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ρ meson decay from the lattice
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1. Introduction

Lattice study of the ρ meson decay is an important step for understanding of the dynamical
aspect of hadron reactions induced by strong interactions. There are already three studies [1, 2, 3].
The earlier two studies employed the quenched approximation ignores the decay into two ghost
pions. The most recent work, while using the N f � 2 dynamical configurations, concentrated on
the ρ � ππ transition amplitude rather than the full matrix including the ρ � ρ and ππ � ππ
amplitudes. All three studies were carried out at an unphysical kinematics mπ

�
mρ � 1

�
2.

In this work we attempt to carry out a more rigorous approach. We estimate the decay width
from the scattering phase shift for the I � 1 two-pion system. The finite size formula presented by
Rummukainen and Gottlieb [4] is employed for an estimation of the phase shift. Calculations are
carried out with N f � 2 full QCD configuration previously generated for a study of light hadron
spectrum with a renormalization group improved gauge action and a clover fermion action at β �
1 � 8, κ � 0 � 14705 on a 123 � 24 lattice [5]. The parameters determined from the spectrum analysis
are 1

�
a � 0 � 92 GeV, mπ

�
mρ � 0 � 41, and L � 2 � 53 fm. All calculations of this work are carried

out on VPP5000/80 at the Academic Computing and Communications Center of University of
Tsukuba.

2. Method

In order to realize a kinematics such that the energy of the two-pion state is close to the
resonance energy mρ , we consider the non-zero total momentum frame (the moving frame) [4]
with the total momentum p � 2π

�
L � e3. The initial ρ meson is assigned a polarization vector

parallel to p. One of the final two pions carry the momentum p, while the other pion is at rest. The
energies ignoring hadron interactions are then given by E 0

1 ��� m2
π 	 p2 	 mπ for the two-pion state

and E0
2 ��
 m2

ρ 	 p2 for the ρ meson. We neglect higher energy states whose energies are much

higher than E0
1 and E0

2 . On our full QCD configurations, the invariant mass for the two-pion state
takes � s � 0 � 97 � mρ , while 1 � 47 � mρ is expected for the zero total momentum. The ρ meson at
zero momentum cannot decay energetically, so that it can be used to extract mρ .

The hadron interactions shift the energy from E 0
n to En (n � 1  2). These energies En are re-

lated to the two-pion scattering phase shift δ ��� s � through the Rummukainen-Gottlieb formula [4],
which is an extension of the Lüscher formula [6] to the moving frame. The formula for the total
momentum p � pe3 and the A �2 representation of the rotation group on the lattice reads

1
tanδ ��� s � � 1

2π2qγ ∑
r � Γ

1 	 � 3r2
3 � r2 � � q2

r2 � q2  (2.1)

where � s � � E2 � p2 is the invariant mass, k is the scattering momentum ( � s � 2 � m2
π 	 k2), γ

is the Lorentz boost factor (γ � E
� � s), and q � kL

� � 2π � . The summation for r in (2.1) runs over
the set

Γ ��� r � r1 � n1  r2 � n2  r3 � � n3 	 p
2

L
2π
� � γ  n � Z3 � � (2.2)

The right hand side of (2.1) can be evaluated by the method described in Ref. [7].

2



P
o
S
(
L
A
T
2
0
0
6
)
1
1
0

ρ meson decay from the lattice N. Ishizuka

In order to calculate E1 and E2 we construct a 2 � 2 matrix time correlation function,

G � t � ����� 0 � � ππ � † � t � � ππ � � ts � � 0 � � 0 � � ππ � † � t � ρ3 � ts � � 0 �� 0 � ρ†
3 � t � � ππ � � ts � � 0 � � 0 � ρ†

3 � t � ρ3 � ts � � 0 � � � (2.3)

Here, ρ3 � t � is an interpolating operator for the neutral ρ meson with the momentum p � 2π
�
L � e3

and the polarization vector parallel to p; � ππ � � t � is an interpolating operator for the two pions given
by

� ππ � � t � � 1� 2 � π � � p  t � π � � 0  t � � π � � p  t � π � � 0  t �	�  (2.4)

which belongs to the A �2 and iso-spin representation with I � 1, Iz � 0.
We can extract the two energy eigenvalues by a single exponential fitting of the two eigenvalues

λ1 � t  tR � and λ2 � t  tR � of the normalized matrix M � t  tR � � G � t � G � 1 � tR � with some reference time
tR [8] assuming that the lower two states dominate the correlation function.

