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1. Introduction

In this work we present the first lattice QCD evaluation of the N to∆ axial form factors. A
determination of these form factors provides an important input for the G0 experiment, which is
under way to measure these form factors at Jefferson Lab [1]. The interest in the axial N to∆
transition arises from its purely isovector nature, which probes different physics from what can be
extracted from the study of strange isoscalar quark currents. Combining results from the electro-
magnetic N to∆ transition we evaluate the dominant contribution to the parity violating asymmetry
as determined by the ratioCA

5/CV
3 . This is the analog of thegA/gV ratio extracted from neutron

β -decay. Furthermore we investigate low-energy consequences of chiral symmetry, such as the
off-diagonal Goldberger-Treiman relation.

2. Computational aspects

Given that this is a first lattice computation of the axial transition form factors we test our
techniques in the quenched theory where we can use a large volume and have small statistical er-
rors. The large spatial size of the lattice allows to both reach smallq2 values as well as extract
theq2-dependence more accurately having access to more lattice momentum vectors over a given
range ofq2. Pion cloud contributions are expected to provide an important ingredient in the de-
scription of the properties of the nucleon system. In this work the light quark regime is studied
with pion masses in the range of about(690−360) MeV using two degenerate flavors of dynami-
cal Wilson configurations [2, 3] and in a hybrid scheme which uses MILC configurations generated
with staggered sea quarks [4] and domain wall valence quarks that preserve chiral symmetry on
the lattice. An agreement between the results from these two different lattice fermion formulations
provides a non-trivial check of lattice artifacts. In particular finite lattice spacing,a, effects are
different: both the quenched and unquenched Wilson fermions have discretization errors ofO(a),
while both Asqtad and domain wall actions have discretization errors ofO(a2). Furthermore do-
main wall fermions preserve chirality, in contrast to Wilson fermions. The hybrid calculation is
computationally the most demanding. The light quark domain wall masses are tuned to reproduce
the mass of the Goldstone pion of the staggered sea. Throughout this work the bare quark masses
for the domain wall fermions, the size of the fifth dimension and the renormalization factorsZA for
the four-dimensional axial vector current are taken from Ref. [5]. In all cases we use Wuppertal
smearing [6] for the interpolating fields at the source and sink. In the unquenched Wilson case to
minimize fluctuations [7] we use HYP smearing [8] on the spatial links entering in the Wuppertal
smearing of the source and the sink whereas for the hybrid case all gauge links in the fermion
action are HYP smeared. In Table 1 we give the parameters used in our calculation [9]. The value
of the lattice spacing is determined from the nucleon mass at the chiral limit for the case of Wil-
son fermions whereas for the hybrid calculation we take the value determined from heavy quark
spectroscopy [10].

3. Methodology

The calculation of the axial form factors makes use of the same methodology as the one used
in our lattice study of the electromagnetic N to∆ transition [11, 12]. The invariant N to∆ weak
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no. confs κ or aml amπ aMN aM∆

Quenched323×64 a−1 = 2.14(6) GeV

200 0.1554 0.263(2) 0.592(5) 0.687(7)
200 0.1558 0.229(2) 0.556(6) 0.666(8)
200 0.1562 0.192(2) 0.518(6) 0.646(9)

κc =0.1571 0. 0.439(4) 0.598(6)

Unquenched Wilson243×40 [2] a−1 = 2.56(10) GeV

185 0.1575 0.270(3) 0.580(7) 0.645(5)
157 0.1580 0.199(3) 0.500(10) 0.581(14)

Unquenched Wilson243×32 [3] a−1 = 2.56(10) GeV

200 0.15825 0.150(3) 0.423(7) 0.533(8)
κc = 0.1585 0. 0.366(13) 0.486(14)

MILC 203×64 a−1 = 1.58GeV

150 0.03 0.373(3) 0.886(7) 1.057(14)
150 0.02 0.306(3) 0.800(10) 0.992(16)

