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1. Introduction

We present a lattice calculation of the first moment of thdilegrtwist distribution amplitude of the
kaon, g (u, 1) [1]. Among the many phenomenological applications whiajuiee knowledge of
distribution amplitudes are electromagnetic form-fagtat large momentum transfer and related
processes [2, 3, 4, 5, 6, 7, 8], and, following the develognoérthe factorization framework,
exclusive charmless two-bodBrdecays into two light mesons [9, 10, 11, 12, 13, 14, 15].

The distribution amplitude parametrizes the overlap of@kaith longitudinal momentunp with

the lowest Fock state consisting of a quark and an anti-qoarky/ing the momentum fractions
up andup = (1—u)p, respectively (+ u = 1). It is defined by the non-local (light-cone) matrix
element

(01q(2) yp¥6 2 (2. -2 S(—2) [K(P))] oo = T (iPp) Aldué(”‘mp'zw(u,u), (1.1)

where i is a renormalization scale an®(z,—z) = & exp{—ig [*,dw*A,(w)}. The distribu-
tion amplitude is normalized by()lduw(u,u) =1 and can be expanded in terms of Gegenbauer
ponnomiaIsCﬁ’/z(Zu— 1),

(U, ) = 6u6<1+ Y alf () (2u- 1)) : (1.2)
n>1

The lowest Gegenbauer momegft is proportional to the average difference of the longitadiin

guark and anti-quark momenta of the lowest Fock state,

5

5
> (2u-1)= S (&) (w). (13)

5 r1
af(w) =3 | du2u=1)c(up) =
While the first moment of the distribution amplitude vanisiethe case of the pion, it is non-zero
for the Kaon because of SU(3)-breaking effe¢ts) is obtained from the matrix element of a local
operator,

(0[q(0) vp»sBHS(O)\K(p» = (&) fk PPy = gaf fk Po Py, (1.4)

where we usgu = B“ - B“, Bu = Eu +igAyL andBu = 5“ —igAy.

The first moment of the kaon’s distribution amplitude hasimpast been determined mainly from
QCD sum rules, and recent results includ€{1GeV) = 0.05(2) [16], 0.10(12) [17], 0.050(25)
[18] and 006(3)[19]. Very recently an independent lattice study of thismtitg was published [20]
which quotesa (2GeV) = 0.04534 0.0009+ 0.0029 as the final result.

Here we use thdl; = 2+ 1 gauge field ensembles from the RBC and UKQCD dataset [223}2,
(domain wall fermions [24, 25] and Ilwasaki gauge action [2ZF]) with three values of the light-
guark mass withnsea= Myaiencein €ach case. The hadronic spectrum and other propertibesd t
configurations have been presented at this conference 22232
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2. (&)baefrom Lattice Correlation Functions

In constructing the lattice operators which are relevanttie determination of ¢ ), we use the
following symmetric left- and right-acting covariant deatives:

Bt () = 5z {U 06X W+ ) U (6x— WX — 1)} @)

By = o (B0 U A%~ Flx— MU (X X)) 22)

where theU’s are the gauge links and is a vector of lengtha in the directionu (a denotes the
lattice spacing).

To illustrate the method, consider the local lattice opEs®,,(X) = cT(x)ypygBus(x), Ap(X) =
q(x) ¥p ¥6s(x) andP(x) = q(x) ys S(x) from which we define the two-point correlation functions

Cou(t,B) = %ér’R(OlOpu(t,Y)PT(O)I@ andCa,p(t,B) = %ér’x(OIAv(t,Y)PT(O)IO% (2.3)

Hereq ands represent the light and strange quark fields, respectivdlyarge Euclidean times
andT —t (T is the length of the lattice in the time direction), we expect

Ciomy(t,B) . pop,
— Heu} _, i PoPu
Ripupv(t,P) = Ca,p(t,P) "o

The superscripbare denotes the fact that the operators are the bare ones irnttihe theory with
ultraviolet cut-offa~! in the Domain Wall Formalism and the braces in the subscfipts} indicate
that the indices are symmetrized. In order to avoid mixin@gf under renormalization [28] we
only consider the casgs=v =4, u =k (k= 1,2,3) with px = +271/L while | p| = 2rt/L.

