

ho meson decay from the lattice

CP-PACS collaboration:

S. Aoki,^{*a,b*} M. Fukugita,^{*c*} K.-I. Ishikawa,^{*d*} N. Ishizuka^{*},^{*a,e*†}K. Kanaya,^{*a*} Y. Kuramashi,^{*a,e*} Y. Namekawa,^{*f*} M. Okawa,^{*d*} K. Sasaki,^{*e*} A. Ukawa,^{*a,e*} T. Yoshié^{*a,e*}

^a Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

- ^b Riken BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
- ^c Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
- ^d Department of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- ^e Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

^f Department of Physics, Nagoya University, Nagoya 464-8602, Japan

We present preliminary results on the ρ meson decay width estimated from the scattering phase shift of the I = 1 two-pion system. The phase shift is calculated by the finite size formula for nonzero total momentum frame (the moving frame) derived by Rummukainen and Gottlieb, using the $N_f = 2$ improved Wilson fermion action at $m_{\pi}/m_{\rho} = 0.41$ and L = 2.53 fm.

XXIVth International Symposium on Lattice Field Theory July 23-28, 2006 Tucson, Arizona, USA

*Speaker.

[†]E-mail : ishizuka@ccs.tsukuba.ac.jp

1. Introduction

Lattice study of the ρ meson decay is an important step for understanding of the dynamical aspect of hadron reactions induced by strong interactions. There are already three studies [1, 2, 3]. The earlier two studies employed the quenched approximation ignores the decay into two ghost pions. The most recent work, while using the $N_f = 2$ dynamical configurations, concentrated on the $\rho \rightarrow \pi \pi$ transition amplitude rather than the full matrix including the $\rho \rightarrow \rho$ and $\pi \pi \rightarrow \pi \pi$ amplitudes. All three studies were carried out at an unphysical kinematics $m_{\pi}/m_{\rho} > 1/2$.

In this work we attempt to carry out a more rigorous approach. We estimate the decay width from the scattering phase shift for the I = 1 two-pion system. The finite size formula presented by Rummukainen and Gottlieb [4] is employed for an estimation of the phase shift. Calculations are carried out with $N_f = 2$ full QCD configuration previously generated for a study of light hadron spectrum with a renormalization group improved gauge action and a clover fermion action at $\beta =$ 1.8, $\kappa = 0.14705$ on a $12^3 \times 24$ lattice [5]. The parameters determined from the spectrum analysis are 1/a = 0.92 GeV, $m_{\pi}/m_{\rho} = 0.41$, and L = 2.53 fm. All calculations of this work are carried out on VPP5000/80 at the Academic Computing and Communications Center of University of Tsukuba.

2. Method

In order to realize a kinematics such that the energy of the two-pion state is close to the resonance energy m_{ρ} , we consider the non-zero total momentum frame (the moving frame) [4] with the total momentum $\mathbf{p} = 2\pi/L \cdot \mathbf{e}_3$. The initial ρ meson is assigned a polarization vector parallel to \mathbf{p} . One of the final two pions carry the momentum \mathbf{p} , while the other pion is at rest. The energies ignoring hadron interactions are then given by $E_1^0 = \sqrt{m_{\pi}^2 + p^2} + m_{\pi}$ for the two-pion state and $E_2^0 = \sqrt{m_{\rho}^2 + p^2}$ for the ρ meson. We neglect higher energy states whose energies are much higher than E_1^0 and E_2^0 . On our full QCD configurations, the invariant mass for the two-pion state takes $\sqrt{s} = 0.97 \times m_{\rho}$, while 1.47 $\times m_{\rho}$ is expected for the zero total momentum. The ρ meson at zero momentum cannot decay energetically, so that it can be used to extract m_{ρ} .

The hadron interactions shift the energy from E_n^0 to E_n (n = 1, 2). These energies E_n are related to the two-pion scattering phase shift $\delta(\sqrt{s})$ through the Rummukainen-Gottlieb formula [4], which is an extension of the Lüscher formula [6] to the moving frame. The formula for the total momentum $\mathbf{p} = p\mathbf{e}_3$ and the \mathbf{A}_2^- representation of the rotation group on the lattice reads

$$\frac{1}{\tan\delta(\sqrt{s})} = \frac{1}{2\pi^2 q \gamma} \sum_{\mathbf{r} \in \Gamma} \frac{1 + (3r_3^2 - r^2)/q^2}{r^2 - q^2}, \qquad (2.1)$$

