realistic NRQCD action and an improved gluon lattice

action; a change in the definition of either action is easily accommodated in this procedure. The

final result is applicable to simulations of electromagnetic decays of heavy quarkonia, notably the

ϒ meson.
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1. Introduction

Leptonic widths of heavy quarkonia such as theϒ or theJ/ψ are an important test of elec-
troweak Standard Model in the heavy quark sector: The heavy quarks are the heaviest Standard
Model particles and hence should be sensitive to possible new physics at or above the electroweak
scale, and leptonic decays have experimentally clean signatures. Moreover, ratios of leptonic
widths can be measured to good accuracy both experimentally and on the lattice.

The CLEO collaboration has experimental results to few-percent precision [1]:

Γϒ(2S)→e+e−

Γϒ(1S)→e+e−
= 0.457(6) (1.1)

which has to be compared with the current best lattice result [2]

Γϒ(2S)→e+e−M2
ϒ(2S)

Γϒ(1S)→e+e−M2
ϒ(1S)

= 0.48(5) (1.2)

There is thus a challenge to the lattice community to obtain a precision on theoretical predic-
tions that can be compared to that achieved experimentally.

2. Matching S-wave decays between NRQCD and QCD

The leptonic width of aQ̄Qstate is given by

ΓQ̄Q→l+l− =
8π

3MQ̄Q

∣∣〈0
∣∣JQCD

∣∣Q̄Q
〉∣∣2e2

Qα
2
em (2.1)

with all the nonperturbative QCD contributions encapsulated in the matrix element
〈
0
∣∣JQCD

∣∣Q̄Q
〉
.

Unfortunately, it is not possible to simulate QCD with heavy quarks directly due to their short
Compton wavelengths, so Non-Relativistic QCD (NRQCD) has to be used in lattice simulations of
heavy quarkonia.

Hence, we need to match the desired QCD matrix element to a series of NRQCD matrix
elements which can be measured on the lattice:〈

0
∣∣JQCD

∣∣Q̄Q
〉

= ∑
i

ai

〈
0
∣∣∣JNRQCD

i

∣∣∣Q̄Q
〉

(2.2)

where theai are the matching coefficients which we need to determine. For the case of S-wave
decays, which we will study exclusively in this paper, we can take the NRQCD currents to be

JNRQCD
i = σσσ

(
∆2

M2

)i
.

To compute the matching coefficients perturbatively, we expand both the coefficients and the
matrix elements perturbatively:

ai = ∑
n

α
n
s a(n)

i

〈
0|J|Q̄Q

〉
= ∑

n
α

n
s

〈
0|J|Q̄Q

〉(n)
(2.3)

and match order by order inαs.

2



P
o
S
(
L
A
T
2
0
0
6
)
0
9
8

Leptonic widths of heavy quarkonia G.M. von Hippel

In the ϒ system, the order of the NRQCD expansion parameters isv2 ∼ αs ∼ 10%. Prima
facie, this would suggest that to achieve∼ 1% accuracy, we would need to go toO(α2

s ,αsv2,v4).
However, in matrix element ratios theO(α2

s ) terms cancel, and hence we only need to include
O(αs,αsv2,v4) corrections for∼ 1% accuracy.

If we are only interested in the ratio of leptonic widths of, say,ϒ(2s) andϒ(1s), we do not care
about the overall normalisation of the matrix element, and so for each decay we need only consider
instead the quantity

MME
a0

= 〈J0〉+
a1

a0
〈J1〉+

a2

a0
〈J2〉 . (2.4)

and we can define matching coefficients for the ratio as

b1 ≡
a1

a0
=

a(0)
1

a(0)
0

+
αs

a(0)
0

[
a(1)

1 −
a(0)

1 a(1)
0

a(0)
0

]
,

b2 ≡
a2

a0
=

a(0)
2

a(0)
0

. (2.5)

In the following, we work in the Breit frame, where the decaying meson is stationary and the quark
has momentumpµ = (iE,0,0,Mv), usev as the non-relativistic expansion parameter (which is
exact at the order to which we are working) and treat the quarks as being exactly on-shell (which
can also be shown to be justified).

3. The improved NRQCD action

The improved NRQCD action used for simulations is

SNRQCD= ∑
x,t

ψ
†
ψ −ψ

†
(

1− aδH
2

)(
1− aH0

2n

)n

U†
4

(
1− aH0

2n

)n(
1− aδH

2

)
ψ (3.1)

with

aH0 =
∆(2)

2M

aδH = −c1
(∆(2))2

8(aM)3 +c2
i

8(aM)2

(
∇∇∇ · ẼEE− ẼEE ·∇∇∇

)
−c3

1

8(aM)2 σσσ · (∇̃∇∇× ẼEE− ẼEE× ∇̃∇∇)

−c4
1

2(aM)
σσσ · B̃BB+c5

∆(4)

24(aM)
−c6

(∆(2))2

16n(aM)2

wheren is a stability parameter for the euclidean-space Schrödinger equation, which must satisfy
n≥ 3/(Ma) for numerical stability. To the perturbative order considered here, we can takeci = 1.