(& \bare, (2.4)

3. Perturbative Renormalization of the Lattice Operators

The perturbative matching from the lattice to thk&S scheme is performed by comparing one-
loop calculations of the two-point Green function with asertion of the operatad;,,; in both
schemes. Definin@?"?su}(u) = ZO{W}O'att (a), the renormalization factor is given by

{pu}
2
_ gCr( 8 2.2 MS MS
Lo = (l—Wcz))ZW [ + 1672 < 3|n(IJ a’)+21 21 +V V. (3.2)

In this expression(1— W%)ZW is a characteristic normalization factor for the physioadud fields
in the domain wall formalism. It is a common factor in the nuater and denominator of the ratio
Ripuy;v @s are the contributions from the wave function renormaéraZ,, represents an additive
renormalization of the large Dirac mass or domain wall helgh= 1 —wgy which can be rewritten

in multiplicative form at one-loop a&, =1+ %zw with z, = 12‘_“’\,‘3,2 Zw-
0

The terms=}S and=; come from quark wave function renormalization. The tekf& andV
come from the one-loop corrections to the amputated twaotgoinction. Using naive dimen-
sional regularisation in Feynman gauge with a gluon masaried (IR) regulatorzg"S = % and
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MS _ _ 25
Ve =23

The contributionZ; has been evaluated for domain wall fermions with the Iwaghkon action

in Feynman gauge in [29]. We have calculated the latticeexelgrmV for the same action and
gauge regulator to complete the evaIuationZ@;pu}. The perturbative calculation is explained
in [30, 29, 31] and the form of the Iwasaki gluon propagatar lsa found in [32].

For the Iwasaki gluon action and for the valueMy= 1.8 used here the physical quark normaliza-
tion z, has been found to be very large in [30, 29] and we thereforengsm field improvement as
described in [29].

The first step is to define a mean-field value for the domain gitiht, MMF = M — 4(1 — PY/4)
where P = 0.588134) is the average plaquette in our simulations, leading/té™ = 1.3029.
The physical quark normalization factor beconjigs- (W§'F)2] ZMF, with ZMF = 1+ f;—%z\%‘F and

20F = 27 (3w + 327 Tur) = 5.2509, whereTyr = 0.0525664 [29] is a mean-field tadpole
0

factor and>,, is evaluated aMMF. Likewise,>; = 3.9731 andvV = —4.1907 in equation (3.1) are
evaluated avMF and the mean-field improved renormalization factor for dmugations becomes:

— 1 gch gch 8 2.2
20, = 59085 [1— 67 5.2509] [HW —zin(pa) —06713)|.  (32)

We make two choices for the mean-field improwd® coupling. The first uses the measured
plagquette valueR, according to [29]

1 P 22
= —+dy+Ccp+-— In(ua), 3.3
gﬁ/TS(IJ) gz g p 1612 (IJ ) ( )

wheredy = 0.1053 ancc, = 0.1401 for the lwasaki gauge action afid= 6/g° = 2.13 in our sim-
ulations. The second choice is the usual continbi&coupling. Atpa =1, we findays(plag) =
0.1752 andags(ctm) = 0.3385. With these two choices of coupling, our value for theorenal-
ization factor becomes

2o, _ {1.2346 plaquette coupling (3.4)

Zn 1.3384 continuunvS .

We include the spread of results in eq.(3.4) as the estinfatercurrent systematic uncertainty in
o . Zo .
the renormalization factor and thus we will eventually ugg‘i = 1.28+0.05 for the final result.

