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1. Introduction

A number of experiments have been performed recently to determine alpagsibrmation
in the nucleon [[1]. Lattice QCD provides a model independent method fdyisighadron defor-
mation via the evaluation of density-density correlators. We show that it iSemsible to evaluate
density-density correlators for mesons and baryons without any@ppation. Such an evaluation
requires a computation of all to all propagators, which is carried out wohastic techniques
and dilution. We show results for hadron charge distributions and derate$iow hadron form
factors can be extracted from density-density correlators. We priasgmesults for the pion form
factor.

2. Density-density correlators
For general time insertions the density-density correlator is given by:
CT.tute) = [ A 2(h(2 ) 1§(X+5.t2) (1) [n(3.0) @)

where j? is the time ordered density operator if(x) =: qr(X) Qs (X) : for a quark of flavorf,
while |h) denotes any hadronic state. The integration ovex t@ordinate sets the sink momentum
equal to that of the source. The integration oZesets the momentum of the source and sink to
zero. These two sums require summation over both spatial coordinates aquiahe propagator
connecting the density insertions with the sink and thus one needs to evdlimtdlgpropagators.

In this work we use stochastic and dilution techniques to compute all to all gatpa. It has
been demonstratef] [2] that an estimate for the all to all propagator camiputexl by inverting
the Dirac operator for an ensemble of noise vectors as sources. éfibése sources are created
in such a way that they obey:

(nAOONET () =8(x—y)apduy  and  (n3(), =0 (2.2)

wherer denotes the number of noise vectors in the ensemble, then one can inatiicof these
noise vectors and obtain an estimate for the all to all propagator:

(Wbengtw)) — M 2oey)bs (2.3)

wherey®(x) = (M*l(x,y))e’jnﬁ(y) is the individual solution for each of thenoise vectors. We
additionally employ a method known as dilution, which gives a better estimate falltte all
propagator[[3]. The method essentially proposes a way for creatingtbe source ensemble in
Eqg. (2.2). In this work we use even - odd, color - spin diluted noise vec#r each of the noise
vectors of the ensemble has random entries only on either odd or evé&i sip@s and on one color
- spin component with all other entries set to zero. Since the time slices of tihees@ink and
density insertions are fixed the noise vectors are in effect already ditutide.

3. Wave functions

We first consider the case where the two density insertions of Ep. (2 13ken at equal times.
This equal time correlator, shown schematically for mesons irfFig. 1, redatke wave function
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squared in the non - relativistic limit. For baryons, the wave function is gdélgex function of two
relative coordinates and thus requires the calculation of a three-deos#yator depicted in Figd] 2.
In this work we compute the one patrticle correlator with two density insertiortsvordifferent
quark lines of the baryon. This is equivalent with integrating the threeigarwrelator over one
relative coordinate as demonstrated in Rgf. [4] when the diagram ifi] Figagaonsidered.

PR )
P9 (%1 9.1) (a) (b)

Figure 1. The density-density Figure 2: The three-density correlator for a baryon. The density
correlator for a meson. insertions are denoted by the crosses.

In this study we use 200 unquenched gauge configurations prodydbd BESAM collabo-
ration [B] on a lattice of size £6< 32, atB = 5.6 andk = 0.157. Using the mass of the nucleon
in the chiral limit we obtaira~! = 2.56 GeV yieldingm,; ~ 950 GeV. We use Wuppertal smearing
to construct the interpolating fields for the source and sink. HYP smearaqpiged to the gauge
links that enter the Wuppertal smearing function. This decreases caatsligl¢he time interval
needed for the suppression of excited states and allows to place the diessitions as early as
three time slices from the sourdg [6]. Although placing the density insertioss ¢o the source
or sink is not important for the equal time correlators it is crucial for theaetion of form factors
discussed in the next section (see discussion connected witl] Fig. 6). Sirtolsatisfy the re-
quirements for the extraction of form factors, the minimal separation bets@ece and sink that
is required ig = 14. We take the same source-sink time separation also in the evaluation bf equa
time correlators so that the same set of noise vectors can be used. Tlediemeof the density-
density correlator requires a forward propagator from the sourdevam all to all propagators,
namely one from the density insertiontat= 3 and one from the sink. We note that the time slice
of the second density insertion can be varied without additional costcégatnbservation for the
evaluation of form factors from density correlators. For each staichasersion we use 6 sets of
even - odd, color - spin diluted noise vectors. For comparison a segaragutation was carried
out where no summation was performed on the sink and thus the momentum afitloaic state
is not explicitly set to zero.

