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1. Introduction

A number of experiments have been performed recently to determine a possible deformation
in the nucleon [1]. Lattice QCD provides a model independent method for studying hadron defor-
mation via the evaluation of density-density correlators. We show that it is nowfeasible to evaluate
density-density correlators for mesons and baryons without any approximation. Such an evaluation
requires a computation of all to all propagators, which is carried out usingstochastic techniques
and dilution. We show results for hadron charge distributions and demonstrate how hadron form
factors can be extracted from density-density correlators. We present first results for the pion form
factor.

2. Density-density correlators

For general time insertions the density-density correlator is given by:

C (~y, t1, t2) =
∫

d3xd3z〈h(~z, t)| ju
0(~x+~y, t2) jd

0(~x, t1)
∣

∣

∣
h(~0,0)

〉

(2.1)

where j0 is the time ordered density operator i.e.j0f (x) =: q̄ f (x)γ0q f (x) : for a quark of flavorf ,
while |h〉 denotes any hadronic state. The integration over the~x coordinate sets the sink momentum
equal to that of the source. The integration over~z sets the momentum of the source and sink to
zero. These two sums require summation over both spatial coordinates of thequark propagator
connecting the density insertions with the sink and thus one needs to evaluate all to all propagators.

In this work we use stochastic and dilution techniques to compute all to all propagators. It has
been demonstrated [2] that an estimate for the all to all propagator can be computed by inverting
the Dirac operator for an ensemble of noise vectors as sources. If these noise sources are created
in such a way that they obey:

〈

ηa
µ(x)ηb†

ν (y)
〉

r
= δ (x− y)δa,bδµ,ν and

〈

ηa
µ(x)

〉

r
= 0 (2.2)

wherer denotes the number of noise vectors in the ensemble, then one can invert for each of these
noise vectors and obtain an estimate for the all to all propagator:

〈

ψb
ν(x)ηa†

µ (y)
〉

r
→ (M−1(x,y))b,a

ν,µ (2.3)

whereψb
ν(x) = (M−1(x,y))b,a

ν,µηa
µ(y) is the individual solution for each of ther noise vectors. We

additionally employ a method known as dilution, which gives a better estimate for theall to all
propagator [3]. The method essentially proposes a way for creating the noise source ensemble in
Eq. (2.2). In this work we use even - odd, color - spin diluted noise vectors i.e. each of ther noise
vectors of the ensemble has random entries only on either odd or even spatial sites and on one color
- spin component with all other entries set to zero. Since the time slices of the source, sink and
density insertions are fixed the noise vectors are in effect already dilutedin time.

3. Wave functions

We first consider the case where the two density insertions of Eq. (2.1) are taken at equal times.
This equal time correlator, shown schematically for mesons in Fig. 1, reduces to the wave function
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squared in the non - relativistic limit. For baryons, the wave function is generally a function of two
relative coordinates and thus requires the calculation of a three-density correlator depicted in Fig. 2.
In this work we compute the one particle correlator with two density insertions ontwo different
quark lines of the baryon. This is equivalent with integrating the three-density correlator over one
relative coordinate as demonstrated in Ref. [4] when the diagram in Fig. 2awas considered.

(z, t)

ρd (~x+~y, t1)

0

ρu (~x, t1)

Figure 1: The density-density
correlator for a meson.

(a)

0(z, t)

(b)

(z, t) 0

Figure 2: The three-density correlator for a baryon. The density
insertions are denoted by the crosses.