MILC 283×64 a−1 = 1.58GeV

118 0.01 0.230(3) 0.751(7) 0.988(26)

Table 1: The number of configurations, the hopping parameter,κ, for the case of Wilson fermions or the
mass of the light quarks,ml , for the case of staggered quarks, the pion, nucleon and∆ mass in lattice units.

matrix element can be expressed in terms of four transition form factors as

< ∆(p′,s′)|A3
µ |N(p,s) >= i

√
2
3

(
M∆MN

E∆(p′)EN(p)

)1/2

ūλ (p′,s′)
[(

CA
3 (q2)
MN

γν +
CA

4 (q2)
M2

N

p′ν
)(

gλ µgρν −gλρgµν
)

qρ +CA
5 (q2)gλ µ +

CA
6 (q2)
M2

N

qλ qµ

]
u(p,s) (3.1)

whereqµ = p′µ − pµ is the momentum transfer andA3
µ(x) = ψ̄(x)γµγ5

τ3

2 ψ(x) is the isovector part
of the axial current (τ3 being the third Pauli matrix). In order to evaluate this matrix element on the
lattice we compute the three point function〈G∆ jµ N

σ (t2, t1;p′,p;Γ)〉. We eliminate the exponential
decay in time and the overlaps of the interpolating fields with the physical states by forming an
appropriate ratio,Rσ (t2, t1;p′,p;Γ; µ), of three-point and two-point functions given by

Rσ =
〈G∆ jµ N

σ (t2, t1;p′,p;Γ)〉
〈G∆

ii (t2,p′;Γ4)〉

[〈GN(t2− t1,p;Γ4)〉 〈G∆
ii (t1,p

′;Γ4)〉 〈G∆
ii (t2,p

′;Γ4)〉
〈G∆

ii (t2− t1,p′;Γ4)〉 〈GN(t1,p;Γ4)〉 〈GN(t2,p;Γ4)〉

]1/2

t2−t1À1,t1À1⇒ Πσ (p′,p;Γ; µ), (3.2)

whereΓ4 = 1
2

(
I 0
0 0

)
andΓ j = 1

2

(
σ j 0
0 0

)
. With t1 we denote the time when a photon interacts

with a quark and witht2, the time when the∆ is annihilated. The ratio given in Eq. (3.2) is
constructed so that the two-point functions that enter have the shortest possible time separation
between source and sink. This provides an optimal signal to noise ratio. For large time separations
t1 andt2, the ratioRσ (t2, t1;p′,p;Γ; µ) becomes time independent and yields the transition matrix
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element of Eq. (3.1) up to the renormalization constantZA. The latter has been computed non-
perturbatively using the RI-MOM method for quenched [13] and two flavor of dynamical Wilson
fermions [14]. The values obtained in both cases are all consistent withZA = 0.8. For domain wall
fermions we use the values given in Ref. [5]. We use kinematics where the∆ is produced at rest
and byQ2 =−q2 we denote the Euclidean momentum transfer squared.

There are various choices for the Rarita-Schwinger spinor indexσ and projection matricesΓ
that yield the four axial form factors. Each of these choices requires a separate sequential inversion.
As in the case of the evaluation of the electromagnetic N to∆ transition form factors [11] we use
optimized∆ sources in order to maximize the number of lattice momentum vectors contributing to
a givenQ2 value. The optimized∆ sources turn out to be the same as those used in our study of the
electromagnetic form factors [11]. Namely we use the combinationsS1(q; µ) = ∑3

σ=1 Πσ (q;Γ4; µ),
S2(q; µ)= ∑3

σ 6=k=1 Πσ (q;Γk; µ) andS3(q; µ)= Π3(q;Γ3; µ)− 1
2(Π1(q;Γ1; µ)+Π2(q;Γ2; µ)). The

four axial form factors can be extracted from the following expressions

S1(q; j) = iB

[
− CA

3

2(EN +MN)