3.1 Resaults

In Fig. 3 we show the density-density correlators for the pion anghtheeson. The distribu-
tions are compared to the case where no explicit zero momentum projectiamiésl @ut. If the
non-relativistic limit is a good enough approximation so that factorization otémter of mass
momentum can be assumed then there should be no difference between thalwations. For
the pion there is very little difference showing that either factorization is @ gpproximation or
exponential suppression of the time evolution sufficiently damps out highereminm states. On
the other hand, thp distribution is broader when explicit projection to the state of zero momen-
tum is carried out. This shows that even for this large quark mass, faatiorizof the center of
mass momentum does not strictly hold. These distributions are fitted using amestial Ansatz
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Figure 3: The correlators for the pion (bottom) Figure4: The correlators for the nucleon (top) and
and thep, in the zero-spin projection, (top). The theA in the +3/2 spin projection (bottom). The
crosses are the results of the exact evaluation andotation is the same as that of Fip. 3.

the circles are the results when no explicit zero-

momentum projection is carried out.

allowing the extraction of the root mean square (r.m.s.) radii. For the pion @affimm.s. radius
r'rms = 0.197(2) fm and for thep mesonr, ms = 0.576(6) fm. The latter is approximately 25%
larger as compared to what is obtained without explicit zero momentum prajectio

In Fig. @ we make the same comparison for the nucleon and tiwerelators. Both states are
broader when all to all propagators are used to project to zero momentufngatz that describes
these distributions accurately is of the foem*/9)°. Fits to the distributions yield ~ 1.2 for the
nucleon andl ~ 1.5 for theA. The r.m.s. radius for the nucleon is only slightly bigger when the
zero momentum projection is implemented whereas folthe find a 30% increase.
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Figure 5: The p (left), nucleon (center) and (right) correlators projected along the axes. Top: witlozer
momentum projection. Bottom: with no zero momentum pragect

To probe hadron deformation we project our results for the densitgigerorrelators along
the spin axis (taken as tlzeaxis) and perpendicular to the spin axis. In Flg. 5 we show the projec-
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tions for thep meson in the zero spin projection, the nucleon and\timethe +3/2 spin projection.
We again compare the exact results with the case where the summation on tiseosmited. The

p correlator shows an elongation along the spin axis. As expected this g@ngamuch clearer
when the state is projected to zero momentum. For the nucleon on the othenbatedprmation

is detected within this method. ThHebaryon is too noisy to extract any useful information con-
cerning a possible deformation. More statistics are clearly needed if onaliawoany definite
conclusion for this hadronic state.

4. Form factors

The density-density correlator can be used to extract hadronic factoréaff]. Writing
Eqg. (2.1) on the lattice and inserting three complete sets of hadronic staeedenves the ex-
pression:

. 2
S [(&Ihs(0) 2 \(hs(glz/\l i;; \ rz,plf)i S| P En(P)(t-t) g Mn(t—(t-t0)) (4.1)
h=n

p,n;s

wheres represents internal degrees of freedom of the hadronic statd aspresents the smeared
interpolating field used. In Eq. (4.1) we assume isospin symmejry 4o = jg). We also assume
that the time separation between the density insertions from the source kRradtesiarge enough
so that excited state contributions are suppressed. Now if, in additiert; is large enough and
we take the Fourier transform over tfieoordinate we arrive at the following expression:

: 2
GMOIN (s, Gty 1) 2’ 5 h(0)) [{hs(0)] johs (@)1 (e (ta—ts) g~ M(t—(ta—t2))

8M?En(q) (42

from where the hadron form factor can be extracted in the isospin limit. Natértlpractice one
can calculate the above quantity for any hadronic state with the same setpaigptors. Addi-
tionally one has the form factor for all momentum transfers since these féitow the Fourier
transform of the density-density correlator.