4. Numerical Smulation and Results

The lattice volume i$L /a)3 x T /ax Ls= 16° x 32x 16. The choice of bare parametergis- 2.13

for the gauge couplinggms = 0.04 for the strange quark mass (which has been tuned to corrésp
to the physical value) anaimg = 0.03, 0.02, 0.01 for the light-quark masses. With these simulation
parameters the lattice spacingais' = 1.60(3) GeV [22, 23]. Owing to the remnant chiral symme-
try breaking the quark mass has to be corrected additivethdyesidual mass in the chiral limit,
amyes = 0.003083) [22, 23].
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Figurel: Left: Jack-knife results fof& )P@®as a function of the time. The ranges over which we fit and the
corresponding results are indicated by the black linesh®Rignear chiral extrapolation fofé )22

4.1 Barecorrelation functions

For each value of the light-quark mass we computed the etizalfunctions on 300 gauge config-
urations separated by 10 trajectories in the Monte CarlofyisOn each configuration we average
the results obtained from 4 positions of the source for thietdist quark massufy = 0.01) and 2
positions of the source for the remaining two masses, = 0.02 and 0.03). In order to improve
the overlap with the ground state at the source where wetitigedensityP’, we employed gauge
invariant Jacobi smearing [33] (radius 4 and 40 iteratiovi) APE-smeared links in the covariant
Laplacian operator (4 steps and smearing factor 2) [34, 35].

The kaon masses corresponding to the simulated bare ligitkgnasses a@m% = 0.416410),
am2%2 = 0.385410), andam°! = 0.354914).

The left plot in figure 1 shows our results fo )P as a function ot obtained from the ratio
Ryaxy;4(t, pc = £2m1/L) for the three values of the mass of the light quark. We averége results
over equivalent choices for the momenta and folded the datsei time-direction. There are clear
plateaus, demonstrating that tBe(3)-breaking effects are measurable &§d can be determined.

4.2 Chiral extrapolation

Plotting our results fof & P@€as a function of the light-quark mass in the right plot in ficarid
taking into account the remnant chiral symmetry breakingl&fining the chiral limit at the point
amy + amyes= 0 our data confirms the linear behaviour predicted by chigaiysbation theory [36,
37]. Moreover the line passes through)°2€= 0 at a value of the light-quark mass (denoted by
the open square) which is consistent with the mass of thegarquark, as expected for t8g (3)
symmetric caseafmyg = ams = 0.04). From the linear fit we obtaifé )°2® = 0.026223) in the
chiral limit.

5. Systematic Uncertainties and our Final Result

Combining (€ )*@ with the result for the perturbative renormalization faate obtain our final
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result o
(&)MS(11 = 1.6GeV) = 0.034+0.003. (5.1)

In order to compare our result with previous calculationsew@ve it to the renormalization scales
1 GeV and 2 GeV using the three-loop anomalous dimension Y88Jobtain( & >m(u =2GeV) =
0.032+0.003 and( & YMS(i = 1GeV) = 0.040+ 0.004.

The error in the renormalization factor due to the uncetyaiim the lattice spacing is negligible.
For example if we conservatively allow the lattice spacimgdry between 1.58 GeV and 1.62 GeV,
the contribution to the relative error @ )™S is less than 0.2%.

Among the uncertainties which we are not at this stage in @ipoto check numerically are the
continuum extrapolation, finite-volume effects and the flaat the strange quark masssa = 0.04)

is only approximately tuned to its physical value. The tattartefacts are formally @(aZ/\éCD) ~
2.5% and we are planning to check this with a simulation at a lemkittice spacing. We would
expect the finite volume effects to be small and are curraritcking this with a simulation on
a 24 x 64 lattice. The strange quark mass appears to be well turl2®f] so again we expect
the contribution to the error from this uncertainty to beywemall. Thus we expect the errors
from these three sources to be sufficiently small not to chding errors quoted for our final result.
We are also carrying out a systematic programme of non-ative renormalization which will
enable us to reduce the uncertainty in the renormalizatmistants.

6. Summary and Conclusions

We have demonstrated that t8d (3)-breaking effects which lead to a non-zero value for the first
moment of the kaon’s distribution amplitude are sufficigitdkge to be calculable in lattice simula-
tions and satisfy the expected chiral behaviour. As ourtesstit we quote £ )MS(u = 1.6GeV) =
0.034+ 0.003.
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