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The first lattice QCD result on the nuclear force (the NN potential) is presented in the quenched

level. The standard Wilson gauge action and the standard Wilson quark action are employed

on the lattice of the size163×24 with the gauge couplingβ = 5.7 and the hopping parameter

κ = 0.1665. To obtain the NN potential, we adopt a method recently proposed by CP-PACS

collaboration to study theππ scattering phase shift. It turns out that this method provides the

NN potentials which are faithful to those obtained in the analysis of NN scattering data. By

identifying the equal-time Bethe-Salpeter wave function with the Schrödinger wave function for

the two nucleon system, the NN potential is reconstructed so that the wave function satisfies the

time-independent Schrödinger equation. In this report, we restrict ourselves to theJP = 0+ and

I = 1 channel, which enables us to pick up unambiguously the “central” NN potentialVcentral(r).
The resulting potential is seen to posses a clear repulsive core of about 500 MeV at short distance

(r <∼ 0.5 fm). Although the attraction in the intermediate and long distance regions is still missing

in the present lattice set-up, our method is appeared to be quite promising in reconstructing the

NN potential with lattice QCD.
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1. Introduction

The nuclear force (the NN potential) serves as one of the most important building blocks in
nuclear physics. Its attractive part in the intermediate distance region plays an essential role to
bind nucleons in nuclei. On the other hand, its strong repulsive core at short distance ensures the
stability of heavy nuclei by preventing them from collapsing and leads to the celebrated saturation
phenomena of nuclear matter. Importance of the nuclear force goes even beyond the nuclear struc-
ture: It can have a great influence on the physics of compact stars and the supernova explosion
through the equation of state at high baryon densities.

So far, enormous effort has been devoted to understand the nuclear force theoretically [1].
The long distance region (r >∼ 2 fm) of the nuclear force is dominated by the exchange of a single
pion, i.e., the lightest elementary excitation in the QCD spectrum. The intermediate distance region
(1 <∼ r <∼ 2 fm) receives a significant contribution from multi-pion exchanges and from heavy meson
exchanges such asρ, ω, and “σ ”. The understanding of the short distance region (r <∼ 1 fm) is most
retarded, but it is believed to be intimately related to the quark-gluon structure of the nucleons.

Hence, the first principle QCD calculation of the nuclear force (in particular the short distance
region) has been desired for a long time. Recently, a method attempting to obtain the origin of
the repulsive core on the lattice was proposed, where the nucleon is assumed to be composed of
heavy-light-light quarks so that one can define the relative distance between the nucleons in terms
of the distance between the heavy quarks [2]. (The same technique was also used in Ref. [3].) In
this report, we introduce a totally different approach to the NN potential on the basis of a method
recently proposed by CP-PACS collaboration in the context ofππ scattering phase shift [5]. For
simplicity, we confine ourselves to the channelJP = 0+ and I = 1, which makes us possible to
obtain unambiguously the so-calledcentralpotentialVcentral(r). First, we construct the equal-time
Bethe-Salpeter (BS) wave function for the NN system. It is then identified with the non-relativistic
Schrödinger wave function for two nucleons interacting at low energies.Vcentral(r) is reconstructed
so that the wave function satisfies the non-relativistic Schrödinger equation. In this way, we do not
have to introduce heavy quarks to define the relative distance unlike the method propose before.

The reconstructedVcentral(r) has a repulsive core of about 0.5 GeV in the short distance region
(r <∼ 0.5 fm). On the other hand, the attraction in the intermediate and long distance regions is still
missing, which may be attributed to combined artifacts of the heavy pion mass (mπ ∼ 0.5 GeV),
the small spatial volume (L∼ 2.2 fm) and statistics.

2. The formalism

We consider the equal-time Bethe-Salpeter (BS) wave functionφ(~x;k) for NN system in the
JP = 0+ andI = 1 channel as

φ(~x;k) ≡ 1
24 ∑

R∈O

1
L3 ∑

~X

(σ2)αβ

〈
0
∣∣∣pα(R·~x+~X)nβ (~X)