To demonstrate that this method works in practice we consider the simple ctse mbn.
The pion as a pseudoscalar meson has only one form factor, whiclers lgjv

(T P) | Iy [ T(Py) ) = (P + Py (), (4.3)

whereq, = p), — py. Combining Eq.[(4]3) and Eq[_(#.2) the form facEu(q?) can be calculated
by dividing the density-density correlator with an appropriate combinatidwa{point functions:

L AE(@My G (i ty, to,1)GT™(0,tp — 1)
tz>1 (En(@) +Mp)2  G™(G,t2 —t1)G™(0,t)

t1>1,
th—t1>1

FA(?) = (4.4)

The ratio of two-point functionsG™) used in the above equation is the simplest that cancels the
unknown overlaps of the interpolating fields with the pion state and the erRpahtme depen-
dence. However it is not the optimal as far as signal to noise is concddeadly one wants to use
two-point functions for the shortest possible time separation since thefuhih source is from the
sink the noisier the propagator becomes. Thus one must find the optimas vaiube insertion
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Figure 6: The density-density correlator with the  Figure 7: The pion form factor for various values

insertion time slices kept fixed §t—t; = 4. For of the time separation between the density inser-

this test we only used point to all propagators. tions. We also compare with the prediction using
vector meson dominance (solid line).

times and source-sink separation. The dilemma is that althpugh should be large enough to
damp any intermediate excited states, the sink-source time sepdrationld be as small as pos-
sible so that the statistical noise on the two-point functions is minimal. Using srggadnhniques
we can ensure that ground state dominance holds for separations ehtitydnsertions from the
source and sink as small as three time slices. This is demonstrated i Fig. & wglot the
density-density correlator for the pion with the sink separation fixéd=at4 and keeping the time
separation between the insertions at a constant valtie-af, = 4. We vary the time slice of the
density insertions by one starting fram= 3 and ending a4 = 7. It can be seen that the results are
identical fort,,t; > 3 and therefore we can set the first density insertidn-at3 and the second at
to = 11 three time slices from the sink.

Sincet; = 3 andt —t, = 3 are the shortest separations we arrange so that the appropriate ratio
involves two-point functions in terms of these time separations or time intervaisndar length
e.g. % which takes the maximal value of 4. The optimal ratio is then given by:

F2(2) — 4Er(0)Mr G M(ty to.t) [GE(A )] GEE(0.1) 45
nl@) = m, (En(9) +Mn)? GIT(0, 2t, ) GIT(0,t —t,) [GI(d, 2t;)] % [GI (g, 5l )] % (#.5)
t1>>1~,:;_ SS( ) 1) SS( L 2)[ S_(q l)] [ SL(q 2 )]

tr—t1>

whereGZE andGZ" denote smeared - smeared and smeared - local pion two-point functions re
spectively. To check for convergence we plot in fidz2(q?), given in Eq. [4]), as a function of
t, —t1. As can be seen the pion form factor has convergethfert; = 8, which is the maximum
even separation that can be achieved on this lattice. On the same plot weredhgpform factor
to the results obtained assuming vector meson dominance, i.e. ®BKQg) = m where
Q? = —¢f is the Euclidean momentum transfer squared. rRpwe take thgp meson mass com-
puted on the lattice which is, = 1.270(8) GeV. In Fig.[# we compare the pion form factor to other
recent lattice results extracted using the standard approach of evalimé&aepoint functions.

Within this method we obtain reliable results up to momentum transfe@®€ of 6 Gev’. The
momentum transfers we can extract are limited by the fact that for high momerdosiers the
density-density correlator given in Ef|. (4.2) becomes too noisy, becameigative and the square
root cannot be taken.
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Figure 8: The pion form factor versu? with similar my/m, ratios. The triangles and crosses show
quenched results form Reﬂ [8], the asterisks are resuiitg) i&isted mass fermionﬂ[9], the squares are
the results of this work and the circles denote the experiatgasults. The solid curve is the results
obtained using vector meson dominance with the phygicakson mass.

5. Conclusions

Stochastic techniques combined with dilution are employed in the evaluation obdllptop-
agators needed for the exact computation of density-density correl@tersqual time four-point
correlators reduce to the wave function squared in the non-relativistic liditlaus provide de-
tailed information on the quark distributions inside the hadrons. In particutadéformation of
the hadron can be studied. We clearly detect a deformation in the casegoofrtegon. However, no
definite conclusion regarding deformation can be reached fok theleast within these statistics.
Another application of density-density correlators is the evaluation ofomafdrm factors. We ap-
ply this method to compute the pion form factor upQé~ 6 Ge\2. The results we obtain within
this method are comparable to the results extracted from the standard @ppsireg three-point
functions.
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