{
(EN +MN)(EN−2M∆ +MN)+

(
3

∑
k=1

pk

)
p j

}

− M∆

MN
(EN−M∆)CA

4 +MNCA
5 −

CA
6

MN
p j

(
3

∑
k=1

pk

)]
, j = 1,2,3

S1(q;4) = B
3

∑
k=1

pk

[
CA

3 +
M∆

MN
CA

4 +
EN−M∆

MN
CA

6

]
,

S2(q; j) = iA

[
3
2

(
3

∑
k=1

pk

)
(
δ j1(p2− p3)+δ j2(p3− p1)+δ j3(p1− p2)

)
CA

3

]
,

S3(q; j) = iA

[
9
4

(
δ j1(p2p3)−δ j2(p1p3)

)
CA

3

]
, (3.3)

whereA =
√

2/3
√

EN/(EN +MN)/(3ENMN) andB = A/(EN +MN). The axial form factors can
be extracted by performing an overconstrained analysis as described in Refs. [11, 12].

4. Results

In Fig. 1 we show our lattice results for the four axial form factors for quenched and un-
quenched Wilson fermions and in the hybrid approach. We observe thatCA

3 is consistent with
zero and that unquenching effects are small for the dominant form factors,CA

5 andCA
6 . The form

factorCA
4 shows an interesting behavior: The unquenched results for both dynamical Wilson and

domain wall fermions show an increase at low momentum transfers. Such large deviations between
quenched and full QCD results for these relatively heavy quark masses are unusual making this an
interesting quantity to study effects of unquenching.

In the chiral limit, axial current conservation leads to the relationCA
6 (Q2) = M2

NCA
5 (Q2)/Q2. In

Fig.2 we show the ratio
(
Q2/M2

N

)
CA

6 (Q2)/CA
5 (Q2) for quenched and unquenched Wilson fermions,

and in the hybrid scheme. In each case we show results for the available quark masses and in the
chiral limit. The expected value in the chiral limit for this ratio is one. For finite quark mass the
axial current is not conserved and for Wilson fermions chiral symmetry is broken so that deviations
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Figure 1: The axial form factorsCA
3 , CA

4 , CA
5 andCA

6 as a function ofQ2. In all plots we show quenched re-
sults, denoted byNf = 0, atκ = 0.1554(crosses), atκ = 0.1558(open circles) and atκ = 0.1562(asterisks).
The graphs on the left hand side also show unquenched Wilson results, denoted byNf = 2, at κ = 0.1575
(triangles),κ = 1580(filled circles) andκ = 0.15825(open squares). The graphs on the right hand side also
show results in the hybrid approach ataml = 0.03 (crosses),aml = 0.02 (filled diamonds) andaml = 0.01
(filled triangles).

from one are expected. We observe that this ratio differs from unity at lowQ2 but approaches unity
at higher values ofQ2. For the hybrid scheme the ratio is consistent with unity even at the lowest
availableQ2, as expected for chiral fermions. That such chiral restoration is seen on the lattice even
when using Wilson fermions demonstrates that lattice methodology correctly encodes continuum
physics.

At finite pion mass partial conservation of axial current (∂µAa
µ(x) = fπm2

ππa(x)) leads to the
off-diagonal Goldberger-Treiman relationCA

5 (Q2) = fπgπN∆(Q2)/2MN wheregπN∆(Q2) is deter-
mined from the matrix element of the pseudoscalar density

< ∆+(p′,s′)|ψ̄γ5
τ3

2
ψ|N(p,s) >=

√
2
3

gπN∆

2MN

m2
π

Q2 +m2
π

ūσ (p′,s′)qσ u(p,s) (4.1)

and the pion decay constant,fπ , is determined from the two-point function< O|Aa
µ |πb(p) >=

ipµδ ab fπ , taking as the continuum valuefπ = 93.2 MeV. In order to relate the lattice pion matrix
element to its physical value we need the pseudoscalar renormalization constant,Zp. We take for
quenched [13] and dynamical Wilson fermions [14] Zp(µ2a2 ∼ 1) = 0.5(1) computed using the
RI-MOM method. This value may depend on the renormalization scale whereas it is not known
for domain wall fermions. In Fig.3 we show the result forgπN∆ for Wilson fermions and the linear
extrapolation inm2