∣∣∣ pn;k
〉

, (2.1)

pα(x) ≡ εabc
(
uT

aCγ5db
)

uc,α ,

nβ (x) ≡ εabc
(
uT

aCγ5db
)

dc,β ,

wherea, b andc denote the color indices,α andβ the Dirac indices, andC ≡ γ4γ2 the charge
conjugation matrix. pα(x) and nβ (y) denote composite bispinor fields for proton and neutron,
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which are represented with Dirac’s convention.~x plays the role of the spatial separation of the
proton from the neutron. The summation overR is performed for the cubic transformation group
O to pick up the s-wave orbital contribution of NN system. Note that, due to the parity selection
rule, only s-wave contribution is allowed forJP = 0+. The spinors of the proton and the neutron
are combined into scalar in the non-relativistic manner with(σ2)αβ . Since we are interested in
the significantly low energy region, the lower components of the nucleon bispinors, i.e.,pα and
nβ , are negligible. Since this wave function is symmetric in orbit and anti-symmetric in spin
configuration, it has to be symmetric in iso-spin space due to the Pauli statistics, i.e., this wave
function is iso-vector. The summation over~X is performed to project the total spatial momentum
to zero, i.e.,~P =~0. The Lüscher’sk is introduced as a relative momentum outside the range of the
NN interaction, playing the role of “asymptotic relative momentum” between the proton and the
neutron in the scattering theory in the infinite volume limit.

The BS wave function Eq. (2.1) is obtained, in the lattice QCD formulation, from the larget
behavior of the four point nucleon correlator as

FNN(~x,~y, t; t0) ≡
〈

0
∣∣∣pα(~x, t)nβ (~y, t)p̄α ′(~0, t0)n̄β ′(~0, t0)

∣∣∣0
〉

(2.2)

= ∑
n

〈
0
∣∣pα(~x)nβ (~y)

∣∣n
〉

An e−En(t−t0),

whereEn denotes the energy of the state|n〉, t0 the time-slice on which the source is located.
An ≡ 〈n|p̄α(0)n̄β (0)|0〉 plays the role of an “overlap”. Eq. (2.1) satisfies the Bethe-Salpeter (BS)
equation, since it is obtained as a solution to the BS equation for the NN system in the BS frame-
work. By using the procedure of the non-relativistic reduction, the BS equation reduces to the
effective Schrödinger equation [4] as

(∇2 +k2)φ(~x;k) = mN

∫
d3y Vk(~x−~y)φ(~y;k), (2.3)

where the nucleon massmN is introduced in the r.h.s. for later convenience. The interaction kernel
Vk(~x−~y), in general, depends onk, which is the main reason why Eq. (2.3) is referred to as “effec-
tive” Schrödinger equation. At low energies,Vk can be approximated asVk(~x−~y) 'Vk≡0(~x−~y).
We are left with the Schrödinger equation for the NN system as

− 1
2µ

∇2φ(~x;k)+
∫

d3y VNN(~x−~y)φ(~y;k) = Eφ(~x;k), (2.4)

whereµ ≡ mN/2 denotes the reduced mass of the nucleon, andE ≡ k2/(2µ) denotes the non-
relativistic “energy”.

According to the standard nuclear physics [6], the NN interactionVNN is parameterized in the
low energy region as

VNN = Vcentral(r)+Vtensor(r)Ŝ12+VLS(r)~̂L ·~̂S+O(p2), (2.5)

Ŝ12 ≡ 3
(~̂σ p ·~x)(~̂σn ·~x)

r2 − (~̂σ p · ~̂σn),

~̂L ≡ −i~x×~∇, ~̂S≡ (~̂σ p + ~̂σn)/2,

3
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wherer ≡ |~x| denotes the distance between the proton and the neutron.~̂σ p and~̂σn denote the spin

Pauli matrices for the proton and the neutron, respectively.~̂L represents the relative angular mo-
mentum operator of the proton from the neutron.Vcentral(r) is referred to as the “central” NN force,
which only depends on the distancer. It is considered to be the most important local interaction in
the NN interaction. (Interactions which do not involve any derivatives are referred to as“local” .)
Vtensor(r) is referred to as the “tensor” force, which is the second important local interaction.VLS(r)
is referred to as the “spin orbit interaction”, which is the most important non-local term. Finally,
O(p2) represents remaining non-local contributions, which is often considered to be less important.

Restriction to theJP = 0+ channel permits a further simplification. Because only the s-wave
orbital component is allowed in this quantum number due to the parity selection rule, the contribu-
tions from the second and the third terms vanish. Since, then,VNN receives the contribution only
from the central term as

VNN 'Vcentral(r), (2.6)

Eq. (2.4) reduces to

−
~∇2

2µ
φ(~x;k)+Vcentral(r)φ(~x;k) = Eφ(~x;k). (2.7)

SinceVcentral(r) is a simple multiplication operator, we can rearrange it in the following way:

Vcentral(r) = E +
1

2µ
~∇2φ(~x;k)

φ(~x;k)
. (2.8)

This relation states that, by identifying the BS wave function for NN, which is obtained from
lattice QCD calculations, as the Schrödinger wave function,Vcentral(r) can be reconstructed so that
the Schrödinger equation is satisfied. It should be emphasized that, by construction, nothing is
required on the quark mass to define the fixed separation between the two nucleons. Since the NN
potential is reconstructed from the NN wave function, this method is expected to provide such NN
potentials that are faithful to those obtained in the analysis of the NN scattering data.