As our glue action, we use a Symanzik improved action with tadpole improved links.

4. Automatically generating Feynman rules

In order to correctly determine the desired matching coefficients, we need to consider exactly
the same NRQCD action in perturbation theory as is used in simulations. For the improved NRQCD
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action, the Feynman rules become extremely complicated: The QQg vertex, e.g., has∼ 8,000
terms, and the QQgg vertex has∼ 70,000 terms! It is clear that a traditional manual treatment
would be extremely cumbersome and error-prone.

For this reason, we have developed HiPPy, an automated tool for generating Feynman rules
from lattice actions. HiPPy is written entirely in Python with companion modules in Fortran 95,
and is freely available from any of the authors. The main strength of HiPPy lies in its great flexi-
bility: HiPPy is capable of handling not only various kinds of NRQCD actions, but also relativistic
(staggered, Wilson . . . ) quark and gluon actions with or without improvement. A description of
HiPPy has been published in [3], and it is currently being used by HPQCD member to calculate
a variety of different improvement and renormalisation constants. Due to its flexible design, a
HiPPy-based program can easily accommodate a change in the quark or gluon action being used
without the need for changes to the user code.

5. Matching at tree level

At tree-level, the relevant matrix elements are given by〈
0
∣∣JQCD

∣∣Q̄Q
〉(0)

= v̄(−p)γγγu(p) = χ
†
σσσ

(
2
3

+
M
3E

)
ψ〈

0
∣∣∣JNRQCD

i

∣∣∣Q̄Q
〉(0)

= gi(v)χ
†
σσσψ

where

g0(v) = 1

g1(v) = − 4
(Ma)2 sin2

(
aMv

2

)
g2(v) =

4
(Ma)2

[
4sin2

(
aMv

2

)
−sin2(aMv)

]
Expanding these matrix elements in powers ofv2, we determinea(0)

i to match:

a(0)
0 = 1 a(0)

1 =
1
6

a(0)
2 =

1
8
− (aM)2

72
(5.1)

6. Matching to one-loop order

Expanding the matching condition to first order inαs gives

∑
i

a(1)
i︸︷︷︸

wanted

known functions ofv︷ ︸︸ ︷〈
0
∣∣∣JNRQCD

i

∣∣∣Q̄Q
〉(0)

=
〈
0
∣∣JQCD

∣∣Q̄Q
〉(1)︸ ︷︷ ︸

IQCD

−∑
i

a(0)
i

〈
0
∣∣∣JNRQCD

i

∣∣∣Q̄Q
〉(1)

︸ ︷︷ ︸
INRQCD

(6.1)

Both the QCD and the NRQCD matrix elements on the right-hand side contain odd powers ofv
coming from the Coulomb-exchange singularity; however, only even powers ofv are available for
matching on the left-hand side, so the odd powers must cancel exactly.
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In fact, the odd powers ofv are a purely infrared phenomenon, and are known exactly:

Iodd =
h(v)
12v

=−ℑ

{
4
3

∫
d4k

(2π)4

h(v)

(kkk2 + µ2)(ik0− kkk2+2kkk·ppp
2M )(ik0 + kkk2+2kkk·ppp

2M )

}
(6.2)

whereh(v) is a known even function ofv. We can hence analytically subtract the odd powers from
both QCD and NRQCD by rearranging the right-hand side as

IQCD− INRQCD= (IQCD− Iodd)− (INRQCD− Iodd)|B + Iodd|R4\B (6.3)

whereB signifies integration over the Brillouin zone only.
The term(IQCD− Iodd) is known analytically, while the other terms are calculated numerically

using farmed VEGAS on the CCHPCF SunFire Galaxy class computer.
The results obtained at variousv are then fitted with the ansatz

IQCD− INRQCD= a(1)
0 −a(1)

1 g1(v) (6.4)

to obtain the matching coefficients at one-loop order.

6.1 The QCD form factors

The relevant QCD on-shell form factors〈
0
∣∣JQCD

∣∣Q̄Q
〉(1)

= F(1)
1,R(4E2)v̄(−p)γγγu(p)+F(1)

2 (4E2)v̄(−p)
q̃

2M
u(p)

=
(

F(1)
1,R(4E2) f1(v2)+F(1)

2 (4E2) f2(v2)
)

χ
†
σσσψ

are simply the corresponding QED form factors (times a colour factor), which are well known at
the one loop level. TheF2 term is both UV- and IR-finite; theF1 term is UV-finite by virtue of
the Ward identity, but IR divergences (which cancel against those in the NRQCD matrix elements)
remain. Moreover, theF1 term contains odd powers ofv which arise from the 1/v Coulomb-
exchange singularity. As mentioned before, these odd powers are known to be the same in QCD
and NRQCD, allowing them to be subtracted analytically.