where $\sqrt{s} = \sqrt{E^2 - p^2}$ is the invariant mass, k is the scattering momentum ($\sqrt{s} = 2\sqrt{m_{\pi}^2 + k^2}$), γ is the Lorentz boost factor ($\gamma = E/\sqrt{s}$), and $q = kL/(2\pi)$. The summation for **r** in (2.1) runs over the set

$$\Gamma = \{ \mathbf{r} | r_1 = n_1, r_2 = n_2, r_3 = (n_3 + \frac{p}{2} \frac{L}{2\pi}) / \gamma, \mathbf{n} \in \mathbf{Z}^3 \}.$$
(2.2)

The right hand side of (2.1) can be evaluated by the method described in Ref. [7].

In order to calculate E_1 and E_2 we construct a 2 × 2 matrix time correlation function,

$$G(t) = \begin{pmatrix} \langle 0 | (\pi\pi)^{\dagger}(t) (\pi\pi)(t_{s}) | 0 \rangle & \langle 0 | (\pi\pi)^{\dagger}(t) \rho_{3}(t_{s}) | 0 \rangle \\ \langle 0 | \rho_{3}^{\dagger}(t) (\pi\pi)(t_{s}) | 0 \rangle & \langle 0 | \rho_{3}^{\dagger}(t) \rho_{3}(t_{s}) | 0 \rangle \end{pmatrix} .$$
(2.3)

Here, $\rho_3(t)$ is an interpolating operator for the neutral ρ meson with the momentum $\mathbf{p} = 2\pi/L \cdot \mathbf{e}_3$ and the polarization vector parallel to \mathbf{p} ; $(\pi\pi)(t)$ is an interpolating operator for the two pions given by

$$(\pi\pi)(t) = \frac{1}{\sqrt{2}} \Big(\pi^{-}(\mathbf{p}, t) \pi^{+}(\mathbf{0}, t) - \pi^{+}(\mathbf{p}, t) \pi^{-}(\mathbf{0}, t) \Big) , \qquad (2.4)$$

which belongs to the A_2^- and iso-spin representation with $I = 1, I_z = 0$.

We can extract the two energy eigenvalues by a single exponential fitting of the two eigenvalues $\lambda_1(t,t_R)$ and $\lambda_2(t,t_R)$ of the normalized matrix $M(t,t_R) = G(t)G^{-1}(t_R)$ with some reference time t_R [8] assuming that the lower two states dominate the correlation function.

In order to construct the meson state with non-zero momentum we introduce a U(1) noise $\xi_i(\mathbf{x})$ in three-dimensional space whose property is

$$\frac{1}{N_R} \sum_{j=1}^{N_R} \xi_j^{\dagger}(\mathbf{x}) \xi_j(\mathbf{y}) = \delta^3(\mathbf{x} - \mathbf{y}) \quad \text{for } N_R \to \infty .$$
(2.5)

We calculate the quark propagator

$$Q(\mathbf{x},t|\mathbf{q},t_s,\xi_j) = \sum_{\mathbf{y}} (D^{-1})(\mathbf{x},t;\mathbf{y},t_s) \cdot \left[e^{i\mathbf{q}\cdot\mathbf{y}}\xi_j(\mathbf{y}) \right], \qquad (2.6)$$

regarding the term in the square bracket as the source. The two point function of the meson with the spin content Γ and the momentum **p** can be constructed from *Q* as

$$\frac{1}{N_R}\sum_{j=1}^{N_R}\sum_{\mathbf{x}} e^{-i\mathbf{p}\cdot\mathbf{x}} \cdot \left\langle \gamma_5 \ Q^{\dagger}(\mathbf{x},t|\mathbf{0},t_s,\xi_j) \ \gamma_5 \Gamma^{\dagger} \ Q(\mathbf{x},t|\mathbf{p},t_s,\xi_j) \ \Gamma \right\rangle,$$
(2.7)

where the bracket refers to the trace for color and spin indeces.

The quark contraction for the $\pi\pi \to \pi\pi$ and the $\pi\pi \to \rho$ components of G(t) are given by

(2.8)

where the four verteces for the $\pi\pi \to \pi\pi$ and three verteces for the $\pi\pi \to \rho$ components refer to the pion or the ρ meson with definite momentum. The time direction is upward in the diagrams, and the $\rho \to \pi\pi$ component is given by changing the time direction.