In this study we use 200 unquenched gauge configurations produced by the SESAM collabo-
ration [5] on a lattice of size 163×32, atβ = 5.6 andκ = 0.157. Using the mass of the nucleon
in the chiral limit we obtaina−1 = 2.56 GeV yieldingmπ ≃ 950 GeV. We use Wuppertal smearing
to construct the interpolating fields for the source and sink. HYP smearing isapplied to the gauge
links that enter the Wuppertal smearing function. This decreases considerably the time interval
needed for the suppression of excited states and allows to place the densityinsertions as early as
three time slices from the source [6]. Although placing the density insertions close to the source
or sink is not important for the equal time correlators it is crucial for the extraction of form factors
discussed in the next section (see discussion connected with Fig. 6). Similarly to satisfy the re-
quirements for the extraction of form factors, the minimal separation betweensource and sink that
is required ist = 14. We take the same source-sink time separation also in the evaluation of equal
time correlators so that the same set of noise vectors can be used. The evaluation of the density-
density correlator requires a forward propagator from the source and two all to all propagators,
namely one from the density insertion att1 = 3 and one from the sink. We note that the time slice
of the second density insertion can be varied without additional cost a crucial observation for the
evaluation of form factors from density correlators. For each stochastic inversion we use 6 sets of
even - odd, color - spin diluted noise vectors. For comparison a separatecomputation was carried
out where no summation was performed on the sink and thus the momentum of the hadronic state
is not explicitly set to zero.

3.1 Results

In Fig. 3 we show the density-density correlators for the pion and theρ meson. The distribu-
tions are compared to the case where no explicit zero momentum projection is carried out. If the
non-relativistic limit is a good enough approximation so that factorization of thecenter of mass
momentum can be assumed then there should be no difference between the twoevaluations. For
the pion there is very little difference showing that either factorization is a good approximation or
exponential suppression of the time evolution sufficiently damps out higher momentum states. On
the other hand, theρ distribution is broader when explicit projection to the state of zero momen-
tum is carried out. This shows that even for this large quark mass, factorization of the center of
mass momentum does not strictly hold. These distributions are fitted using an exponential Ansatz
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Figure 3: The correlators for the pion (bottom)
and theρ , in the zero-spin projection, (top). The
crosses are the results of the exact evaluation and
the circles are the results when no explicit zero-
momentum projection is carried out.
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Figure 4: The correlators for the nucleon (top) and
the ∆ in the±3/2 spin projection (bottom). The
notation is the same as that of Fig. 3.

allowing the extraction of the root mean square (r.m.s.) radii. For the pion we find an r.m.s. radius
rr.m.s = 0.197(2) fm and for theρ mesonrr.m.s = 0.576(6) fm. The latter is approximately 25%
larger as compared to what is obtained without explicit zero momentum projection.

In Fig. 4 we make the same comparison for the nucleon and the∆ correlators. Both states are
broader when all to all propagators are used to project to zero momentum. An Ansatz that describes
these distributions accurately is of the forme−(x/σ)d

. Fits to the distributions yieldd ≃ 1.2 for the
nucleon andd ≃ 1.5 for the∆. The r.m.s. radius for the nucleon is only slightly bigger when the
zero momentum projection is implemented whereas for the∆ we find a 30% increase.
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Figure 5: Theρ (left), nucleon (center) and∆ (right) correlators projected along the axes. Top: with zero
momentum projection. Bottom: with no zero momentum projection.

To probe hadron deformation we project our results for the density-density correlators along
the spin axis (taken as thez axis) and perpendicular to the spin axis. In Fig. 5 we show the projec-
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tions for theρ meson in the zero spin projection, the nucleon and the∆ in the±3/2 spin projection.
We again compare the exact results with the case where the summation on the sinkis omitted. The
ρ correlator shows an elongation along the spin axis. As expected this elongation is much clearer
when the state is projected to zero momentum. For the nucleon on the other hand,no deformation
is detected within this method. The∆ baryon is too noisy to extract any useful information con-
cerning a possible deformation. More statistics are clearly needed if one is todraw any definite
conclusion for this hadronic state.