3. The numerical calculation

We employ the standard Wilson gauge action at the gauge couplingβ = 5.7 on the163×24
lattice together with the standard Wilson quark action with the hopping parameterκ = 0.1665.
The lattice spacing is determined fromρ meson mass in the chiral limit asa−1 = 1.44(2) GeV
(a ' 0.137 fm). The physical volume of our lattice is(2.2fm)3× (3.3fm). These parameters
reproducesmπ ' 0.53GeV,mρ ' 0.88GeV, andmN' 1.3GeV. (See Ref. [7] for detail.) The global
heat-bath algorithm is used to generate the gauge configurations. After skipping 5000 sweeps
for thermalization, the gauge configurations are picked up every 100 sweeps. Totally, 160 gauge
configurations are used for the measurement. Dirichlet boundary condition is imposed on the quark
fields along the temporal direction on the time-slicet = 0. To enhance the ground state contribution
of the NN wave function, we adopt a spatially extended source with the gaussian smearing method
with the sizeρ ' 0.4 fm on the time-slicet = 5. The BS wave function for NN is measured on
the time-slicet = 10, which is determined from a plateau appearing in the NN effective mass plot
shown in Fig. (1). We keep in mind that the ground state saturation of the BS wave function is quite
important.
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Figure 1: The effective mass plot. Dots denote the effective mass of the NN system (JP = 0+, I = 1),
whereas crosses denote twice the effective mass of the nucleon.
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Figure 2: The lattice QCD result of the NN wave function (JP = 0+, I = 1).
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Figure 3: The lattice QCD result of the NN potentialVcentral(r).

Fig. (2) shows the lattice QCD result of the BS wave function for NN. It is normalized with
its value at the origin~r =~0. Not only the on-axis data , but also the off-axis data are plotted
all together, due to which the horizontal axis extends beyondL/2∼ 1.1 fm to

√
3L/2∼ 1.9 fm

(L ' 2.2 fm is the spatial lattice extension). We observe that the wave function shrinks near the
origin suggesting the existence of repulsion at short distance.

Fig. (3) shows the lattice QCD result of the NN potentialVcentral(r) for JP = 0+, I = 1 channel.
The simplest nearest neighbor numerical Laplacian for Eq. (2.8) is employed in reconstructing
Vcenter(r). The zero adjustment due toE ≡ 1

2µ k2 in Eq. (2.8) has not yet been performed because
of the large noise. In principle, Lüscher’sk can be obtained from the difference of the effective
masses, i.e.,mNN,eff−2mN,eff (cf. Fig. (1)), or the NN wave function in the larger region [5]. So
far, the data is too noisy to obtain it. We observe that, corresponding to the shrink in Fig. (2),
Vcentral(r) has a clear repulsive core of about 500 MeV in the short distance regionr <∼ 0.5 fm. On
the other hand, we do not find a significant attraction in the intermediate distance region, which
may be attributed to (i) the still large noise, (ii) finite volume effect (L ∼ 2.2 fm is too small for
NN), (iii) the large pion mass (mπ ∼ 0.53GeV). In order to gain physics insights into the origin of
the repulsive core at short distance, we need more information such as the quark mass dependence,
the flavor dependence, etc.

4. Summary and discussion

To study the nuclear force, we have applied a new method recently proposed by CP-PACS
collaboration in the context of theππ scattering phase shift. In this method, constraint on the quark
mass to define the distance between the two nucleons is not necessary. Because the NN potential
is reconstructed from the NN wave function, it is expected to provide NN potentials, which are
faithful to those obtained from the analysis of the NN scattering data. By restricting ourselves to
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the quantum numberJP = 0+ andI = 1, we have reconstructed the central part of the NN-potential
Vcentral(r) from the Bethe-Salpeter wave function for NN obtained by using lattice QCD. We have
seen thatVcentral(r) has a clear repulsive core of about500MeV in the short distance regionr <∼ 0.5
fm. However, we have not found a significant attraction in the intermediate distance region, which
may be attributed to the poor statistics, the small lattice volume (L∼ 2.2 fm) and the large pion mass
mπ ∼ 0.53GeV. We are currently performing a lattice QCD calculation forVcentral(r) using a better
statistics on a larger lattice volume with a lighter pion mass, which will be presented elsewhere.
Our method have appeared to be quite promising in reproducing the NN potential with lattice QCD.
It is interesting to apply our method to other channels to constructVLS(r) andVtensor(r). Also, it
is important to apply our method to hyperon-nucleon and hyperon-hyperon forces, where only a
limited number of experimental data are available so far.
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