The first term of the $\pi\pi \to \pi\pi$ component in (2.8) can be calculated by introducing another U(1) noise $\eta_i(\mathbf{x})$ having the same property as $\xi_i(\mathbf{x})$ in (2.5);

$$\frac{1}{N_R} \sum_{j=1}^{N_R} \sum_{\mathbf{x},\mathbf{y}} e^{-i\mathbf{p}\cdot\mathbf{x}} \cdot \left\langle Q^{\dagger}(\mathbf{x},t|\mathbf{0},t_s,\xi_j) \; Q(\mathbf{x},t|\mathbf{p},t_s,\xi_j) \right\rangle \left\langle Q^{\dagger}(\mathbf{y},t|\mathbf{0},t_s,\eta_j) \; Q(\mathbf{y},t|\mathbf{0},t_s,\eta_j) \right\rangle.$$
(2.9)

The second term of (2.8) is obtained by exchanging the momentum of the sink in (2.9).

In order to construct the other terms of (2.8) we calculate a quark propagator of another type by the source method,

$$W(\mathbf{x},t|\mathbf{k},t_1|\mathbf{q},t_s,\xi_j) = \sum_{\mathbf{z}} (D^{-1})(\mathbf{x},t;\mathbf{z},t_1) \cdot \left[e^{i\mathbf{k}\cdot\mathbf{z}}\gamma_5 \ Q(\mathbf{z},t_1|\mathbf{q},t_s,\xi_j) \right], \qquad (2.10)$$

where the term in the square bracket is regarded as the source in solving the propagator. Using W we can construct the third to sixth terms in the $\pi\pi \to \pi\pi$ component of (2.8) by

$$3rd = \frac{1}{N_R} \sum_{j=1}^{N_R} \sum_{\mathbf{x}} e^{-i\mathbf{p}\cdot\mathbf{x}} \cdot \left\langle W^{\dagger}(\mathbf{x},t|\mathbf{0},t_s|-\mathbf{p},t_s,\xi_j) W(\mathbf{x},t|\mathbf{0},t|\mathbf{0},t_s,\xi_j) \right\rangle,$$

$$4th = \frac{1}{N_R} \sum_{j=1}^{N_R} \sum_{\mathbf{x}} e^{-i\mathbf{p}\cdot\mathbf{x}} \cdot \left\langle W(\mathbf{x},t|\mathbf{0},t_s|\mathbf{p},t_s,\xi_j) W^{\dagger}(\mathbf{x},t|\mathbf{0},t|\mathbf{0},t_s,\xi_j) \right\rangle,$$

$$5th = \frac{1}{N_R} \sum_{j=1}^{N_R} \sum_{\mathbf{x}} e^{-i\mathbf{p}\cdot\mathbf{x}} \cdot \left\langle W(\mathbf{x},t|\mathbf{p},t_s|\mathbf{0},t_s,\xi_j) W^{\dagger}(\mathbf{x},t|\mathbf{0},t|\mathbf{0},t_s,\xi_j) \right\rangle,$$

$$6th = \frac{1}{N_R} \sum_{j=1}^{N_R} \sum_{\mathbf{x}} e^{-i\mathbf{p}\cdot\mathbf{x}} \cdot \left\langle W^{\dagger}(\mathbf{x},t|-\mathbf{p},t_s|\mathbf{0},t_s,\xi_j) W(\mathbf{x},t|\mathbf{0},t|\mathbf{0},t_s,\xi_j) \right\rangle. \quad (2.11)$$

The two terms of $\pi\pi \rightarrow \rho$ of (2.8) can be similarly constructed by

1st =
$$\frac{1}{N_R} \sum_{j=1}^{N_R} \sum_{\mathbf{x}} e^{-i\mathbf{p}\cdot\mathbf{x}} \cdot \left\langle W^{\dagger}(\mathbf{x},t|-\mathbf{p},t_s|\mathbf{0},t_s,\xi_j) (\gamma_5\gamma_3) Q(\mathbf{x},t|\mathbf{0},t_s,\xi_j) \right\rangle,$$

2nd = $\frac{1}{N_R} \sum_{j=1}^{N_R} \sum_{\mathbf{x}} e^{-i\mathbf{p}\cdot\mathbf{x}} \cdot \left\langle Q^{\dagger}(\mathbf{x},t|\mathbf{0},t_s,\xi_j) (\gamma_5\gamma_3) W(\mathbf{x},t|\mathbf{p},t_s|\mathbf{0},t_s,\xi_j) \right\rangle.$ (2.12)