6.2 The NRQCD self-energy

To account for the wavefunction renormalisation in NRQCD, as well as to establish the con-
nection between the renormalised mass in terms of which the QCD form factors are formulated and
the bare mass appearing in the NRQCD action, we need to compute the self-energy of the NRQCD
heavy quarks.

The NRQCD self-energy, which is the sum of the usual “rainbow” and “tadpole” diagrams,
can be decomposed as

aΣ(p0, ppp) = A+B(p0, ppp) aT(ppp)+C(p0, ppp)
[
1−e−iap0 (1−aT(ppp))

]
(6.5)

whereT(ppp) is the tree-level kinetic energy, and from this form it is straightforward to derive the
needed quantities, namely the wavefunction and (kinetic) mass renormalisation constants as

Zψ(ppp) = 1+αs

(
aΣ+

∂aΣ
∂ (iap0)

)
on-shell

ZM = 1+αs2M
daΣ
dppp2

∣∣∣∣
ppp222=0

5
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0
Mk(a) (b) (c)k 0

M k 0
M

Figure 1: The position of the quark (red) and gluon (blue) poles in the Minkowskified energy plane. A
normal Wick rotation (a) is only possible fork2 > −2p ·k; otherwise, the integration contour has to be
deformed as in (b); for numerical work, the equivalent contour shown in (c) is adopted instead.

Given the complicated nature of the Feynman rules, we employ automatic differentiation tech-
niques [4] to calculate the derivatives.

6.3 The NRQCD vertex correction

The NRQCD vertex correction suffers from the same infrared divergences that appear in the
corresponding QCD diagram; we use a small gluon massµ as an infrared regulator.

In terms of the Minkowskified energy variablekM
0 , the poles of the integrand (in the continuum

limit) are at±kM
0 =

√
k2 + µ2− iε for the gluons, and±kM

0 =
(

2p·k+k2

2M

)
− iε for the quarks, as

shown in fig.1. Hence, a normal Wick rotation between Euclidean and Minkowskian momenta is
possible only fork2 >−2p ·k, since otherwise, the quark poles cross imaginary axis. We therefore
need to deform the Euclidean contour of integration to avoid the quark poles and pick up the correct
analytic continuation to Minkowksi space, and the choice of contour is shown in fig.1 (c).

To subtract the odd powers ofv coming from the Coulomb-exchange singularity, we use the in-
tegral form of eqn.6.2. The evaluation of the resulting finite integral is still quite hard numerically,
and takes up the major part of the computer time used.

For i > 0, the matrix elements of the NRQCD currentJi also contains tadpole-type diagrams.
Since each tadpole loop reduces thev-dependence of the result by one power ofv2, this leads to a
contamination of the lower-order matching coefficients by ”mixing down”, which would appear to
necessitate a complete recalculation if higher-order currents are added in later. The solution lies in
defining subtracted currents̄Ji = zi j J

NRQCD
j wherezi j is defined such that we have

〈
0|J̄i |Q̄Q

〉(n) =
O(v2i) for all n. For details, we have to refer the reader to [5].

7. Results

We have run our calculation at a number of different quark masses corresponding to the bottom
quark on the MILC supercoarse, coarse and fine ensembles, and to the charm quark on the super-
coarse ensemble. We have also performed extensive tests of gauge invariance, infrared regulator
independence, and agreement with known results fora(1)

0 at v = 0 in the case of simpler NRQCD

6
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Wilson glue

Figure 2: Left: the numerical results with the fit to extract the matching coefficients; right: a plot of results
in different gauges against the infrared gluon mass, showing gauge and gluon mass independence.

M0a n a1
0 a1

1 b1
1 b0

2

4.0 2 -0.1288(27) -3.32(29) -3.30(30) -0.0972
2.8 2 -0.1732(21) -1.35(22) -1.32(22) 0.0161
1.95 2 -0.1358(16) 0.26(17) 0.14(17) 0.0722
1.0 4 0.4056(20) -0.50(17) -0.56(17) 0.1111

Table 1: The matching coefficients, as a function of thebareheavy quark mass, for the leptonic width (ai)
and leptonic width ratio (bi). Note thata(0)

0 = 1, a(0)
1 = b(0)

1 = 1
6, and that there isno subtraction to prevent

mixing down.

actions. A plot of our results can be seen in fig.2, as can be a plot showing the gauge and regulator
independence of our results. Our final results for the matching coefficients are given in tab.1.
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