In order to construct the meson state with non-zero momentum we introduce a U � 1 � noise
ξ j � x � in three-dimensional space whose property is

1
NR

NR

∑
j 
 1

ξ †
j � x � ξ j � y � � δ 3 � x � y � for NR

� ∞ � (2.5)

We calculate the quark propagator

Q � x  t � q  ts  ξ j � � ∑
y
� D � 1 � � x  t;y  ts � ��� eiq  yξ j � y ���  (2.6)

regarding the term in the square bracket as the source. The two point function of the meson with
the spin content Γ and the momentum p can be constructed from Q as

1
NR

NR

∑
j 
 1

∑
x

e � ip  x ��� γ5 Q† � x  t � 0  ts  ξ j � γ5Γ† Q � x  t � p  ts  ξ j � Γ �  (2.7)

where the bracket refers to the trace for color and spin indeces.
The quark contraction for the ππ � ππ and the ππ � ρ components of G � t � are given by

(2.8)
where the four verteces for the ππ � ππ and three verteces for the ππ � ρ components refer to
the pion or the ρ meson with definite momentum. The time direction is upward in the diagrams,
and the ρ � ππ component is given by changing the time direction.
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The first term of the ππ � ππ component in (2.8) can be calculated by introducing another
U � 1 � noise η j � x � having the same property as ξ j � x � in (2.5);

1
NR

NR

∑
j 
 1

∑
x � y

e � ip  x � � Q† � x  t � 0  ts  ξ j � Q � x  t � p  ts  ξ j � � � Q† � y  t � 0  ts  η j � Q � y  t � 0  ts  η j � � � (2.9)

The second term of (2.8) is obtained by exchanging the momentum of the sink in (2.9).
In order to construct the other terms of (2.8) we calculate a quark propagator of another type

by the source method,

W � x  t � k  t1 � q  ts  ξ j � � ∑
z
� D � 1 � � x  t;z  t1 � � � eik  zγ5 Q � z  t1 � q  ts  ξ j � �  (2.10)

where the term in the square bracket is regarded as the source in solving the propagator. Using W
we can construct the third to sixth terms in the ππ � ππ component of (2.8) by

3rd � 1
NR

NR

∑
j 
 1

∑
x

e � ip  x � � W † � x  t � 0  ts � � p  ts  ξ j � W � x  t � 0  t � 0  ts  ξ j � � 
4th � 1

NR

NR

∑
j 
 1

∑
x

e � ip  x ��� W � x  t � 0  ts � p  ts  ξ j � W † � x  t � 0  t � 0  ts  ξ j � � 
5th � 1

NR

NR

∑
j 
 1

∑
x

e � ip  x ��� W � x  t � p  ts � 0  ts  ξ j � W † � x  t � 0  t � 0  ts  ξ j � � 
6th � 1

NR

NR

∑
j 
 1

∑
x

e � ip  x ��� W † � x  t � � p  ts � 0  ts  ξ j � W � x  t � 0  t � 0  ts  ξ j � � � (2.11)

The two terms of ππ � ρ of (2.8) can be similarly constructed by

1st � 1
NR

NR

∑
j 
 1

∑
x

e � ip  x � � W † � x  t � � p  ts � 0  ts  ξ j � � γ5γ3 � Q � x  t � 0  ts  ξ j � � 
2nd � 1

NR

NR

∑
j 
 1

∑
x

e � ip  x � � Q† � x  t � 0  ts  ξ j � � γ5γ3 � W � x  t � p  ts � 0  ts  ξ j � � � (2.12)

In this work we set the source at ts � 4 and impose the Dirichlet boundary condition in the
time direction. We calculate the Q-type propagators for four sets of q and the U � 1 � noise in (2.6) :� q  noise � � � � 0  ξ �  � 0  η �  � p  ξ �  � � p  ξ � � . The W -type propagators are calculated for 22 sets
of k, t1 and q in (2.10) : � k  t1 � q � � � � p  ts � 0 �  � � p  ts � 0 �  � 0  ts � p �  � 0  ts � � p �  � 0  t1 � 4 � 21 � 0 � � ,
with the same U � 1 � noise ξ . All diagrams for the time correlation function can be calculated with
combinations of these propagators. We choose NR � 10 for the number of U � 1 � noise. We carry out
additional measurements to reduce statistical errors using the source operator is located at ts 	 T

�
2

and the Dirichlet boundary condition is imposed at T
�
2. We average over the two measurements

for the analysis. Thus we calculate 520 quark propagators for each configuration. The total number
of configurations analyzed are 800 separated by 5 trajectories [5].

3. Results

In Fig. 1 we plot the real part of the diagonal components (ππ � ππ and ρ � ρ) and the
imaginary part of the off-diagonal components (ππ � ρ , ρ � ππ) of G � t � . Our construction of
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Figure 1: G
�
t �

Figure 2: Normalized eigenvalues λ1
�
t � tR � and λ2

�
t � tR � .