In this work we set the source at $t_s = 4$ and impose the Dirichlet boundary condition in the time direction. We calculate the *Q*-type propagators for four sets of **q** and the U(1) noise in (2.6) : $(\mathbf{q}, \text{noise}) = \{(\mathbf{0}, \xi), (\mathbf{0}, \eta), (\mathbf{p}, \xi), (-\mathbf{p}, \xi)\}$. The *W*-type propagators are calculated for 22 sets of **k**, t_1 and **q** in (2.10) : $(\mathbf{k}, t_1 | \mathbf{q}) = \{(\mathbf{p}, t_s | \mathbf{0}), (-\mathbf{p}, t_s | \mathbf{0}), (\mathbf{0}, t_s | \mathbf{p}), (\mathbf{0}, t_s | -\mathbf{p}), (\mathbf{0}, t_1 = 4 - 21 | \mathbf{0})\}$, with the same U(1) noise ξ . All diagrams for the time correlation function can be calculated with combinations of these propagators. We choose $N_R = 10$ for the number of U(1) noise. We carry out additional measurements to reduce statistical errors using the source operator is located at $t_s + T/2$ and the Dirichlet boundary condition is imposed at T/2. We average over the two measurements for the analysis. Thus we calculate 520 quark propagators for each configuration. The total number of configurations analyzed are 800 separated by 5 trajectories [5].

3. Results

In Fig. 1 we plot the real part of the diagonal components $(\pi\pi \to \pi\pi$ and $\rho \to \rho)$ and the imaginary part of the off-diagonal components $(\pi\pi \to \rho, \rho \to \pi\pi)$ of G(t). Our construction of

Figure 2: Normalized eigenvalues $\lambda_1(t, t_R)$ and $\lambda_2(t, t_R)$.

G(t) is such that the sink and source operators are identical for a sufficiently large number of the U(1) noise. In this case we can prove that G(t) is an Hermitian matrix and the off-diagonal parts are pure imaginary from P and CP symmetry. We find that this is valid within statistics, but the statistical errors of the $\rho \rightarrow \pi\pi$ component is larger than those of $\pi\pi \rightarrow \rho$ in Fig. 1. In the following analysis we substitute $\rho \rightarrow \pi\pi$ by $\pi\pi \rightarrow \rho$ to reduce the statistical error.

The two eigenvalues $\lambda_1(t, t_R)$ and $\lambda_2(t, t_R)$ for the matrix $M(t, t_R) = G(t)G^{-1}(t_R)$ are shown in Fig. 2. We set the reference time $t_R = 9$ and normalize the eigenvalues by the correlation function for the free two-pion system, $\langle 0|\pi(-\mathbf{p},t)\pi(\mathbf{p},t_s)|0\rangle\langle 0|\pi(\mathbf{0},t)\pi(\mathbf{0},t_s)|0\rangle$. Thus the slope of the figure corresponds to the energy difference $\Delta E_n = E_n - E_1^0$. We observe that the energy difference for λ_1 is negative and that for λ_2 is positive. This means that the two-pion scatting phase shift is positive for the lowest state and negative for the next higher state.

We extract the energy difference ΔE_n for both states by a single exponential fitting of the normalized eigenvalues λ_1 and λ_2 for the time range t = 10 - 16. Then we reconstruct the energy E_n in the moving frame by adding the energy of the two free pions, *i.e.*, $E_n = \Delta E_n + E_1^0$, and convert it

Figure 3: $\sin^2 \delta(\sqrt{s})$, position of m_{ρ} and resonance mass M_R .

to the invariant mass \sqrt{s} . Substituting \sqrt{s} into the Rummukainen-Gottlieb formula (2.1) we obtain the scattering phase shift :

$a\sqrt{s}$	$\tan \delta(\sqrt{s})$	
0.7880 ± 0.0082	0.0773 ± 0.0033	(3.
0.962 ± 0.024	-0.43 ± 0.12	

The ρ meson mass obtained at zero momentum is $am_{\rho} = 0.858 \pm 0.012$. Hence the sign of the scattering phase shifts at $\sqrt{s} < m_{\rho}$ is positive (attractive interaction) and that at $\sqrt{s} > m_{\rho}$ is negative (repulsive interaction) as expected. The corresponding results for $\sin^2 \delta(\sqrt{s})$, which is proportional to the scattering cross section of the two-pion system, are plotted in Fig. 3 together with the position of m_{ρ} .