4. Form factors

The density-density correlator can be used to extract hadronic form factors [7]. Writing
Eq. (2.1) on the lattice and inserting three complete sets of hadronic states, one derives the ex-
pression:

∑
~p,n,s

∣

∣

〈

J̃s |hs(0)
〉∣

∣

2 |〈hs(0)| j0 |n,~p,s〉|2

8M2
h En(p)

ei~p·~ye−En(p)(t2−t1)e−Mh(t−(t2−t1)), (4.1)

wheres represents internal degrees of freedom of the hadronic state andJ̃s represents the smeared
interpolating field used. In Eq. (4.1) we assume isospin symmetry (j0 = ju

0 = jd
0). We also assume

that the time separation between the density insertions from the source and sink are large enough
so that excited state contributions are suppressed. Now if, in addition,t2− t1 is large enough and
we take the Fourier transform over the~y coordinate we arrive at the following expression:

Gh j0 j0h(s;~q; t1, t2, t) = ∑
s′

∣

∣

〈

J̃s |hs(0)
〉∣

∣

2 |〈hs(0)| j0 |hs′(~q)〉|2

8M2
h Eh(q)

e−Eh(q)(t2−t1)e−Mh(t−(t2−t1)), (4.2)

from where the hadron form factor can be extracted in the isospin limit. Note that in practice one
can calculate the above quantity for any hadronic state with the same set of propagators. Addi-
tionally one has the form factor for all momentum transfers since these followfrom the Fourier
transform of the density-density correlator.

To demonstrate that this method works in practice we consider the simple case ofthe pion.
The pion as a pseudoscalar meson has only one form factor, which is given by:

〈

π(p′µ)
∣

∣Jµ
∣

∣π(pµ)
〉

= (pµ + p′µ)Fπ(q2), (4.3)

whereqµ = p′µ − pµ . Combining Eq. (4.3) and Eq. (4.2) the form factorFπ(q2) can be calculated
by dividing the density-density correlator with an appropriate combination oftwo-point functions:

F2
π (q2) = lim

t−t2≫1,
t1≫1,

t2−t1≫1

4Eπ(q)Mπ

(Eπ(q)+Mπ)2

Gπ j0 j0π(~q; t1, t2, t)Gππ(0, t2− t1)
Gππ(~q, t2− t1)Gππ(0, t)

. (4.4)

The ratio of two-point functions (Gππ ) used in the above equation is the simplest that cancels the
unknown overlaps of the interpolating fields with the pion state and the exponential time depen-
dence. However it is not the optimal as far as signal to noise is concerned. Ideally one wants to use
two-point functions for the shortest possible time separation since the further the source is from the
sink the noisier the propagator becomes. Thus one must find the optimal values for the insertion
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Figure 6: The density-density correlator with the
insertion time slices kept fixed att2− t1 = 4. For
this test we only used point to all propagators.
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Figure 7: The pion form factor for various values
of the time separation between the density inser-
tions. We also compare with the prediction using
vector meson dominance (solid line).

times and source-sink separation. The dilemma is that althought2− t1 should be large enough to
damp any intermediate excited states, the sink-source time separationt should be as small as pos-
sible so that the statistical noise on the two-point functions is minimal. Using smearing techniques
we can ensure that ground state dominance holds for separations of the density insertions from the
source and sink as small as three time slices. This is demonstrated in Fig. 6 where we plot the
density-density correlator for the pion with the sink separation fixed att = 14 and keeping the time
separation between the insertions at a constant value oft2− t1 = 4. We vary the time slice of the
density insertions by one starting fromt1 = 3 and ending att1 = 7. It can be seen that the results are
identical fort2, t1 ≥ 3 and therefore we can set the first density insertion att1 = 3 and the second at
t2 = 11 three time slices from the sink.

Sincet1 = 3 andt − t2 = 3 are the shortest separations we arrange so that the appropriate ratio
involves two-point functions in terms of these time separations or time intervals ofsimilar length
e.g. t2−t1

2 which takes the maximal value of 4. The optimal ratio is then given by:

F2
π (q2) = lim

t−t2≫1,
t1≫1,

t2−t1≫1

4Eπ(q)Mπ

(Eπ(q)+Mπ)2

Gπ j0 j0π(~q; t1, t2, t)
[

Gππ
SL (~q, t1)

]4
Gππ

SS (0, t1)

Gππ
SS (0,2t1)Gππ

SS (0, t − t2)
[

Gππ
SL (~q,2t1)