π of these results to the chiral limit. In the chiral limit at the lowest availableQ2

value we findgπN∆(Q2 = 0.135 GeV2) = 18.0(1.9) andgπN∆(Q2 = 0.443 GeV2) = 15.8(1.8) for
quenched and dynamical Wilson fermions respectively where the errors include a 10% uncertainty
in Zp. These values can be compared withgπN∆(m2

π) = 23.2±2.6 obtained from an analysis of
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Figure 2: The ratio
(
Q2/M2

N

)
CA

6 /CA
5 versusQ2.

Top: In the quenched theory, Middle: For dynam-
ical Wilson fermions, Bottom: In the hybrid ap-
proach.

Figure 3: gπN∆ as a function ofQ2 for quenched
and dynamical Wilson fermions. Top: For our
three-κ values. Bottom: In the chiral limit.

Figure 4: The ratio fπgπN∆/
(
2MNCA

5

)
versusQ2

for quenched and dynamical Wilson fermions.

Figure 5: CA
5 /CV

3 is shown versusQ2 for mπ ∼
0.5 GeV for quenched and dynamical Wilson
fermions and in the hybrid approach. For Wilson
fermions results in the chiral limit are also shown.

πN scattering [15]. In Fig. 4 we show the ratiofπgπN∆/
(
2MNCA

5

)
for Wilson fermions. As can

be seen this ratio is almostQ2 independent and as the quark mass decreases it becomes consistent
with unity in agreement with the off-diagonal Goldberger-Treiman relation.

Under the assumptions thatCA
3 ∼ 0 and thatCA

4 is suppressed as compared toCA
5 , both of which

are justified by the lattice results, the parity violation asymmetry can be shown to be proportional
to the ratioCA

5/CV
3 [16]. The form factorCV

3 can be obtained from the electromagnetic N to∆
transition. Using our lattice results for the dipole and electric quadrupole Sachs factors,GM1 and
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GE2 [11], CV
3 is extracted from the relationCV

3 = 3
2

M∆(MN+M∆)
(MN+M∆)2+Q2 (GM1−GE2).

We show in Fig.5 the ratioCA
5/CV

3 , for pions of mass about 500 MeV. As can be seen un-
quenching effects are small and in order to assess the quark mass dependence we extrapolate our
quenched results, which carry the smallest errors, to the chiral limit. We find only a small increase
in this ratio as we tune the quark mass to zero, indicating a weak quark mass dependence. There-
fore our lattice evaluation provides a prediction for the physical value of this ratio, which is the
analog of thegA/gV . Our lattice results show that this ratio, and therefore to a first approximation
the parity violating asymmetry, is non-zero atQ2 = 0 and increases forQ2 >∼ 1.5 GeV2.

5. Conclusions

In summary we have provided a lattice calculation of the axial N to∆ transition form factors in
the quenched approximation, using two degenerate dynamical Wilson fermions and within a hybrid
approach where we use MILC configurations and domain wall fermions.

The main conclusions are: 1.CA
3 is consistent with zero whereasCA

4 is small but shows the
largest sensitivity to unquenching effects. 2. The two dominant form factors areCA

5 andCA
6 . These

are related in the chiral limit by axial current conservation. The ratio
(
Q2/M2

N

)
CA

6/CA
5 , which must

be unity if chiral symmetry is unbroken, is shown to approach unity as the quark mass decreases.
3. For any quark mass the strong couplinggπN∆ and the axial form factorCA

5 show a similarQ2

dependence with the off diagonal Goldberger-Treiman relation being reproduced as the quark mass
decreases. 4. The ratio ofCA

5/CV
3 which determines to a good approximation the parity violating

asymmetry is predicted to be non-zero atQ2 = 0 and has a two-fold increase whenQ2 ∼ 1.5 GeV.
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