G � t � is such that the sink and source operators are identical for a sufficiently large number of the
U � 1 � noise. In this case we can prove that G � t � is an Hermitian matrix and the off-diagonal parts
are pure imaginary from P and CP symmetry. We find that this is valid within statistics, but the
statistical errors of the ρ � ππ component is larger than those of ππ � ρ in Fig. 1. In the following
analysis we substitute ρ � ππ by ππ � ρ to reduce the statistical error.

The two eigenvalues λ1 � t  tR � and λ2 � t  tR � for the matrix M � t  tR � � G � t � G � 1 � tR � are shown in
Fig. 2. We set the reference time tR � 9 and normalize the eigenvalues by the correlation function
for the free two-pion system, � 0 � π � � p  t � π � p  ts � � 0 � � 0 � π � 0  t � π � 0  ts � � 0 � . Thus the slope of the figure
corresponds to the energy difference ∆En � En � E0

1 . We observe that the energy difference for λ1

is negative and that for λ2 is positive. This means that the two-pion scatting phase shift is positive
for the lowest state and negative for the next higher state.

We extract the energy difference ∆En for both states by a single exponential fitting of the nor-
malized eigenvalues λ1 and λ2 for the time range t � 10 � 16. Then we reconstruct the energy En

in the moving frame by adding the energy of the two free pions, i.e., En � ∆En 	 E0
1 , and convert it
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Figure 3: sin2 δ
���

s � , position of mρ and resonance mass MR.

to the invariant mass � s. Substituting � s into the Rummukainen-Gottlieb formula (2.1) we obtain
the scattering phase shift :

a � s tanδ � � s �
0 � 7880 � 0 � 0082 0 � 0773 � 0 � 0033
0 � 962 � 0 � 024 � 0 � 43 � 0 � 12

(3.1)

The ρ meson mass obtained at zero momentum is amρ � 0 � 858 � 0 � 012. Hence the sign of the
scattering phase shifts at � s � mρ is positive (attractive interaction) and that at � s � mρ is negative
(repulsive interaction) as expected. The corresponding results for sin2 δ � � s � , which is proportional
to the scattering cross section of the two-pion system, are plotted in Fig. 3 together with the position
of mρ .

In order to estimate the ρ meson decay width at the physical quark mass we parameterize the
scattering phase shift by the effective ρ � ππ coupling constant gρππ ,

tanδ � � s � � g2
ρππ

6π
� k3

� s � M2
R � s �  (3.2)

with gρππ defined by the effective Lagrangian,

Leff � � gρππ � εabc � k1 � k2 � µ ρa
µ � p � πb � k1 � πc � k2 �  (3.3)

where k is the scattering momentum and MR is the resonance mass. The coupling gρππ generally
depends on the quark mass and the energy, but our present data at a single quark mass do not
provide this information. Here we assume that these dependences are small and try to estimate
gρππ and MR from our results in (3.1). We also estimate the ρ meson decay width at the physical
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quark mass from

Γρ � g2
ρππ

6π
� k̄3

ρ

m̄2
ρ
� g2

ρππ
� 4 � 128 MeV  (3.4)

where m̄ρ is the ρ meson mass at the physical quark mass and k̄ρ is the scattering momentum at� s � m̄ρ .
Our final results are as follows.

aMR � 0 � 877 � 0 � 025
gρππ � 6 � 01 � 0 � 63

Γρ � 149 � 31 MeV � (3.5)

The resonance mass MR obtained from the scattering phase shift is consistent with amρ � 0 � 858 �
0 � 012 obtained from the ρ meson with zero momentum. The ρ meson decay width Γρ at the
physical quark mass is consistent with experiment (150 MeV). In Fig. 3 we indicate the position of
MR and draw the line given by (3.2) with gρππ and MR in (3.5).

4. Summary

We have shown that a direct calculation of the ρ meson decay width from the scattering phase
shift for the I � 1 two-pion system is possible with present computing resources. However, several
issues remain which should be investigated in future work. The most important issue is a proper
evaluation of the quark mass and energy dependence of the effective ρ � ππ coupling constant
gρππ . This constant is used to obtain the physical decay width at mπ

�
mρ � 0 � 18 from our results at

mπ
�
mρ � 0 � 41 by a long chiral extrapolation. In principle we can estimate the decay width from

the scattering phase shift without such a parameterization, if we have data for several energy values
at or near the physical quark mass. This will be our goal toward the lattice determination of the ρ
meson decay.

This work is supported in part by Grants-in-Aid of the Ministry of Education (Nos.
17340066, 16540228, 18104005, 17540259, 13135216, 18540250, 15540251, 13135204,
16740147, 18740139 ). The numerical calculations have been carried out on VPP5000/80 at
Academic Computing and Communications Center of University of Tsukuba.
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