]2[

Gππ
SL (~q, t2−t1

2 )
]2 , (4.5)

whereGππ
SS andGππ

SL denote smeared - smeared and smeared - local pion two-point functions re-
spectively. To check for convergence we plot in Fig. 7F2

π (q2), given in Eq. (4.5), as a function of
t2− t1. As can be seen the pion form factor has converged fort2− t1 = 8, which is the maximum
even separation that can be achieved on this lattice. On the same plot we compare the form factor
to the results obtained assuming vector meson dominance, i.e. takingFπ(Q2) = 1

1+Q2/m2
ρ

where

Q2 = −q2 is the Euclidean momentum transfer squared. Formρ we take theρ meson mass com-
puted on the lattice which ismρ = 1.270(8) GeV. In Fig. 4 we compare the pion form factor to other
recent lattice results extracted using the standard approach of evaluatingthree-point functions.

Within this method we obtain reliable results up to momentum transfers ofQ2 ≃ 6 Gev2. The
momentum transfers we can extract are limited by the fact that for high momentumtransfers the
density-density correlator given in Eq. (4.2) becomes too noisy, becomingnegative and the square
root cannot be taken.
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VMD
Experiment

Unquenched,mπ/mρ = 0.749
tmQCD,mπ/mρ = 0.667

Quenched,mπ/mρ = 0.621
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Figure 8: The pion form factor versusQ2 with similar mπ/mρ ratios. The triangles and crosses show
quenched results form Ref. [8], the asterisks are results using twisted mass fermions [9], the squares are
the results of this work and the circles denote the experimental results. The solid curve is the results
obtained using vector meson dominance with the physicalρ meson mass.

5. Conclusions

Stochastic techniques combined with dilution are employed in the evaluation of all toall prop-
agators needed for the exact computation of density-density correlators. The equal time four-point
correlators reduce to the wave function squared in the non-relativistic limit and thus provide de-
tailed information on the quark distributions inside the hadrons. In particular the deformation of
the hadron can be studied. We clearly detect a deformation in the case of theρ meson. However, no
definite conclusion regarding deformation can be reached for the∆, at least within these statistics.
Another application of density-density correlators is the evaluation of hadron form factors. We ap-
ply this method to compute the pion form factor up toQ2 ∼ 6 GeV2. The results we obtain within
this method are comparable to the results extracted from the standard approach using three-point
functions.

References

[1] C. Mertzet al., Phys. Rev. Lett.86 (2001) 2963, [nucl-ex/9902012]; K. Jooet al., Phys. Rev.
Lett. 88 (2002) 122001, [hep-ex/0110007].

[2] C. Michael and J. Peisa, Phys. Rev. D58 (1998) 034506, [hep-lat/9802015].

[3] J. Foleyet al., Comput. Phys. Commun.172 (2005) 145, [hep-lat/0505023].

[4] C. Alexandrou, Ph. de Forcrand and A. Tsapalis, Phys. Rev. D 66 (2002) 094503,
[hep-lat/0206026].

[5] SESAM collaboration, Phys. Rev. D59 (1999) 014509, [hep-lat/9806027].

[6] C. Alexandrouet al., Phys. Rev. D74 (2006) 034508, [hep-lat/0605017].

[7] W. Wilcox, Phys. Rev. D43 (1991) 2443.

[8] F. Bonnetet al., Phys. Rev. D72 (2005) 054506, [hep-lat/0411028].

[9] M. Abdel-Rehim and R. Lewis, Nucl. Phys. (Proc.Suppl.)140 (2005) 299, [hep-lat/0408033].

7

http://xxx.lanl.gov/abs/nucl-ex/9902012
http://xxx.lanl.gov/abs/hep-ex/0110007
http://xxx.lanl.gov/abs/hep-lat/9802015
http://xxx.lanl.gov/abs/hep-lat/0505023
http://xxx.lanl.gov/abs/hep-lat/0206026
http://xxx.lanl.gov/abs/hep-lat/9806027
http://xxx.lanl.gov/abs/hep-lat/0605017
http://xxx.lanl.gov/abs/hep-lat/0411028
http://xxx.lanl.gov/abs/hep-lat/0408033