In order to estimate the ρ meson decay width at the physical quark mass we parameterize the scattering phase shift by the effective $\rho \rightarrow \pi\pi$ coupling constant $g_{\rho\pi\pi}$,

$$\tan \delta(\sqrt{s}) = \frac{g_{\rho\pi\pi}^2}{6\pi} \cdot \frac{k^3}{\sqrt{s}(M_R^2 - s)}, \qquad (3.2)$$

with $g_{\rho\pi\pi}$ defined by the effective Lagrangian,

$$L_{\rm eff.} = g_{\rho\pi\pi} \cdot \varepsilon_{abc} (k_1 - k_2)_{\mu} \rho^a_{\mu}(p) \pi^b(k_1) \pi^c(k_2) , \qquad (3.3)$$

where k is the scattering momentum and M_R is the resonance mass. The coupling $g_{\rho\pi\pi}$ generally depends on the quark mass and the energy, but our present data at a single quark mass do not provide this information. Here we assume that these dependences are small and try to estimate $g_{\rho\pi\pi}$ and M_R from our results in (3.1). We also estimate the ρ meson decay width at the physical

quark mass from

$$\Gamma_{\rho} = \frac{g_{\rho\pi\pi}^2}{6\pi} \cdot \frac{\bar{k}_{\rho}^3}{\bar{m}_{\rho}^2} = g_{\rho\pi\pi}^2 \times 4.128 \text{ MeV}, \qquad (3.4)$$

where \bar{m}_{ρ} is the ρ meson mass at the physical quark mass and \bar{k}_{ρ} is the scattering momentum at $\sqrt{s} = \bar{m}_{\rho}$.

Our final results are as follows.

$$aM_R = 0.877 \pm 0.025$$

$$g_{\rho\pi\pi} = 6.01 \pm 0.63$$

$$\Gamma_{\rho} = 149 \pm 31 \text{ MeV}.$$
(3.5)

The resonance mass M_R obtained from the scattering phase shift is consistent with $am_\rho = 0.858 \pm 0.012$ obtained from the ρ meson with zero momentum. The ρ meson decay width Γ_ρ at the physical quark mass is consistent with experiment (150 MeV). In Fig. 3 we indicate the position of M_R and draw the line given by (3.2) with $g_{\rho\pi\pi}$ and M_R in (3.5).

4. Summary

We have shown that a direct calculation of the ρ meson decay width from the scattering phase shift for the I = 1 two-pion system is possible with present computing resources. However, several issues remain which should be investigated in future work. The most important issue is a proper evaluation of the quark mass and energy dependence of the effective $\rho \rightarrow \pi\pi$ coupling constant $g_{\rho\pi\pi}$. This constant is used to obtain the physical decay width at $m_{\pi}/m_{\rho} = 0.18$ from our results at $m_{\pi}/m_{\rho} = 0.41$ by a long chiral extrapolation. In principle we can estimate the decay width from the scattering phase shift without such a parameterization, if we have data for several energy values at or near the physical quark mass. This will be our goal toward the lattice determination of the ρ meson decay.

This work is supported in part by Grants-in-Aid of the Ministry of Education (Nos. 17340066, 16540228, 18104005, 17540259, 13135216, 18540250, 15540251, 13135204, 16740147, 18740139). The numerical calculations have been carried out on VPP5000/80 at Academic Computing and Communications Center of University of Tsukuba.

References

- [1] S. Gottlieb, P.B. Mackenzie, H.B. Thacker, and D. Weingarten, Phys. Lett. B134 (1984) 346.
- [2] R.D. Loft and T.A. DeGrand, Phys. Rev. D39 (1989) 2692.
- [3] UKQCD Collaboration, C. McNeile and C. Michael, Phys. Lett. B556 (2003) 177.
- [4] K. Rummukainen and S. Gottlieb, Nucl. Phys. B450 (1995) 397.
- [5] CP-PACS Collaboration, Y. Namekawa et al., Phys. Rev. D70 (2004) 074503.
- [6] M. Lüscher, Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B354 (1991) 531.
- [7] CP-PACS Collaboration, T. Yamazaki et al., Phys. Rev. D70 (2004) 074513.
- [8] M. Lüscher and U. Wolff, Nucl. Phys. B339 (1990) 222.